1932

Abstract

Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell–cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-090215-112735
2016-07-11
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-090215-112735.html?itemId=/content/journals/10.1146/annurev-bioeng-090215-112735&mimeType=html&fmt=ahah

Literature Cited

  1. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I. 1.  et al. 2008. Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1511–16 [Google Scholar]
  2. Navin N, Kendall J, Troge J, Andrews P, Rodgers L. 2.  et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94 [Google Scholar]
  3. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT. 3.  et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–40 [Google Scholar]
  4. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 4.  2006. Stochastic mRNA synthesis in mammalian cells. PLOS Biol. 4:e309 [Google Scholar]
  5. Cai L, Friedman N, Xie XS. 5.  2006. Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–62 [Google Scholar]
  6. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. 6.  2005. Gene regulation at the single-cell level. Science 307:1962–65 [Google Scholar]
  7. Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB. 7.  et al. 2008. Integrated microfluidic bioprocessor for single-cell gene expression analysis. PNAS 105:20173–78 [Google Scholar]
  8. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. 8.  2008. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–47 [Google Scholar]
  9. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F. 9.  et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80 [Google Scholar]
  10. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A. 10.  et al. 2011. The quantitative proteome of a human cell line. Mol. Syst. Biol. 7:549 [Google Scholar]
  11. Han F, Lillard SJ. 11.  2000. In-situ sampling and separation of RNA from individual mammalian cells. Anal. Chem. 72:4073–79 [Google Scholar]
  12. Schmid A, Kortmann H, Dittrich PS, Blank LM. 12.  2010. Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 21:12–20 [Google Scholar]
  13. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. 13.  2012. A deep profiler's guide to cytometry. Trends Immunol. 33:323–32 [Google Scholar]
  14. Cohen D, Dickerson JA, Whitmore CD, Turner EH, Palcic MM. 14.  et al. 2008. Chemical cytometry: fluorescence-based single-cell analysis. Annu. Rev. Anal. Chem. 1:165–90 [Google Scholar]
  15. Rettig JR, Folch A. 15.  2005. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77:5628–34 [Google Scholar]
  16. Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN. 16.  2004. Microfabricated platform for studying stem cell fates. Biotechnol. Bioeng. 88:399–415 [Google Scholar]
  17. Deutsch M, Deutsch A, Shirihai O, Hurevich I, Afrimzon E. 17.  et al. 2006. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab Chip 6:995–1000 [Google Scholar]
  18. Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R. 18.  et al. 2005. Single-cell microarray for analyzing cellular response. Anal. Chem. 77:8050–56 [Google Scholar]
  19. Wang Y, Shah P, Phillips C, Sims CE, Allbritton NL. 19.  2012. Trapping cells on a stretchable microwell array for single-cell analysis. Anal. Bioanal. Chem. 402:1065–72 [Google Scholar]
  20. Kim SH, Yamamoto T, Fourmy D, Fujii T. 20.  2011. Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small 7:3239–47 [Google Scholar]
  21. Kobel SA, Lutolf MP. 21.  2012. Fabrication of PEG hydrogel microwell arrays for high-throughput single stem cell culture and analysis. Methods Mol. Biol. 811:101–12 [Google Scholar]
  22. Zhu H, Stybayeva G, Silangcruz J, Yan J, Ramanculov E. 22.  et al. 2009. Detecting cytokine release from single T-cells. Anal. Chem. 81:8150–56 [Google Scholar]
  23. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC. 23.  2012. Polyfunctional responses by human T cells result from sequential release of cytokines. PNAS 109:1607–12 [Google Scholar]
  24. Shi Q, Qin L, Wei W, Geng F, Fan R. 24.  et al. 2012. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. PNAS 109:419–24 [Google Scholar]
  25. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 25.  1998. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:356–63 [Google Scholar]
  26. Tang X, Ali MY, Saif MT. 26.  2012. A novel technique for micro patterning proteins and cells on polyacrylamide gels. Soft Matter 8:7197–206 [Google Scholar]
  27. Beckwith KM, Sikorski P. 27.  2013. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 5:045009 [Google Scholar]
  28. Azioune A, Storch M, Bornens M, Théry M, Piel M. 28.  2009. Simple and rapid process for single cell micro-patterning. Lab Chip 9:1640–42 [Google Scholar]
  29. Shen K, Thomas VK, Dustin ML, Kam LC. 29.  2008. Micropatterning of costimulatory ligands enhances CD4+ T cell function. PNAS 105:7791–96 [Google Scholar]
  30. Peng R, Yao X, Ding J. 30.  2011. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 32:8048–57 [Google Scholar]
  31. Cao B, Peng R, Li Z, Ding J. 31.  2014. Effects of spreading areas and aspect ratios of single cells on dedifferentiation of chondrocytes. Biomaterials 35:6871–81 [Google Scholar]
  32. Lee J, Abdeen AA, Zhang D, Kilian KA. 32.  2013. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–48 [Google Scholar]
  33. Tan CP, Seo BR, Brooks DJ, Chandler EM, Craighead HG, Fischbach C. 33.  2009. Parylene peel-off arrays to probe the role of cell–cell interactions in tumour angiogenesis. Integr. Biol. 1:587–94 [Google Scholar]
  34. Mandal K, Balland M, Bureau L. 34.  2012. Thermoresponsive micropatterned substrates for single cell studies. PLOS ONE 7:e37548 [Google Scholar]
  35. Yamaguchi S, Ueno A, Akiyama Y, Morishima K. 35.  2012. Cell patterning through inkjet printing of one cell per droplet. Biofabrication 4:045005 [Google Scholar]
  36. Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N. 36.  et al. 2002. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16:1195–204 [Google Scholar]
  37. Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM. 37.  2005. Directing cell migration with asymmetric micropatterns. PNAS 102:975–78 [Google Scholar]
  38. Kumar G, Ho CC, Co CC. 38.  2007. Guiding cell migration using one-way micropattern arrays. Adv. Mater. 19:1084–90 [Google Scholar]
  39. Nelson CM, Chen CS. 39.  2002. Cell–cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett. 514:238–42 [Google Scholar]
  40. Lin L, Chu YS, Thiery JP, Lim CT, Rodriguez I. 40.  2013. Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns. Lab Chip 13:714–21 [Google Scholar]
  41. Nilsson J, Evander M, Hammarström B, Laurell T. 41.  2009. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649:141–57 [Google Scholar]
  42. Lindström S, Andersson-Svahn H. 42.  2010. Overview of single-cell analyses: microdevices and applications. Lab Chip 10:3363–72 [Google Scholar]
  43. Di Carlo D, Aghdam N, Lee LP. 43.  2006. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78:4925–30 [Google Scholar]
  44. Chung K, Rivet CA, Kemp ML, Lu H. 44.  2011. Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array. Anal. Chem. 83:7044–52 [Google Scholar]
  45. Zhang K, Chou CK, Xia X, Hung MC, Qin L. 45.  2014. Block-cell printing for live single-cell printing. PNAS 111:2948–53 [Google Scholar]
  46. Zhang H, Liu KK. 46.  2008. Optical tweezers for single cells. J. R. Soc. Interface 5:671–90 [Google Scholar]
  47. Werner M, Merenda F, Piguet J, Salathé RP, Vogel H. 47.  2011. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. Lab Chip 11:2432–39 [Google Scholar]
  48. LaFratta CN.48.  2013. Optical tweezers for medical diagnostics. Anal. Bioanal. Chem. 405:5671–77 [Google Scholar]
  49. Taff BM, Voldman J. 49.  2005. A scalable addressable positive-dielectrophoretic cell-sorting array. Anal. Chem. 77:7976–83 [Google Scholar]
  50. Thomas RS, Morgan H, Green NG. 50.  2009. Negative DEP traps for single cell immobilization. Lab Chip 9:1534–40 [Google Scholar]
  51. Thomas RS, Mitchell PD, Oreffo RO, Morgan H. 51.  2010. Trapping single human osteoblast–like cells from a heterogeneous population using a dielectrophoretic microfluidic device. Biomicrofluidics 4:022806 [Google Scholar]
  52. Bhattacharya S, Chao TC, Ariyasinghe N, Ruiz Y, Lake D. 52.  et al. 2014. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal. Bioanal. Chem. 406:1855–65 [Google Scholar]
  53. Huang KW, Wu YC, Lee JA, Chiou PY. 53.  2013. Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis. Lab Chip 13:3721–27 [Google Scholar]
  54. Teh SY, Lin R, Hung LH, Lee AP. 54.  2008. Droplet microfluidics. Lab Chip 8:198–220 [Google Scholar]
  55. Lagus TP, Edd JF. 55.  2013. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J. Phys. D 46:114005 [Google Scholar]
  56. Okushima S, Nisisako T, Torii T, Higuchi T. 56.  2004. Controlled production of monodisperse double emulsions by two step droplet breakup in microfluidic devices. Langmuir 20:9905–8 [Google Scholar]
  57. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA. 57.  2012. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12:802–7 [Google Scholar]
  58. Schwartz JA, Vykoukal JV, Gascoyne PR. 58.  2004. Droplet-based chemistry on a programmable micro-chip. Lab Chip 4:11–17 [Google Scholar]
  59. Edgar JS, Milne G, Zhao Y, Pabbati CP, Lim DSW, Chiu DT. 59.  2009. Droplet compartmentalization of chemical separations. Angew. Chem. Int. Ed. Engl. 48:2719–22 [Google Scholar]
  60. Zeng J, Korsmeyer T. 60.  2004. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4:265–77 [Google Scholar]
  61. Bransky A, Korin N, Khoury M, Levenberg S. 61.  2009. A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip 9:516–20 [Google Scholar]
  62. Shen F, Du W, Davydova EK, Karymov MA, Pandey J, Ismagilov RF. 62.  2010. Nanoliter multiplex PCR arrays on a SlipChip. Anal. Chem. 82:4606–12 [Google Scholar]
  63. Schneider T, Yen GS, Thompson AM, Burnham DR, Chiu DT. 63.  2013. Self-digitization of samples into a high-density microfluidic bottom-well array. Anal. Chem. 85:10417–23 [Google Scholar]
  64. Boukellal H, Selimović S, Jia Y, Cristobal G, Fraden S. 64.  2009. Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 9:331–38 [Google Scholar]
  65. Shi W, Qin J, Ye N, Lin B. 65.  2008. Droplet based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–35 [Google Scholar]
  66. Schmitz CH, Rowat AC, Köster S, Weitz DA. 66.  2009. Dropspots: a picoliter array in a microfluidic device. Lab Chip 9:44–49 [Google Scholar]
  67. Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW. 67.  et al. 2012. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. PNAS 109:7665–70 [Google Scholar]
  68. Khorshidi MA, Rajeswari PK, Wählby C, Joensson HN, Andersson-Svahn H. 68.  2014. Automated analysis of dynamic behavior of single cells in picoliter droplets. Lab Chip 14:931–37 [Google Scholar]
  69. Tran TM, Lan F, Thompson CS, Abate AR. 69.  2013. From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology. J. Phys. D 46:114004 [Google Scholar]
  70. Chabert M, Viovy JL. 70.  2008. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. PNAS 105:3191–96 [Google Scholar]
  71. Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ. 71.  et al. 2008. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15:427–37 [Google Scholar]
  72. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC. 72.  et al. 2010. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. PNAS 107:4004–9 [Google Scholar]
  73. He M, Edgar JS, Jeffries GD, Lorenz RM, Shelby JP, Chiu DT. 73.  2005. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 77:1539–44 [Google Scholar]
  74. Kemna EW, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A. 74.  2012. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–87 [Google Scholar]
  75. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR. 75.  et al. 2006. Deterministic hydrodynamics: taking blood apart. PNAS 103:14779–84 [Google Scholar]
  76. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D. 76.  et al. 2007. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–39 [Google Scholar]
  77. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V. 77.  et al. 2014. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9:694–710 [Google Scholar]
  78. Sheng W, Chen T, Kamath R, Xiong X, Tan W, Fan ZH. 78.  2012. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 84:4199–206 [Google Scholar]
  79. Ghibaudo M, Di Meglio JM, Hersen P, Ladoux B. 79.  2011. Mechanics of cell spreading within 3D-micropatterned environments. Lab Chip 11:805–12 [Google Scholar]
  80. Heil P, Spatz JP. 80.  2010. Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics. J. Phys. Condens. Matter 22:194108 [Google Scholar]
  81. Yang MT, Fu J, Wang YK, Desai RA, Chen CS. 81.  2011. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat. Protoc. 6:187–213 [Google Scholar]
  82. van Hoorn H, Harkes R, Spiesz EM, Storm C, van Noort D. 82.  et al. 2014. The nanoscale architecture of force-bearing focal adhesions. Nano Lett. 14:4257–62 [Google Scholar]
  83. Benítez JJ, Topolancik J, Tian HC, Wallin CB, Latulippe DR. 83.  et al. 2012. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip 12:4848–54 [Google Scholar]
  84. Kim J, Johnson M, Hill P, Gale BK. 84.  2009. Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr. Biol. 1:574–86 [Google Scholar]
  85. White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D. 85.  et al. 2011. High-throughput microfluidic single-cell RT-qPCR. PNAS 108:13999–4004 [Google Scholar]
  86. Flatz L, Roychoudhuri R, Honda M, Filali-Mouhim A, Goulet JP. 86.  et al. 2011. Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines. PNAS 108:5724–29 [Google Scholar]
  87. Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S. 87.  et al. 2012. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150:1209–22 [Google Scholar]
  88. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME. 88.  et al. 2011. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29:1120–27 [Google Scholar]
  89. Guo G, Huss M, Tong GQ, Wang C, Sun LL. 89.  et al. 2010. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18:675–85 [Google Scholar]
  90. Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA. 90.  2010. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82:3183–90 [Google Scholar]
  91. Eastburn DJ, Sciambi A, Abate AR. 91.  2013. Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal. Chem. 85:8016–21 [Google Scholar]
  92. Zhang H, Jenkins G, Zou Y, Zhu Z, Yang CJ. 92.  2012. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Anal. Chem. 84:3599–606 [Google Scholar]
  93. Warren L, Bryder D, Weissman IL, Quake SR. 93.  2006. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. PNAS 103:17807–12 [Google Scholar]
  94. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. 94.  2006. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–67 [Google Scholar]
  95. Shuga J, Zeng Y, Novak R, Lan Q, Tang X. 95.  et al. 2013. Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR. Nucleic Acids Res. 4:e159 [Google Scholar]
  96. White AK, Heyries KA, Doolin C, Vaninsberghe M, Hansen CL. 96.  2013. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal. Chem. 85:7182–90 [Google Scholar]
  97. Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP. 97.  et al. 2007. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLOS Genet. 3:1702–8 [Google Scholar]
  98. Bontoux N, Dauphinot L, Vitalis T, Studer V, Chen Y. 98.  et al. 2008. Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip 8:443–50 [Google Scholar]
  99. Yu Z, Lu S, Huang Y. 99.  2014. Microfluidic whole genome amplification device for single cell sequencing. Anal. Chem. 86:9386–90 [Google Scholar]
  100. Fan HC, Wang J, Potanina A, Quake SR. 100.  2011. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29:51–57 [Google Scholar]
  101. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B. 101.  et al. 2014. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11:41–46 [Google Scholar]
  102. Streets AM, Zhang X, Cao C, Pang Y, Wu X. 102.  et al. 2014. Microfluidic single-cell whole-transcriptome sequencing. PNAS 111:7048–53 [Google Scholar]
  103. Speicher MR, Carter NP. 103.  2005. The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet. 6:782–92 [Google Scholar]
  104. Sieben VJ, Debes Marun CS, Pilarski PM, Kaigala GV, Pilarski LM, Backhouse CJ. 104.  2007. FISH and chips: chromosomal analysis on microfluidic platforms. IET Nanobiotechnol. 1:27–35 [Google Scholar]
  105. Mughal F, Baldock SJ, Karimiani EG, Telford N, Goddard NJ, Day PJ. 105.  2014. Microfluidic channel–assisted screening of hematopoietic malignancies. Genes Chromosomes Cancer 53:255–63 [Google Scholar]
  106. Vedarethinam I, Shah P, Dimaki M, Tumer Z, Tommerup N, Svendsen WE. 106.  2010. Metaphase FISH on a chip: miniaturized microfluidic device for fluorescence in situ hybridization. Sensors 10:9831–46 [Google Scholar]
  107. Liu P, Meagher RJ, Light YK, Yilmaz S, Chakraborty R. 107.  et al. 2011. Microfluidic fluorescence in situ hybridization and flow cytometry (μFlowFISH). Lab Chip 11:2673–79 [Google Scholar]
  108. Chen CH, Cho SH, Chiang HI, Tsai F, Zhang K, Lo YH. 108.  2011. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization. Anal. Chem. 83:7269–75 [Google Scholar]
  109. Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. 109.  2010. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 466:267–71 [Google Scholar]
  110. Lee RE, Walker SR, Savery K, Frank DA, Gaudet S. 110.  2014. Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Mol. Cell 53:867–79 [Google Scholar]
  111. Sun J, Masterman-Smith MD, Graham NA, Jiao J, Mottahedeh J. 111.  et al. 2010. A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res. 70:6128–38 [Google Scholar]
  112. Hughes AJ, Spelke DP, Xu Z, Kang CC, Schaffer DV, Herr AE. 112.  2014. Single-cell Western blotting. Nat. Methods 11:749–55 [Google Scholar]
  113. Sarkar A, Kolitz S, Lauffenburger DA, Han J. 113.  2014. Microfluidic probe for single-cell analysis in adherent tissue culture. Nat. Commun. 5:3421 [Google Scholar]
  114. Shirasaki Y, Yamagishi M, Suzuki N, Izawa K, Nakahara A. 114.  et al. 2014. Real-time single-cell imaging of protein secretion. Sci. Rep. 4:4736 [Google Scholar]
  115. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K. 115.  et al. 2015. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. PNAS 112:E607–15 [Google Scholar]
  116. Xue Q, Lu Y, Eisele MR, Sulistijo ES, Khan N. 116.  et al. 2015. Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci. Signal. 8:ra59 [Google Scholar]
  117. Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML. 117.  2011. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens. Bioelectron. 26:2707–10 [Google Scholar]
  118. Konry T, Golberg A, Yarmush M. 118.  2013. Live single cell functional phenotyping in droplet nano-liter reactors. Sci. Rep. 3:3179 [Google Scholar]
  119. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. 119.  2013. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8:870–91 [Google Scholar]
  120. Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S. 120.  et al. 2013. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13:4740–44 [Google Scholar]
  121. Son KJ, Shin DS, Kwa T, You J, Gao Y, Revzin A. 121.  2015. A microsystem integrating photodegradable hydrogel microstructures and reconfigurable microfluidics for single-cell analysis and retrieval. Lab Chip 15:637–41 [Google Scholar]
  122. Sun Y, Yin XF, Ling YY, Fang ZL. 122.  2005. Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis. Anal. Bioanal. Chem. 382:1472–76 [Google Scholar]
  123. Yue S, Xue-Feng Y. 123.  2006. Novel multi-depth microfluidic chip for single cell analysis. J. Chromatogr. A 1117:228–33 [Google Scholar]
  124. Zhu L, Lu M, Yin X. 124.  2008. Ultrasensitive determination of intracellular superoxide in individual HepG2 cells by microfluidic chip electrophoresis. Talanta 75:1227–33 [Google Scholar]
  125. Metto EC, Evans K, Barney P, Culbertson AH, Gunasekara DB. 125.  et al. 2013. An integrated microfluidic device for monitoring changes in nitric oxide production in single T-lymphocyte (Jurkat) cells. Anal. Chem. 85:10188–95 [Google Scholar]
  126. Shafran Y, Zurgil N, Afrimzon E, Tauber Y, Sobolev M. 126.  et al. 2012. Correlative analyses of nitric oxide generation rates and nitric oxide synthase levels in individual cells using a modular cell-retaining device. Anal. Chem. 84:7315–22 [Google Scholar]
  127. He L, Kniss A, San-Miguel A, Rouse T, Kemp ML, Lu H. 127.  2015. An automated programmable platform enabling multiplex dynamic stimuli delivery and cellular response monitoring for high-throughput suspension single-cell signaling studies. Lab Chip 15:1497–507 [Google Scholar]
  128. Bao XR, Fraser ID, Wall EA, Quake SR, Simon MI. 128.  2010. Variability in G protein–coupled signaling studied with microfluidic devices. Biophys. J. 99:2414–22 [Google Scholar]
  129. Xue M, Wei W, Su Y, Kim J, Shin YS. 129.  et al. 2015. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137:4066–69 [Google Scholar]
  130. Zenobi R.130.  2013. Single-cell metabolomics: analytical and biological perspectives. Science 342:6163 [Google Scholar]
  131. Mellors JS, Jorabchi K, Smith LM, Ramsey JM. 131.  2010. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem. 82:967–73 [Google Scholar]
  132. Küster SK, Fagerer SR, Verboket PE, Eyer K, Jefimovs K. 132.  et al. 2013. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets. Anal Chem 85:1285–89 [Google Scholar]
  133. Verboket PE, Borovinskaya O, Meyer N, Günther D, Dittrich PS. 133.  2014. A new microfluidics-based droplet dispenser for ICPMS. Anal. Chem. 86:6012–18 [Google Scholar]
  134. Schmidt AM, Fagerer SR, Jefimovs K, Buettner F, Marro C. 134.  et al. 2014. Molecular phenotypic profiling of a Saccharomyces cerevisiae strain at the single-cell level. Analyst 139:5709–17 [Google Scholar]
  135. Mazutis L, Araghi AF, Miller OJ, Baret JC, Frenz L. 135.  et al. 2009. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem. 81:4813–21 [Google Scholar]
  136. Konry T, Lerner A, Yarmush ML, Smolina IV. 136.  2013. Target DNA detection and quantitation on a single cell with single base resolution. Technology 1:88 [Google Scholar]
  137. Konry T, Smolina I, Yarmush JM, Irimia D, Yarmush ML. 137.  2011. Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform. Small 7:395–400 [Google Scholar]
  138. Juul S, Ho YP, Koch J, Andersen FF, Stougaard M. 138.  et al. 2011. Detection of single enzymatic events in rare or single cells using microfluidics. ACS Nano 5:8305–10 [Google Scholar]
  139. Blazek M, Santisteban TS, Zengerle R, Meier M. 139.  2015. Analysis of fast protein phosphorylation kinetics in single cells on a microfluidic chip. Lab Chip 15:726–34 [Google Scholar]
  140. Wu M, Piccini M, Koh CY, Lam KS, Singh AK. 140.  2013. Single cell microRNA analysis using microfluidic flow cytometry. PLOS ONE 8:e55044 [Google Scholar]
  141. Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A. 141.  et al. 2009. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850–58 [Google Scholar]
  142. Bhagat AA, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I. 142.  2010. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12:187–95 [Google Scholar]
  143. McKenna BK, Evans JG, Cheung MC, Ehrlich DJ. 143.  2011. A parallel microfluidic flow cytometer for high-content screening. Nat. Methods 8:401–3 [Google Scholar]
  144. Kang JH, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber DE. 144.  2015. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:2175–81 [Google Scholar]
  145. Chung J, Shao H, Reiner T, Issadore D, Weissleder R, Lee H. 145.  2012. Microfluidic cell sorter (μFCS) for on-chip capture and analysis of single cells. Adv. Healthc. Mater. 1:432–36 [Google Scholar]
  146. Loutherback K, D'Silva J, Liu L, Wu A, Austin RH, Sturm JC. 146.  2012. Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv. 2:042107 [Google Scholar]
  147. Plouffe BD, Mahalanabis M, Lewis LH, Klapperich CM, Murthy SK. 147.  2012. Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications. Anal. Chem. 84:1336–44 [Google Scholar]
  148. Mizuno M, Yamada M, Mitamura R, Ike K, Toyama K, Seki M. 148.  2013. Magnetophoresis-integrated hydrodynamic filtration system for size- and surface marker–based two-dimensional cell sorting. Anal. Chem. 85:7666–73 [Google Scholar]
  149. McFaul SM, Lin BK, Ma H. 149.  2012. Cell separation based on size and deformability using microfluidic funnel ratchets. Lab Chip 12:2369–76 [Google Scholar]
  150. Dura B, Dougan SK, Barisa M, Hoehl MM, Lo CT. 150.  et al. 2015. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat. Commun. 6:5940 [Google Scholar]
  151. Elitas M, Brower K, Lu Y, Chen JJ, Fan R. 151.  2014. A microchip platform for interrogating tumor-macrophage paracrine signaling at the single-cell level. Lab Chip 14:3582–88 [Google Scholar]
  152. Yamanaka YJ, Berger CT, Sips M, Cheney PC, Alter G, Love JC. 152.  2012. Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr. Biol. 4:1175–84 [Google Scholar]
  153. Faley S, Seale K, Hughey J, Schaffer DK, VanCompernolle S. 153.  et al. 2008. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip 8:1700–12 [Google Scholar]
  154. Sarkar S, Motwani V, Sabhachandani P, Cohen N, Konry T. 154.  2015. T cell dynamic activation and functional analysis in nanoliter droplet microarray. J. Clin. Cell Immunol. 6:334 [Google Scholar]
  155. Hong S, Pan Q, Lee LP. 155.  2012. Single-cell level co-culture platform for intercellular communication. Integr. Biol. 4:374–80 [Google Scholar]
  156. Sarkar S, Cohen N, Sabhachandani P, Konry T. 156.  2015. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors. Lab Chip 154441–50
/content/journals/10.1146/annurev-bioeng-090215-112735
Loading
/content/journals/10.1146/annurev-bioeng-090215-112735
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error