1932

Abstract

This review focuses on recent progress in noncomputational methods to introduce catalytic function into proteins, peptides, and peptide assemblies. We discuss various approaches to creating catalytic activity and classification of noncomputational methods into rational and combinatorial classes. The section on rational design covers recent progress in the development of short peptides and oligomeric peptide assemblies for various natural and unnatural reactions. The section on combinatorial design describes recent advances in the discovery of catalytic peptides. We present the future prospects of these and other new approaches in a broader context, including implications for functional material design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-111215-024421
2016-07-11
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-111215-024421.html?itemId=/content/journals/10.1146/annurev-bioeng-111215-024421&mimeType=html&fmt=ahah

Literature Cited

  1. Swiderek K, Tunon I, Moliner V, Bertran J. 1.  2015. Computational strategies for the design of new enzymatic functions. Arch. Biochem. Biophys. 582:68–79 [Google Scholar]
  2. Korendovych IV, DeGrado WF. 2.  2014. Catalytic effciency of designed catalytic proteins. Curr. Opin. Struct. Biol. 27:113–21 [Google Scholar]
  3. Wijma HJ, Janssen DB. 3.  2013. Computational design gains momentum in enzyme catalysis engineering. FEBS J. 280:2948–60 [Google Scholar]
  4. Kries H, Blomberg R, Hilvert D. 4.  2013. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17:221–28 [Google Scholar]
  5. Cedrone F, Ménez A, Quéméneur E. 5.  2000. Tailoring new enzyme functions by rational redesign. Curr. Opin. Struct. Biol. 10:405–10 [Google Scholar]
  6. Chica RA, Doucet N, Pelletier JN. 6.  2005. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16:378–84 [Google Scholar]
  7. Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PA. 7.  1997. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15:772–77 [Google Scholar]
  8. Koivunen E, Arap W, Rajotte D, Lahdenranta J, Pasqualini R. 8.  1999. Identification of receptor ligands with phage display peptide libraries. J. Nucl. Med. 40:883–88 [Google Scholar]
  9. Slavoff SA, Chen I, Choi YA, Ting AY. 9.  2008. Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. J. Am. Chem. Soc. 130:1160–62 [Google Scholar]
  10. Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. 10.  2003. Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2:577–85 [Google Scholar]
  11. Forrer P, Jung S, Plückthun A. 11.  1999. Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 9:514–20 [Google Scholar]
  12. Pedersen H, Holder S, Sutherlin DP, Schwitter U, King DS, Schultz PG. 12.  1998. A method for directed evolution and functional cloning of enzymes. PNAS 95:10523–28 [Google Scholar]
  13. Demartis S, Huber A, Viti F, Lozzi L, Giovannoni L. 13.  et al. 1999. A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J. Mol. Biol. 286:617–33 [Google Scholar]
  14. Yang G, Withers SG. 14.  2009. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. ChemBioChem 10:2704–15 [Google Scholar]
  15. Chen I, Dorr BM, Liu DR. 15.  2011. A general strategy for the evolution of bond-forming enzymes using yeast display. PNAS 108:11399–404 [Google Scholar]
  16. Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH. 16.  et al. 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12:51–54 [Google Scholar]
  17. Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F. 17.  2014. One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal. Chem. 86:2526–33 [Google Scholar]
  18. Fischlechner M, Schaerli Y, Mohamed MF, Patil S, Abell C, Hollfelder F. 18.  2014. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6:791–96 [Google Scholar]
  19. Lutz S.19.  2010. Beyond directed evolution—semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21:734–43 [Google Scholar]
  20. Pollack SJ, Jacobs JW, Schultz PG. 20.  1986. Selective chemical catalysis by an antibody. Science 234:1570–73 [Google Scholar]
  21. Tramontano A, Janda KD, Lerner RA. 21.  1986. Catalytic antibodies. Science 234:1566–70 [Google Scholar]
  22. Esposito A, Delort E, Lagnoux D, Djojo F, Reymond JL. 22.  2003. Catalytic peptide dendrimers. Angew. Chem. Int. Ed. Engl. 42:1381–83 [Google Scholar]
  23. Douat-Casassus C, Darbre T, Reymond JL. 23.  2004. Selective catalysis with peptide dendrimers. J. Am. Chem. Soc. 126:7817–26 [Google Scholar]
  24. Colby Davie EA, Mennen SM, Xu Y, Miller SJ. 24.  2007. Asymmetric catalysis mediated by synthetic peptides. Chem. Rev. 107:5759–812 [Google Scholar]
  25. Kazlauskas RJ, Bornscheuer UT. 25.  2009. Finding better protein engineering strategies. Nat. Chem. Biol. 5:526–29 [Google Scholar]
  26. Reetz MT.26.  2013. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135:12480–96 [Google Scholar]
  27. Makhlynets OV, Raymond EA, Korendovych IV. 27.  2015. Design of allosterically regulated protein catalysts. Biochemistry 54:1444–56 [Google Scholar]
  28. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS. 28.  et al. 2014. Protein design: toward functional metalloenzymes. Chem. Rev. 114:3495–578 [Google Scholar]
  29. Roy A, Sommer DJ, Schmitz RA, Brown CL, Gust D. 29.  et al. 2014. A de novo designed 2[4Fe–4S] ferredoxin mimic mediates electron transfer. J. Am. Chem. Soc. 136:17343–49 [Google Scholar]
  30. Sommer DJ, Roy A, Astashkin A, Ghirlanda G. 30.  2015. Modulation of cluster incorporation specificity in a de novo iron–sulfur cluster binding peptide. Biopolymers 104:412–18 [Google Scholar]
  31. Cangelosi VM, Deb A, Penner-Hahn JE, Pecoraro VL. 31.  2014. A de novo designed metalloenzyme for the hydration of CO2. Angew. Chem. Int. Ed. Engl. 53:7900–3 [Google Scholar]
  32. Zastrow ML, Peacock AF, Stuckey JA, Pecoraro VL. 32.  2012. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4:118–23 [Google Scholar]
  33. Tegoni M, Yu F, Bersellini M, Penner-Hahn JE, Pecoraro VL. 33.  2012. Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. PNAS 109:21234–39 [Google Scholar]
  34. Yu F, Penner-Hahn JE, Pecoraro VL. 34.  2013. De novo–designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. J. Am. Chem. Soc. 135:18096–107 [Google Scholar]
  35. Farid TA, Kodali G, Solomon LA, Lichtenstein BR, Sheehan MM. 35.  et al. 2013. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat. Chem. Biol. 9:826–33 [Google Scholar]
  36. Miner KD, Mukherjee A, Gao Y-G, Null EL, Petrik ID. 36.  et al. 2012. A designed functional metalloenzyme that reduces O2 to H2O with over one thousand turnovers. Angew. Chem. Int. Ed. 51:5589–92 [Google Scholar]
  37. Yu Y, Cui C, Liu X, Petrik ID, Wang J, Lu Y. 37.  2015. A designed metalloenzyme achieving the catalytic rate of a native enzyme. J. Am. Chem. Soc. 137:11570–73 [Google Scholar]
  38. Kleingardner JG, Kandemir B, Bren KL. 38.  2014. Hydrogen evolution from neutral water under aerobic conditions catalyzed by cobalt microperoxidase 11. J. Am. Chem. Soc. 136:4–7 [Google Scholar]
  39. Der BS, Edwards DR, Kuhlman B. 39.  2012. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51:3933–40 [Google Scholar]
  40. Song WJ, Tezcan FA. 40.  2014. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346:1525–28 [Google Scholar]
  41. Mayer C, Gillingham DG, Ward TR, Hilvert D. 41.  2011. An artificial metalloenzyme for olefin metathesis. Chem. Commun. 47:12068–70 [Google Scholar]
  42. Philippart F, Arlt M, Gotzen S, Tenne SJ, Bocola M. 42.  et al. 2013. A hybrid ring-opening metathesis polymerization catalyst based on an engineered variant of the β-barrel protein FhuA. Chemistry 19:13865–71 [Google Scholar]
  43. Sauer DF, Bocola M, Broglia C, Arlt M, Zhu LL. 43.  et al. 2015. Hybrid ruthenium ROMP catalysts based on an engineered variant of β-barrel protein FhuA ΔCVFtev: effect of spacer length. Chem. Asian J. 10:177–82 [Google Scholar]
  44. Lo C, Ringenberg MR, Gnandt D, Wilson Y, Ward TR. 44.  2011. Artificial metalloenzymes for olefin metathesis based on the biotin–(strept)avidin technology. Chem. Commun. 47:12065–67 [Google Scholar]
  45. Matsuo T, Imai C, Yoshida T, Saito T, Hayashi T, Hirota S. 45.  2012. Creation of an artificial metalloprotein with a Hoveyda–Grubbs catalyst moiety through the intrinsic inhibition mechanism of α-chymotrypsin. Chem. Commun. 48:1662–64 [Google Scholar]
  46. Genz M, Koehler V, Krauss M, Singer D, Hoffmann R. 46.  et al. 2014. An artificial imine reductase based on the ribonuclease S scaffold. ChemCatChem 6:736–40 [Google Scholar]
  47. Monnard FW, Nogueira ES, Heinisch T, Schirmer T, Ward TR. 47.  2013. Human carbonic anhydrase II as host protein for the creation of artificial metalloenzymes: the asymmetric transfer hydrogenation of imines. Chem. Sci. 4:3269–74 [Google Scholar]
  48. Fukumoto K, Onoda A, Mizohata E, Bocola M, Inoue T. 48.  et al. 2014. Rhodium-complex-linked hybrid biocatalyst: stereo-controlled phenylacetylene polymerization within an engineered protein cavity. ChemCatChem 6:1229–35 [Google Scholar]
  49. Onoda A, Fukumoto K, Arlt M, Bocola M, Schwaneberg U, Hayashi T. 49.  2012. A rhodium complex–linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chem. Commun. 48:9756–58 [Google Scholar]
  50. Srivastava P, Yang H, Ellis-Guardiola K, Lewis JC. 50.  2015. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun. 6:7789 [Google Scholar]
  51. Zhang C, Srivastava P, Ellis-Guardiola K, Lewis JC. 51.  2014. Manganese terpyridine artificial metalloenzymes for benzylic oxygenation and olefin epoxidation. Tetrahedron 70:4245–49 [Google Scholar]
  52. Allard M, Dupont C, Muñoz Robles V, Doucet N, Lledós A. 52.  et al. 2012. Incorporation of manganese complexes into xylanase: new artificial metalloenzymes for enantioselective epoxidation. ChemBioChem 13:240–51 [Google Scholar]
  53. Sansiaume-Dagousset E, Urvoas A, Chelly K, Ghattas W, Maréchal J-D. 53.  et al. 2014. Neocarzinostatin-based hybrid biocatalysts for oxidation reactions. Dalton Trans. 43:8344–54 [Google Scholar]
  54. Inaba H, Kanamaru S, Arisaka F, Kitagawa S, Ueno T. 54.  2012. Semi-synthesis of an artificial scandium(III) enzyme with a β-helical bio-nanotube. Dalton Trans. 41:11424–27 [Google Scholar]
  55. Lewandowski B, Wennemers H. 55.  2014. Asymmetric catalysis with short-chain peptides. Curr. Opin. Chem. Biol. 22:40–46 [Google Scholar]
  56. Rufo CM, Moroz YS, Moroz OV, Stohr J, Smith TA. 56.  et al. 2014. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6:303–9 [Google Scholar]
  57. Friedmann MP, Torbeev V, Zelenay V, Sobol A, Greenwald J. 57.  et al. 2015. Towards prebiotic catalytic amyloids using high throughput screening. PLOS ONE 10:e0143948 [Google Scholar]
  58. Zhang CQ, Xue XD, Luo Q, Li YW, Yang KN. 58.  et al. 2014. Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano 8:11715–23 [Google Scholar]
  59. Huang Z, Guan S, Wang Y, Shi G, Cao L. 59.  et al. 2013. Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model. J. Mater. Chem. B 1:2297–304 [Google Scholar]
  60. Berdugo C, Miravet JF, Escuder B. 60.  2013. Substrate selective catalytic molecular hydrogels: the role of the hydrophobic effect. Chem. Commun. 49:10608–10 [Google Scholar]
  61. Jin Q, Zhang L, Cao H, Wang T, Zhu X. 61.  et al. 2011. Self-assembly of copper(II) ion–mediated nanotube and its supramolecular chiral catalytic behavior. Langmuir 27:13847–53 [Google Scholar]
  62. Weingarten AS, Kazantsev RV, Palmer LC, McClendon M, Koltonow AR. 62.  et al. 2014. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6:964–70 [Google Scholar]
  63. Fry HC, Garcia JM, Medina MJ, Ricoy UM, Gosztola DJ. 63.  et al. 2012. Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays. J. Am. Chem. Soc. 134:14646–49 [Google Scholar]
  64. Fry HC, Liu Y, Dimitrijevic NM, Rajh T. 64.  2014. Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material. Nat. Commun. 5:8 [Google Scholar]
  65. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. 65.  2002. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1:169–72 [Google Scholar]
  66. Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA, Stone MO. 66.  2004. Peptide templates for nanoparticle synthesis derived from polymerase chain reaction–driven phage display. Adv. Funct. Mater. 14:25–30 [Google Scholar]
  67. Pappalardo G, Impellizzeri G, Bonomo RP, Campagna T, Grasso G, Saita MG. 67.  2002. Copper(II) and nickel(II) binding modes in a histidine-containing model dodecapeptide. New J. Chem. 26:593–600 [Google Scholar]
  68. Yu L, Banerjee IA, Shima M, Rajan K, Matsui H. 68.  2004. Size-controlled Ni nanocrystal growth on peptide nanotubes and their magnetic properties. Adv. Mater. 16:709–12 [Google Scholar]
  69. Banerjee IA, Yu L, Matsui H. 69.  2003. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. PNAS 100:14678–82 [Google Scholar]
  70. Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S. 70.  et al. 2005. Bioassisted room-temperature immobilization and mineralization of zinc oxide—the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv. Mater. 17:2571–75 [Google Scholar]
  71. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J. 71.  et al. 2003. Viral assembly of oriented quantum dot nanowires. PNAS 100:6946–51 [Google Scholar]
  72. Wei Z, Maeda Y, Matsui H. 72.  2011. Discovery of catalytic peptides for inorganic nanocrystal synthesis by a combinatorial phage display approach. Angew. Chem. Int. Ed. Engl. 50:10585–88 [Google Scholar]
  73. Kisailus D, Schwenzer B, Gomm J, Weaver JC, Morse DE. 73.  2006. Kinetically controlled catalytic formation of zinc oxide thin films at low temperature. J. Am. Chem. Soc. 128:10276–80 [Google Scholar]
  74. Toledano S, Williams RJ, Jayawarna V, Ulijn RV. 74.  2006. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 128:1070–71 [Google Scholar]
  75. Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV. 75.  2009. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4:19–24 [Google Scholar]
  76. Das AK, Collins R, Ulijn RV. 76.  2008. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 4:279–87 [Google Scholar]
  77. Maeda Y, Javid N, Duncan K, Birchall L, Gibson KF. 77.  et al. 2014. Discovery of catalytic phages by biocatalytic self-assembly. J. Am. Chem. Soc. 136:15893–96 [Google Scholar]
  78. Matsui H, Maeda Y, Ulijn RV. 78.  2013. Method for screening catalytic peptides using phage display technology. US Patent WO2015002649A1
  79. Ekici OD, Paetzel M, Dalbey RE. 79.  2008. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci. 17:2023–37 [Google Scholar]
  80. Sadownik JW, Leckie J, Ulijn RV. 80.  2011. Micelle to fibre biocatalytic supramolecular transformation of an aromatic peptide amphiphile. Chem. Commun. 47:728–30 [Google Scholar]
  81. 81.  Deleted in proof
  82. Maeda Y, Wei Z, Ikezoe Y, Matsui H. 82.  2015. Enzyme-mimicking peptides to catalytically grow ZnO nanocrystals in non-aqueous environments. ChemMatNano 1:319–23 [Google Scholar]
  83. Du H, Yuan F, Huang S, Li J, Zhu Y. 83.  2004. A new reaction to ZnO nanoparticles. Chem. Lett. 33:770–71 [Google Scholar]
  84. Demir MM, Muñoz-Espí R, Lieberwirth I, Wegner G. 84.  2006. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. J. Mater. Chem. 16:2940–47 [Google Scholar]
  85. Joo J, Kwon SG, Yu JH, Hyeon T. 85.  2005. Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. Adv. Mater. 17:1873–77 [Google Scholar]
  86. Ye Y, Yuan F, Li S. 86.  2006. Synthesis of CoO nanoparticles by esterification reaction under solvothermal conditions. Mater. Lett. 60:3175–78 [Google Scholar]
  87. Hong Z, Cao Y, Deng J. 87.  2002. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 52:34–38 [Google Scholar]
  88. Baldi G, Bonacchi D, Franchini MC, Gentili D, Lorenzi G. 88.  et al. 2007. Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers. Langmuir 23:4026–28 [Google Scholar]
  89. Maeda Y, Wei Z, Ikezoe Y, Tam E, Matsui H. 81a.  2015. Biomimetic crystallization of MnFe2O4 mediated by peptide-catalyzed esterification at low temperature. ChemNanoMat 2:419–22 [Google Scholar]
  90. Chu YQ, Fu ZW, Qin QZ. 89.  2004. Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim. Acta 49:4915–21 [Google Scholar]
  91. Zhang D, Zhang X, Ni X, Song JM, Zheng H. 90.  2006. Low-temperature fabrication of MnFe2O4 octahedrons: magnetic and electrochemical properties. Chem. Phys. Lett. 426:120–23 [Google Scholar]
  92. Lee DK, Kim YH, Kang YS, Stroeve P. 91.  2005. Preparation of a vast CoFe2O4 magnetic monolayer by Langmuir–Blodgett technique. J. Phys. Chem. B 109:14939–44 [Google Scholar]
  93. Auzans E, Zins D, Blums E, Massart R. 92.  1999. Synthesis and properties of Mn-Zn ferrite ferrofluids. J. Mater. Sci. 34:1253–60 [Google Scholar]
  94. Tourinho FA, Franck R, Massart R. 93.  1990. Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25:3249–54 [Google Scholar]
  95. Kanazawa A, Kanaoka S, Yagita N, Oaki Y, Imai H. 94.  et al. 2012. Biologically synthesized or bioinspired process-derived iron oxides as catalysts for living cationic polymerization of a vinyl ether. Chem. Commun. 48:10904–6 [Google Scholar]
  96. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT. 95.  et al. 2007. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13:95–99 [Google Scholar]
  97. Vestal CR, Song Q, Zhang ZJ. 96.  2004. Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J. Phys. Chem. B 108:18222–27 [Google Scholar]
  98. Sorensen SB, Bech LM, Meldal M, Breddam K. 97.  1993. Mutational replacements of the amino acid residues forming the hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus. Biochemistry 32:8994–99 [Google Scholar]
  99. Carey C, Cheng Y-K, Rossky PJ. 98.  2000. Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry. Chem. Phys. 258:415–25 [Google Scholar]
  100. Hamley I, Krysmann M. 99.  2008. Effect of PEG crystallization on the self-assembly of PEG–peptide copolymers containing amyloid peptide fragments. Langmuir 24:8210–14 [Google Scholar]
  101. Krysmann M, Castelletto V, Hamley I. 100.  2007. Fibrillisation of hydrophobically modified amyloid peptide fragments in an organic solvent. Soft Matter 3:1401–6 [Google Scholar]
  102. Castelletto V, Zhu N, Hamley I, Noirez L. 101.  2010. Self-assembly of PEGylated peptide conjugates containing a modified amyloid β-peptide fragment. Langmuir 26:9986–96 [Google Scholar]
  103. Suzuki N, Fujii I. 102.  1999. Optimization of the loop length for folding of a helix-loop-helix peptide. Tetrahedron Lett. 40:6013–17 [Google Scholar]
  104. Duncan KL, Ulijn RV. 103.  2015. Short peptides in minimalistic biocatalyst design. Biocatalysis 1:67–81 [Google Scholar]
  105. Patel SC, Hecht MH. 104.  2012. Directed evolution of the peroxidase activity of a de novo–designed protein. Protein Eng. Des. Sel. 25:445–52 [Google Scholar]
  106. Korendovych IV, Kulp DW, Wu Y, Cheng H, Roder H, DeGrado WF. 105.  2011. Design of a switchable eliminase. PNAS 108:6823–27 [Google Scholar]
  107. Moroz OV, Moroz YS, Wu Y, Olsen AB, Cheng H. 106.  et al. 2013. A single mutation in a regulatory protein produces evolvable allosterically regulated catalyst of unnatural reaction. Angew. Chem. Int. Ed. 52:6246–49 [Google Scholar]
  108. Moroz YS, Dunston TT, Makhlynets OV, Moroz OV, Wu Y. 107.  et al. 2015. New tricks for old proteins: Single mutations in a non-enzymatic protein give rise to various catalytic activities. J. Am. Chem. Soc. 137:14905–11 [Google Scholar]
  109. Raymond EA, Mack KL, Yoon JH, Moroz OV, Moroz YS, Korendovych IV. 108.  2015. Design of an allosterically regulated retroaldolase. Protein Sci. 24:561–70 [Google Scholar]
  110. Seelig B, Szostak JW. 109.  2007. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–31 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-111215-024421
Loading
/content/journals/10.1146/annurev-bioeng-111215-024421
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error