1932

Abstract

Physical factors in the local cellular microenvironment, including cell shape and geometry, matrix mechanics, external mechanical forces, and nanotopographical features of the extracellular matrix, can all have strong influences on regulating stem cell fate. Stem cells sense and respond to these insoluble biophysical signals through integrin-mediated adhesions and the force balance between intracellular cytoskeletal contractility and the resistant forces originated from the extracellular matrix. Importantly, these mechanotransduction processes can couple with many other potent growth-factor-mediated signaling pathways to regulate stem cell fate. Different bioengineering tools and microscale/nanoscale devices have been successfully developed to engineer the physical aspects of the cellular microenvironment for stem cells, and these tools and devices have proven extremely powerful for identifying the extrinsic physical factors and their downstream intracellular signaling pathways that control stem cell functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-042910-155306
2012-06-09
2024-04-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biophys-042910-155306
Loading
/content/journals/10.1146/annurev-biophys-042910-155306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error