1932

Abstract

Any bilayer lipid membrane can support a membrane voltage. The combination of optical perturbation and optical readout of membrane voltage opens the door to studies of electrophysiology in a huge variety of systems previously inaccessible to electrode-based measurements. Yet, the application of optogenetic electrophysiology requires careful reconsideration of the fundamentals of bioelectricity. Rules of thumb appropriate for neuroscience and cardiology may not apply in systems with dramatically different sizes, lipid compositions, charge carriers, or protein machinery. Optogenetic tools are not electrodes; thus, optical and electrode-based measurements have different quirks. Here we review the fundamental aspects of bioelectricity with the aim of laying a conceptual framework for all-optical electrophysiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-022717
2014-05-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-022717.html?itemId=/content/journals/10.1146/annurev-biophys-051013-022717&mimeType=html&fmt=ahah

Literature Cited

  1. Accardi A, Miller C. 1.  2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427:803–7 [Google Scholar]
  2. Alford SC, Wu J, Zhao Y, Campbell RE, Knöpfel T. 2.  2013. Optogenetic reporters. Biol. Cell 105:14–29 [Google Scholar]
  3. Bashford CL, Pasternak CA. 3.  1986. Plasma membrane potential of some animal cells is generated by ion pumping, not by ion gradients. Trends Biochem. Sci. 11:113–16 [Google Scholar]
  4. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. 4.  1983. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130:1910–17 [Google Scholar]
  5. Bedlack RS Jr, Wei MD, Fox SH, Gross E, Loew LM. 5.  1994. Distinct electric potentials in soma and neurite membranes. Neuron 13:1187–93 [Google Scholar]
  6. Blaustein MP, Lederer WJ. 6.  1999. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79:763–854 [Google Scholar]
  7. Booth IR. 7.  2003. Bacterial ion channels. Genet. Eng. 25:91–111 [Google Scholar]
  8. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 8.  2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  9. Bronner C, Mousli M, Eleno N, Landry Y. 9.  1989. Resting plasma membrane potential of rat peritoneal mast cells is set predominantly by the sodium pump. FEBS Lett. 255:401–4 [Google Scholar]
  10. Brownell WE. 10.  1990. Outer hair cell electromotility and otoacoustic emissions. Ear Hear. 11:82–92 [Google Scholar]
  11. Burton K, Wilson TH. 11.  1953. The free-energy changes for the reduction of diphosphopyridine nucleotide and the dehydrogenation of L-malate and L-glycerol 1-phosphate. Biochem. J. 54:86–94 [Google Scholar]
  12. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S. 12.  1985. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358:197–237 [Google Scholar]
  13. Cahalan MD, Wulff H, Chandy KG. 13.  2001. Molecular properties and physiological roles of ion channels in the immune system. J. Clin. Immunol. 21:235–52 [Google Scholar]
  14. Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN. 14.  2013. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–13 [Google Scholar]
  15. Chanda B, Blunck R, Faria LC, Schweizer FE, Mody I, Bezanilla F. 15.  2005. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 8:1619–26 [Google Scholar]
  16. Chow BY, Han X, Dobry AS, Qian X, Chuong AS. 16.  et al. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102 [Google Scholar]
  17. Clarke RJ. 17.  2001. The dipole potential of phospholipid membranes and methods for its detection. Adv. Colloid Interface Sci. 89:263–81 [Google Scholar]
  18. Clarke RJ. 18.  1997. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. Biochim. Biophys. Acta 1327:269–78 [Google Scholar]
  19. Crane FL, Sun IL, Clark MG, Grebing C, Löw H. 19.  1985. Transplasma-membrane redox systems in growth and development. Biochim. Biophys. Acta 811:233–64 [Google Scholar]
  20. DeCoursey TE, Morgan D, Cherny VV. 20.  2003. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531–34 [Google Scholar]
  21. Delcour AH, Martinac B, Adler J, Kung C. 21.  1989. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56:631–36 [Google Scholar]
  22. Demchenko AP, Yesylevskyy SO. 22.  2009. Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem. Phys. Lipids 160:63–84 [Google Scholar]
  23. Felle H, Porter JS, Slayman CL, Kaback HR. 23.  1980. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19:3585–90 [Google Scholar]
  24. Fischer WB, Sansom MS. 24.  2002. Viral ion channels: structure and function. Biochim. Biophys. Acta 1561:27–45 [Google Scholar]
  25. Frank HY, Yarov-Yarovoy V, Gutman GA, Catterall WA. 25.  2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387–95 [Google Scholar]
  26. Freedman JC, Hoffman JF. 26.  1979. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria. J. Gen. Physiol. 74:187–212 [Google Scholar]
  27. Frizzell RA, Field M, Schultz SG. 27.  1979. Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol. 236:F1–8 [Google Scholar]
  28. Gradinaru V, Thompson KR, Deisseroth K. 28.  2008. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36:129–39 [Google Scholar]
  29. Granier S, Kobilka B. 29.  2012. A new era of GPCR structural and chemical biology. Nat. Chem. Biol. 8:670–73 [Google Scholar]
  30. Graves AR, Curran PK, Smith CL, Mindell JA. 30.  2008. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–92 [Google Scholar]
  31. Gray JP, Eisen T, Cline GW, Smith PJ, Heart E. 31.  2011. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1. Am. J. Physiol. Endocrinol. Metab. 301:E113–21 [Google Scholar]
  32. Gustin MC, Martinac B, Saimi Y, Culbertson MR, Kung C. 32.  1986. Ion channels in yeast. Science 233:1195–97 [Google Scholar]
  33. Haas M, Forbush B 3rd. 33.  2000. The Na-K-Cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 62:515–34 [Google Scholar]
  34. Hacking C, Eddy AA. 34.  1981. The accumulation of amino acids by mouse ascites-tumour cells. Dependence on but lack of equilibrium with the sodium-ion electrochemical gradient. Biochem. J. 194:415–26 [Google Scholar]
  35. Hillebrecht JR, Koscielecki JF, Wise KJ, Marcy DL, Tetley W. 35.  et al. 2005. Optimization of protein-based volumetric optical memories and associative processors by using directed evolution. NanoBiotechnology 1:141–51 [Google Scholar]
  36. Hodgkin AL, Horowicz P. 36.  1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148:127–60 [Google Scholar]
  37. Hoffman JF, Laris PC. 37.  1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239:519–52 [Google Scholar]
  38. Hörmann G. 38.  1898. Studien über die Protoplasmaströmung bei den Characeen Jena: Verlag von Gustav Fischer
  39. Hou JH, Venkatachalam V, Cohen AE. 39.  2014. Temporal dynamics of microbial rhodopsin fluorescence reports absolute membrane voltage. Biophys. J. 106:639–48 [Google Scholar]
  40. Iyer R, Iverson TM, Accardi A, Miller C. 40.  2002. A biological role for prokaryotic ClC chloride channels. Nature 419:715–18 [Google Scholar]
  41. Jackson MB. 41.  2006. Molecular and Cellular Biophysics Cambridge, UK: Cambridge Univ. Press
  42. Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA. 42.  2012. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75:779–85 [Google Scholar]
  43. Kim GH, Kosterin P, Obaid AL, Salzberg BM. 43.  2007. A mechanical spike accompanies the action potential in mammalian nerve terminals. Biophys. J. 92:3122–29 [Google Scholar]
  44. Kirichok Y, Krapivinsky G, Clapham DE. 44.  2004. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–64 [Google Scholar]
  45. Kirichok Y, Navarro B, Clapham DE. 45.  2006. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439:737–40 [Google Scholar]
  46. Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE. 46.  2012. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9:90–95 [Google Scholar]
  47. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. 47.  2011. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333:345–48 [Google Scholar]
  48. Loewenstein WR, Kanno Y. 48.  1963. Some electrical properties of a nuclear membrane examined with a microelectrode. J. Gen. Physiol. 46:1123–40 [Google Scholar]
  49. Maclaurin DM, Venkatachalam VV, Lee H, Cohen AE. 49.  2013. Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin. Proc. Natl. Acad. Sci. USA 110:5939–44 [Google Scholar]
  50. Maroudas A. 50.  1968. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8:575–95 [Google Scholar]
  51. Martinac B, Buechner M, Delcour AH, Adler J, Kung C. 51.  1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:2297–301 [Google Scholar]
  52. Martinac B, Saimi Y, Kung C. 52.  2008. Ion channels in microbes. Physiol. Rev. 88:1449–90 [Google Scholar]
  53. Mazzanti M, Bustamante JO, Oberleithner H. 53.  2001. Electrical dimension of the nuclear envelope. Physiol. Rev. 81:1–19 [Google Scholar]
  54. McLaughlin S. 54.  1989. The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18:113–36 [Google Scholar]
  55. McLaughlin S. 55.  1977. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp. 9:71–144 [Google Scholar]
  56. Metelkin E, Demin O, Kovács Z, Chinopoulos C. 56.  2009. Modeling of ATP–ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. FEBS J. 276:6942–55 [Google Scholar]
  57. Miesenböck G, De Angelis DA, Rothman JE. 57.  1998. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–95 [Google Scholar]
  58. Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB Jr, Tsien RY. 58.  2012. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc. Natl. Acad. Sci. USA 109:2114–19 [Google Scholar]
  59. Mitchell P. 59.  1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41:445–502 [Google Scholar]
  60. Müller U, Malchow D, Hartung K. 60.  1986. Single ion channels in the slime mold Dictyostelium discoideum. Biochim. Biophys. Acta 857:287–90 [Google Scholar]
  61. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. 61.  2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–43 [Google Scholar]
  62. Nicholls DG, Ferguson SJ, Ferguson S. 62.  2002. Bioenergetics . Amsterdam: Academic, 3rd.
  63. Nicholls DG, Ward MW. 63.  2000. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 23:166–74 [Google Scholar]
  64. Nuccitelli R. 64.  2003. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58:1–26 [Google Scholar]
  65. Peterka DS, Takahashi H, Yuste R. 65.  2011. Imaging voltage in neurons. Neuron 69:9–21 [Google Scholar]
  66. Picollo A, Pusch M. 66.  2005. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–23 [Google Scholar]
  67. Pilotelle-Bunner A, Beaunier P, Tandori J, Maroti P, Clarke RJ, Sebban P. 67.  2009. The local electric field within phospholipid membranes modulates the charge transfer reactions in reaction centres. Biochim. Biophys. Acta 1787:1039–49 [Google Scholar]
  68. Poburko D, Demaurex N. 68.  2012. Regulation of the mitochondrial proton gradient by cytosolic Ca2+ signals. Pflüg. Arch. 464:19–26 [Google Scholar]
  69. Del Principe D, Avigliano L, Savini I, Catani MV. 69.  2011. Trans–plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid. Redox Signal. 14:2289–318 [Google Scholar]
  70. Raimondo JV, Kay L, Ellender TJ, Akerman CJ. 70.  2012. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15:1102–4 [Google Scholar]
  71. Roos D, van Bruggen R, Meischl C. 71.  2003. Oxidative killing of microbes by neutrophils. Microb. Infect. 5:1307–15 [Google Scholar]
  72. Rubinstein B, Luster DG. 72.  1993. Plasma membrane redox activity: components and role in plant processes. Annu. Rev. Plant Biol. 44:131–55 [Google Scholar]
  73. Saddler HD. 73.  1970. The membrane potential of Acetabularia mediterranea. J. Gen. Physiol. 55:802–21 [Google Scholar]
  74. Sanders D, Hansen UP, Slayman CL. 74.  1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc. Natl. Acad. Sci. USA 78:5903–7 [Google Scholar]
  75. Sanderson JB. 75.  1872. Note on the electrical phenomena which accompany irritation of the leaf of Dionaea muscipula. Proc. R. Soc. Lond. 21:495–96 [Google Scholar]
  76. Schmid A, Dehlinger-Kremer M, Schulz I, Gögelein H. 76.  1990. Voltage-dependent InsP3-insensitive calcium channels in membranes of pancreatic endoplasmic reticulum vesicles. Nature 346:374–76 [Google Scholar]
  77. Schrenzel J, Serrander L, Bánfi B, Nüße O, Fouyouzi R. 77.  et al. 1998. Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–37 [Google Scholar]
  78. Schwenke WD, Soboll S, Seitz HJ, Sies H. 78.  1981. Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo. Biochem. J. 200:405–8 [Google Scholar]
  79. Slayman CL. 79.  1965. Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J. Gen. Physiol. 49:93–116 [Google Scholar]
  80. Spanswick RM. 80.  1981. Electrogenic ion pumps. Annu. Rev. Plant Physiol. 32:267–89 [Google Scholar]
  81. Srivastava M, Duong LT, Fleming PJ. 81.  1984. Cytochrome b561 catalyzes transmembrane electron transfer. J. Biol. Chem. 259:8072–75 [Google Scholar]
  82. Stappen R, Krämer R. 82.  1993. Functional properties of the reconstituted phosphate carrier from bovine heart mitochondria: evidence for asymmetric orientation and characterization of three different transport modes. Biochim. Biophys. Acta 1149:40–48 [Google Scholar]
  83. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N. 83.  et al. 2001. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45:1126–36 [Google Scholar]
  84. Sun IL, Sun EE, Crane FL, Morré DJ, Lindgren A, Löw H. 84.  1992. Requirement for coenzyme Q in plasma membrane electron transport. Proc. Natl. Acad. Sci. USA 89:11126–30 [Google Scholar]
  85. Sundelacruz S, Levin M, Kaplan DL. 85.  2009. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. 5:231–46 [Google Scholar]
  86. Taglicht D, Padan E, Schuldiner S. 86.  1993. Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J. Biol. Chem. 268:5382–87 [Google Scholar]
  87. Tsukamoto H, Terakita A. 87.  2010. Diversity and functional properties of bistable pigments. Photochem. Photobiol. Sci. 9:1435–43 [Google Scholar]
  88. van der Schoot P, Bruinsma R. 88.  2005. Electrostatics and the assembly of an RNA virus. Phys. Rev. E 71:061928 [Google Scholar]
  89. Venkatachalam V, Brinks D, Maclaurin D, Hochbaum D, Kralj J, Cohen AE. 89.  2014. Flash memory: photochemical imprinting of neuronal action potentials onto a microbial rhodopsin. J. Am. Chem. Soc. 136:2529–37 [Google Scholar]
  90. Villalba JM, Navarro F, Córdoba F, Serrano A, Arroyo A. 90.  et al. 1995. Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc. Natl. Acad. Sci. USA 92:4887–91 [Google Scholar]
  91. Volkov AG. 91.  2006. Plant Electrophysiology: Theory and Methods Berlin: Springer
  92. Winterhalter M, Helfrich W. 92.  1992. Bending elasticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses. J. Phys. Chem. 96:327–30 [Google Scholar]
  93. Winterhalter M, Helfrich W. 93.  1988. Effect of surface charge on the curvature elasticity of membranes. J. Phys. Chem. 92:6865–67 [Google Scholar]
  94. Wood PM. 94.  1974. The redox potential of the system oxygen—superoxide. FEBS Lett. 44:22–24 [Google Scholar]
  95. Xu C, Loew LM. 95.  2003. The effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes. Biophys. J. 84:2768–80 [Google Scholar]
  96. Yan P, Acker CD, Zhou W, Lee P, Bollensdorff C. 96.  et al. 2012. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc. Natl. Acad. Sci. USA 109:20443–48 [Google Scholar]
  97. Yang J-M, Yang H, Lin L. 97.  2011. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5:5067–71 [Google Scholar]
  98. Yao H, Haddad GG. 98.  2004. Calcium and pH homeostasis in neurons during hypoxia and ischemia. Cell Calcium 36:247–55 [Google Scholar]
  99. Zhang C, Xiong W, Zheng H, Wang L, Lu B, Zhou Z. 99.  2004. Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron 42:225–36 [Google Scholar]
  100. Zhang C, Zhou Z. 100.  2002. Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat. Neurosci. 5:425–30 [Google Scholar]
  101. Zhang J, Davidson RM, Wei MD, Loew LM. 101.  1998. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys. J. 74:48–53 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-022717
Loading
/content/journals/10.1146/annurev-biophys-051013-022717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error