1932

Abstract

Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-023008
2015-06-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/44/1/annurev-biophys-051013-023008.html?itemId=/content/journals/10.1146/annurev-biophys-051013-023008&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham A-L, Pothier J, Rocha EPC. 1.  2009. Alternative to homo-oligomerisation: the creation of local symmetry in proteins by internal amplification. J. Mol. Biol. 394:3522–34 [Google Scholar]
  2. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S. 2.  et al. 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:59221718–22 [Google Scholar]
  3. Almén MS, Nordström KJV, Fredriksson R, Schiöth HB. 3.  2009. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7:150 [Google Scholar]
  4. André I, Strauss CEM, Kaplan DB, Bradley P, Baker D. 4.  2008. Emergence of symmetry in homooligomeric biological assemblies. PNAS 105:4216148–52 [Google Scholar]
  5. 5. Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:6814796–815 [Google Scholar]
  6. Arseniev AS, Lomize AL, Barsukov IL, Bystrov VF. 6.  1986. Gramicidin A transmembrane ion-channel. Three-dimensional structure reconstruction based on NMR spectroscopy and energy refinement. Biol. Membr. 3:111077–104 (from Russian) [Google Scholar]
  7. Arthur CP, Stowell MHB. 7.  2007. Structure of synaptophysin: a hexameric MARVEL-domain channel protein. Structure 15:6707–14 [Google Scholar]
  8. Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. 8.  2013. Crystal structure of the entire respiratory complex I. Nature 494:443–48The first structure of a face-to-back inverted-topology repeat. [Google Scholar]
  9. Bass RB, Strop P, Barclay M, Rees DC. 9.  2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:55981582–87 [Google Scholar]
  10. Benjamini A, Smit B. 10.  2012. Robust driving forces for transmembrane helix packing. Biophys. J. 103:61227–35 [Google Scholar]
  11. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN. 11.  et al. 2008. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J. Biol. Chem. 283:116950–56 [Google Scholar]
  12. Bowie JU. 12.  2013. Structural biology. Membrane protein twists and turns. Science 339:6118398–99Insightful overview of membrane protein insertion and folding, particularly important for dual-topology proteins. [Google Scholar]
  13. Bracey MH, Cravatt BF, Stevens RC. 13.  2004. Structural commonalities among integral membrane enzymes. FEBS Lett. 567:2–3159–65 [Google Scholar]
  14. Busath DD. 14.  1993. The use of physical methods in determining gramicidin channel structure and function. Annu. Rev. Physiol. 55:473–501 [Google Scholar]
  15. Buzhynskyy N, Sens P, Behar-Cohen F, Scheuring S. 15.  2011. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases. New J. Phys. 13:8085016 [Google Scholar]
  16. Cao Y, Jin X, Huang H, Derebe MG, Levin EJ. 16.  et al. 2011. Crystal structure of a potassium ion transporter, TrkH. Nature 471:7338336–40 [Google Scholar]
  17. Cao Y, Jin X, Levin EJ, Huang H, Zong Y. 17.  et al. 2011. Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473:734550–54 [Google Scholar]
  18. Chang Y, Bruni R, Kloss B, Assur Z, Kloppmann E. 18.  et al. 2014. Structural basis for a pH-sensitive calcium leak across membranes. Science 344:61881131–35 [Google Scholar]
  19. Chen Y-H, Hu L, Punta M, Bruni R, Hillerich B. 19.  et al. 2010. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467:73191074–80 [Google Scholar]
  20. Chen Y-J, Pornillos O, Lieu S, Ma C, Chen AP, Chang G. 20.  2007. X-ray structure of EmrE supports dual topology model. PNAS 104:4818999–19004 [Google Scholar]
  21. Choi S, Jeon J, Yang J-S, Kim S. 21.  2008. Common occurrence of internal repeat symmetry in membrane proteins. Proteins 71:168–80 [Google Scholar]
  22. Crisman TJ, Qu S, Kanner BI, Forrest LR. 22.  2009. Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. PNAS 106:4920752–7 [Google Scholar]
  23. Dang S, Sun L, Huang Y, Lu F, Liu Y. 23.  et al. 2010. Structure of a fucose transporter in an outward-open conformation. Nature 467:7316734–38 [Google Scholar]
  24. Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühlbrandt W. 24.  2012. Structure of the yeast F1FO-ATP synthase dimer and its role in shaping the mitochondrial cristae. PNAS 10913602–7
  25. Dawson RJP, Locher KP. 25.  2006. Structure of a bacterial multidrug ABC transporter. Nature 443:7108180–85 [Google Scholar]
  26. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM. 26.  2009. Three-dimensional structure of the human copper transporter hCTR1. PNAS 106:114237–42 [Google Scholar]
  27. Deisenhofer J, Epp O, Miki K, Huber R, Michel H. 27.  1985. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:6047618–24 [Google Scholar]
  28. Dong C, Beis K, Nesper J, Brunkan-LaMontagne AL, Clarke BR. 28.  et al. 2006. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444:7116226–29 [Google Scholar]
  29. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM. 29.  et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:536069–77 [Google Scholar]
  30. Du D, Wang Z, James NR, Voss JE, Klimont E. 30.  et al. 2014. Structure of the AcrAB–TolC multidrug efflux pump. Nature 509:7501512–15 [Google Scholar]
  31. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. 31.  2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:6869287–94The only known structure of a membrane protein containing inverted-topology repeats. [Google Scholar]
  32. Efremov RG, Sazanov LA. 32.  2011. Structure of the membrane domain of respiratory complex I. Nature 476:7361414–20 [Google Scholar]
  33. Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L. 33.  et al. 2014. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. eLIFE 3:e03145 [Google Scholar]
  34. Eichmann C, Tzitzilonis C, Bordignon E, Maslennikov I, Choe S. 34.  et al. 2014. Solution NMR structure and functional analysis of the integral membrane protein YgaP from Escherichia coli. J. Biol. Chem 289:3423482–503 [Google Scholar]
  35. Erez E, Fass D, Bibi E. 35.  2009. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459:7245371–78 [Google Scholar]
  36. Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F. 36.  et al. 2009. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460:72581040–43 [Google Scholar]
  37. Fairman JW, Noinaj N, Buchanan SK. 37.  2011. The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr. Opin. Struct. Biol. 21:4523–31 [Google Scholar]
  38. Feng L, Yan H, Wu Z, Yan N, Wang Z. 38.  et al. 2007. Structure of a site-2 protease family intramembrane metalloprotease. Science 318:58561608–12 [Google Scholar]
  39. Ferre S, Casado V, Devi LA, Filizola M, Jockers R. 39.  et al. 2014. G protein–coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66:2413–34 [Google Scholar]
  40. Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK. 40.  et al. 2007. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317:5837510–12 [Google Scholar]
  41. Fleishman SJ, Harrington SE, Enosh A, Halperin D, Tate CG, Ben-Tal N. 41.  2006. Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J. Mol. Biol. 364:154–67Structural modeling using electron microscopy data for antiparallel EmrE; the authors propose an asymmetry-exchange mechanism. [Google Scholar]
  42. Forrest LR. 42.  2013. Structural biology. (Pseudo-)symmetrical transport. Science 339:6118399–401 [Google Scholar]
  43. Forrest LR, Krämer R, Ziegler C. 43.  2011. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807:2167–88 [Google Scholar]
  44. Forrest LR, Rudnick G. 44.  2009. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24:377–86 [Google Scholar]
  45. Forrest LR, Zhang Y-W, Jacobs MT, Gesmonde J, Xie L. 45.  et al. 2008. Mechanism for alternating access in neurotransmitter transporters. PNAS 105:3010338–43Authors propose asymmetry exchange for pseudosymmetric repeats in LeuT and demonstrate accessibility of proposed pathway. [Google Scholar]
  46. Furuse M, Sasaki H, Fujimoto K, Tsukita S. 46.  1998. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143:2391–401 [Google Scholar]
  47. George AM, Jones PM. 47.  2012. Perspectives on the structure–function of ABC transporters: the Switch and Constant Contact Models. Prog. Biophys. Mol. Biol. 109:395–107 [Google Scholar]
  48. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y. 48.  et al. 2005. Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:7068633–38 [Google Scholar]
  49. Gonen T, Sliz P, Kistler J, Cheng Y, Walz T. 49.  2004. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:6988193–97 [Google Scholar]
  50. Goodsell DS, Olson AJ. 50.  2000. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29:105–53An excellent and comprehensive discussion of symmetry in all classes of proteins. [Google Scholar]
  51. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J. 51.  et al. 2002. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:6906484–87 [Google Scholar]
  52. Gross DJ. 52.  1996. The role of symmetry in fundamental physics. PNAS 93:2514256–59 [Google Scholar]
  53. Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O. 53.  2007. Crystal structure of the MgtE Mg2+ transporter. Nature 448:71571072–75 [Google Scholar]
  54. He X, Szewczyk P, Karyakin A, Evin M, Hong W-X. 54.  et al. 2010. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:7318991–94 [Google Scholar]
  55. Hennerdal A, Falk J, Lindahl E, Elofsson A. 55.  2010. Internal duplications in α-helical membrane protein topologies are common but the nonduplicated forms are rare. Protein Sci. 19:122305–18 [Google Scholar]
  56. Hilf RJC, Dutzler R. 56.  2008. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:7185375–79 [Google Scholar]
  57. Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y. 57.  et al. 2010. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330:60111666–70 [Google Scholar]
  58. Hirai T, Heymann JAW, Shi D, Sarker R, Maloney PC, Subramaniam S. 58.  2002. Three-dimensional structure of a bacterial oxalate transporter. Nat. Struct. Biol. 9:8597–600 [Google Scholar]
  59. Hohl M, Briand C, Grütter MG, Seeger MA. 59.  2012. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat. Struct. Mol. Biol. 19:4395–402 [Google Scholar]
  60. Hollenstein K, Frei DC, Locher KP. 60.  2007. Structure of an ABC transporter in complex with its binding protein. Nature 446:7132213–16 [Google Scholar]
  61. Hong M, DeGrado WF. 61.  2012. Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci. 21:111620–33 [Google Scholar]
  62. Huang H, Levin EJ, Liu S, Bai Y, Lockless SW, Zhou M. 62.  2014. Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLOS Biol 12:7e1001911 [Google Scholar]
  63. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E. 63.  et al. 2006. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127:4789–801 [Google Scholar]
  64. Iwata S, Ostermeier C, Ludwig B, Michel H. 64.  1995. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:6542660–69 [Google Scholar]
  65. Jaehme M, Guskov A, Slotboom DG. 65.  2014. Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog. Nat. Struct. Mol. Biol. 21:1013–15 [Google Scholar]
  66. Jaehme M, Guskov A, Slotboom DG. 66.  2015. The twisted relation between Pnu and SWEET transporters. Trends Biochem. Sci. 40:4183–88 [Google Scholar]
  67. Jardetzky O. 67.  1966. Simple allosteric model for membrane pumps. Nature 211:5052969–70 [Google Scholar]
  68. Jasti J, Furukawa H, Gonzales EB, Gouaux E. 68.  2007. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:7160316–23 [Google Scholar]
  69. Johnson ZL, Cheong C-G, Lee S-Y. 69.  2012. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å. Nature 483:7390489–83 [Google Scholar]
  70. Jones CP, Ferré-D'Amaré AR. 70.  2015. RNA quaternary structure and global symmetry. Trends Biochem. Sci. 40:4211–20 [Google Scholar]
  71. Junge W, Lill H, Engelbrecht S. 71.  1997. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22:11420–23 [Google Scholar]
  72. Kaila VRI, Wikström M, Hummer G. 72.  2014. Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. PNAS 111:196988–93 [Google Scholar]
  73. Karakas E, Furukawa H. 73.  2014. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:6187992–97 [Google Scholar]
  74. Kawate T, Michel JC, Birdsong WT, Gouaux E. 74.  2009. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:7255592–98 [Google Scholar]
  75. Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A. 75.  2012. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337:6093473–76 [Google Scholar]
  76. Khademi S, O'Connell J III, Remis J, Robles-Colmenares Y, Miercke LJW, Stroud RM. 76.  2004. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305:56901587–94 [Google Scholar]
  77. Khafizov K, Staritzbichler R, Stamm M, Forrest LR. 77.  2010. A study of the evolution of inverted-topology repeats from LeuT-fold transporters using AlignMe. Biochemistry 49:5010702–13 [Google Scholar]
  78. Kim C, Basner J, Lee B. 78.  2010. Detecting internally symmetric protein structures. BMC Bioinform. 11:1303 [Google Scholar]
  79. Kniazeff J, Prézeau L, Rondard P, Pin J-P, Goudet C. 79.  2011. Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol. Ther. 130:19–25 [Google Scholar]
  80. Krishnamurthy H, Gouaux E. 80.  2012. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:7382469–74 [Google Scholar]
  81. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 81.  2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:3567–80 [Google Scholar]
  82. Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K. 82.  et al. 2014. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:7501516–20 [Google Scholar]
  83. Lemmon MA, Schlessinger J. 83.  2010. Cell signaling by receptor tyrosine kinases. Cell 141:71117–34 [Google Scholar]
  84. Levin EJ, Quick M, Zhou M. 84.  2009. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462:7274757–61 [Google Scholar]
  85. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA. 85.  2006. 3D complex: a structural classification of protein complexes. PLOS Comput. Biol. 2:11e155 [Google Scholar]
  86. Li D, Lyons JA, Pye VE, Vogeley L, Aragão D. 86.  et al. 2013. Crystal structure of the integral membrane diacylglycerol kinase. Nature 497:7450521–24 [Google Scholar]
  87. Li E, Hristova K. 87.  2010. Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adhes. Migr. 4:2249–54 [Google Scholar]
  88. Li X, Dang S, Yan C, Gong X, Wang J, Shi Y. 88.  2014. Structure of a presenilin family intramembrane aspartate protease. Nature 493:743056–61 [Google Scholar]
  89. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. 89.  2012. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:6069686–90 [Google Scholar]
  90. Lieberman RL, Rosenzweig AC. 90.  2005. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:7030177–82 [Google Scholar]
  91. Lin S-M, Tsai J-Y, Hsiao C-D, Huang Y-T, Chiu C-L. 91.  et al. 2012. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:7394399–403 [Google Scholar]
  92. Liu Y, Eisenberg D. 92.  2002. 3D domain swapping: as domains continue to swap. Protein Sci. 11:61285–99 [Google Scholar]
  93. Liu Y, Gerstein M, Engelman DM. 93.  2004. Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. PNAS 101:103495–97 [Google Scholar]
  94. Liu Z, Yan H, Wang K, Kuang T, Zhang J. 94.  et al. 2004. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:6980287–92 [Google Scholar]
  95. Lizak C, Gerber S, Numao S, Aebi M, Locher KP. 95.  2011. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474:7351350–55 [Google Scholar]
  96. Locher KP. 96.  2009. Structure and mechanism of ATP-binding cassette transporters. Phil. Trans. R. Soc. B. 364:1514239–45 [Google Scholar]
  97. Locher KP, Lee AT, Rees DC. 97.  2002. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:55701091–98 [Google Scholar]
  98. Lu F, Li S, Jiang Y, Jiang J, Fan H. 98.  et al. 2011. Structure and mechanism of the uracil transporter UraA. Nature 472:7342243–46 [Google Scholar]
  99. Lu M, Fu D. 99.  2007. Structure of the zinc transporter YiiP. Science 317:58451746–48 [Google Scholar]
  100. Lukatsky DB, Zeldovich KB, Shakhnovich EI. 100.  2006. Statistically enhanced self-attraction of random patterns. Phys. Rev. Lett. 97:17178101 [Google Scholar]
  101. Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A. 101.  et al. 2006. Crystal structure of the CorA Mg2+ transporter. Nature 440:7085833–37 [Google Scholar]
  102. Lynch M, Conery JS. 102.  2000. The evolutionary fate and consequences of duplicate genes. Science 290:54941151–55 [Google Scholar]
  103. MacKenzie KR, Prestegard JH, Engelman DM. 103.  1997. A transmembrane helix dimer: structure and implications. Science 276:5309131–33 [Google Scholar]
  104. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A. 104.  et al. 2009. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458:597–602 [Google Scholar]
  105. Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ. 105.  et al. 1994. Conducting states of a mammalian serotonin transporter. Neuron 12:4845–59 [Google Scholar]
  106. Mancusso R, Gregorio GG, Liu Q, Wang DN. 106.  2012. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491:7425622–26 [Google Scholar]
  107. Marsden RL, Lee D, Maibaum M, Yeats C, Orengo CA. 107.  2006. Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space. Nucleic Acids Res. 34:31066–80 [Google Scholar]
  108. Marsh JA, Teichmann SA. 108.  2015. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. In press. doi: 10.1146/annurev-biochem-060614-034142
  109. Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö. 109.  et al. 2014. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat. Commun. 5:5286 [Google Scholar]
  110. Meier T, Faraldo-Gómez JD, Börsch M. 110.  2011. ATP synthase: a paradigmatic molecular machine. Molecular Machines in Biology J Frank 208–38 New York: Cambridge Univ. Press [Google Scholar]
  111. Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J. 111.  et al. 2014. Structural mechanism of glutamate receptor activation and desensitization. Nature 514:7522328–34 [Google Scholar]
  112. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. 112.  2009. Crystal structures of all-alpha type membrane proteins. Eur. Biophys. J. 39:5723–55 [Google Scholar]
  113. Mineev KS, Bocharov EV, Pustovalova YE, Bocharova OV, Chupin VV, Arseniev AS. 113.  2010. Spatial structure of the transmembrane domain heterodimer of ErbB1 and ErbB2 receptor tyrosine kinases. J. Mol. Biol. 400:2231–43 [Google Scholar]
  114. Mitsuoka K, Murata K, Walz T, Hirai T, Agre P. 114.  et al. 1999. The structure of aquaporin-1 at 4.5-Å resolution reveals short α-helices in the center of the monomer. J. Struct. Biol. 128:134–43 [Google Scholar]
  115. Miyazawa A, Fujiyoshi Y, Unwin N. 115.  2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:6943949–55 [Google Scholar]
  116. Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H. 116.  2013. Membrane driven spatial organization of GPCRs. Sci. Rep. 3:2909 [Google Scholar]
  117. Morgan JLW, Strumillo J, Zimmer J. 117.  2013. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:7431181–86 [Google Scholar]
  118. Morrison EA, DeKoster GT, Dutta S, Vafabakhsh R, Clarkson MW. 118.  et al. 2012. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481:737945–50 [Google Scholar]
  119. Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N. 119.  2009. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459:7247726–30 [Google Scholar]
  120. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. 120.  2006. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:7108173–79 [Google Scholar]
  121. Myers-Turnbull D, Bliven SE, Rose PW, Aziz ZK, Youkharibache P. 121.  et al. 2014. Systematic detection of internal symmetry in proteins using CE-Symm. J. Mol. Biol. 426:112255–68Recent assessment of internal pseudosymmetry indicating that membrane proteins are enriched in symmetric structural repeats. [Google Scholar]
  122. Niwa S, Yu L-J, Takeda K, Hirano Y, Kawakami T. 122.  et al. 2014. Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:7495228–32 [Google Scholar]
  123. Nugent T, Jones DT. 123.  2009. Transmembrane protein topology prediction using support vector machines. BMC Bioinform. 10:1159 [Google Scholar]
  124. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J. 124.  2007. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:7169515–21 [Google Scholar]
  125. Pao GM, Wu L-F, Johnson KD, Höfte H, Chrispeels MJ. 125.  et al. 1991. Evolution of the MIP family of integral membrane transport proteins. Mol. Microbiol. 5:133–37 [Google Scholar]
  126. Pao SS, Paulsen IT, Saier MH. 126.  1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:11–34 [Google Scholar]
  127. Payandeh J, Scheuer T, Zheng N, Catterall WA. 127.  2011. The crystal structure of a voltage-gated sodium channel. Nature 475:7356353–58 [Google Scholar]
  128. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJ-M, Brandolin G. 128.  2003. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:696239–44 [Google Scholar]
  129. Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T. 129.  2010. Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. Nat. Chem. Biol. 6:12891–99 [Google Scholar]
  130. Popoff MR. 130.  2014. Clostridial pore-forming toxins: powerful virulence factors. Anaerobe 30:220–38 [Google Scholar]
  131. Radestock S, Forrest LR. 131.  2011. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J. Mol. Biol. 407:5698–715 [Google Scholar]
  132. Rees DC, Johnson E, Lewinson O. 132.  2009. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10:3218–27 [Google Scholar]
  133. Ressl S, van Scheltinga ACT, Vonrhein C, Ott V, Ziegler C. 133.  2009. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 457:723447–52 [Google Scholar]
  134. Reyes N, Ginter C, Boudker O. 134.  2009. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:7275880–85 [Google Scholar]
  135. Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F. 135.  et al. 2012. Structure of the TatC core of the twin-arginine protein transport system. Nature 492:7428210–14 [Google Scholar]
  136. Rosenmund C, Stern-Bach Y, Stevens CF. 136.  1998. The tetrameric structure of a glutamate receptor channel. Science 280:53691596–99 [Google Scholar]
  137. Saraste M, Walker JE. 137.  1982. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 144:2250–54 [Google Scholar]
  138. Schiller D, Rübenhagen R, Krämer R, Morbach S. 138.  2004. The C-terminal domain of the betaine carrier BetP of Corynebacterium glutamicum is directly involved in sensing K+ as an osmotic stimulus. Biochemistry 43:195583–91 [Google Scholar]
  139. Schirmer T, Keller TA, Wang YF, Rosenbusch JP. 139.  1995. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267:5197512–14 [Google Scholar]
  140. Schushan M, Rimon A, Haliloglu T, Forrest LR, Padan E, Ben-Tal N. 140.  2012. A model-structure of a periplasm-facing state of the NhaA antiporter suggests the molecular underpinnings of pH-induced conformational changes. J. Biol. Chem. 287:2218249–61 [Google Scholar]
  141. Shepard LA, Shatursky O, Johnson AE, Tweten RK. 141.  2000. The mechanism of pore assembly for a cholesterol-dependent cytolysin: Formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39:3310284–93 [Google Scholar]
  142. Sobolevsky AI, Rosconi MP, Gouaux E. 142.  2009. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:7274745–56 [Google Scholar]
  143. Song C, Weichbrodt C, Salnikov ES, Dynowski M, Forsberg BO. 143.  et al. 2013. Crystal structure and functional mechanism of a human antimicrobial membrane channel. PNAS 110:124586–91 [Google Scholar]
  144. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. 144.  1996. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274:52941859–65 [Google Scholar]
  145. Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C. 145.  2013. A family of fluoride-specific ion channels with dual-topology architecture. eLIFE 2:e01084 [Google Scholar]
  146. Strugatsky D, McNulty R, Munson K, Chen C-K, Soltis SM. 146.  et al. 2013. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493:7431255–58 [Google Scholar]
  147. Sun F, Huo X, Zhai Y, Wang A, Xu J. 147.  et al. 2005. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:71043–57 [Google Scholar]
  148. Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A. 148.  et al. 2014. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344:304–7 [Google Scholar]
  149. Toyoshima C, Nakasako M, Nomura H, Ogawa H. 149.  2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–55 [Google Scholar]
  150. Tsai C-J, Khafizov K, Hakulinen J, Forrest LR, Krämer R. 150.  et al. 2011. Structural asymmetry in a trimeric Na+/betaine symporter, BetP, from Corynebacterium glutamicum. J. Mol. Biol. 407:368–81 [Google Scholar]
  151. Tusnády GE, Dosztányi Z, Simon I. 151.  2005. PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33:D275–78 [Google Scholar]
  152. Ubarretxena-Belandia I, Baldwin JM, Schuldiner S, Tate CG. 152.  2003. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J. 22:6175–81 [Google Scholar]
  153. van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E. 153.  et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:696936–44 [Google Scholar]
  154. Venkatakrishnan AJ, Levy ED, Teichmann SA. 154.  2010. Homomeric protein complexes: evolution and assembly. Biochem. Soc. Trans. 38:879–82 [Google Scholar]
  155. Vinothkumar KR, Henderson R. 155.  2010. Structures of membrane proteins. Q. Rev. Biophys. 43:165–158A systematic and thorough review of structures and functions of membrane proteins up to 2009. [Google Scholar]
  156. Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH. 156.  et al. 2013. Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499:7456107–10 [Google Scholar]
  157. Wang Y, Huang Y, Wang J, Cheng C, Huang W. 157.  et al. 2009. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462:7272467–72 [Google Scholar]
  158. Wang Y, Zhang Y, Ha Y. 158.  2006. Crystal structure of a rhomboid family intramembrane protease. Nature 444:179–80 [Google Scholar]
  159. Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE. 159.  2010. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. PNAS 107:3916823–27 [Google Scholar]
  160. White SH. 160.  2006. Rhomboid intramembrane protease structures galore!. Nat. Struct. Mol. Biol. 13:1049–51 [Google Scholar]
  161. White SH. 161.  2015. Membrane Proteins of Known 3D Structure updated Feb. 19. Stephen White Lab. UC Irvine, Irvine, CA. http://blanco.biomol.uci.edu/mpstruc/
  162. Wu Z, Yan N, Feng L, Oberstein A, Yan H. 162.  et al. 2006. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13:1084–91 [Google Scholar]
  163. Xia D, Yu C-A, Kim H, Xia J-Z, Kachurin AM. 163.  et al. 1997. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:532260–66 [Google Scholar]
  164. Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ. 164.  et al. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:7527448–52 [Google Scholar]
  165. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 165.  2005. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–23 [Google Scholar]
  166. Yang T, Liu Q, Kloss B, Bruni R, Kalathur RC. 166.  et al. 2014. Structure and selectivity in bestrophin ion channels. Science 346:6207355–59 [Google Scholar]
  167. Yernool D, Boudker O, Jin Y, Gouaux E. 167.  2004. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:7010811–18 [Google Scholar]
  168. Zagotta WN, Hoshi T, Aldrich RW. 168.  1994. Shaker potassium channel gating. III: evaluation of kinetic models for activation. J. Gen. Physiol. 103:2321–62 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-023008
Loading
/content/journals/10.1146/annurev-biophys-051013-023008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error