1932

Abstract

Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-011149
2016-07-05
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biophys/45/1/annurev-biophys-062215-011149.html?itemId=/content/journals/10.1146/annurev-biophys-062215-011149&mimeType=html&fmt=ahah

Literature Cited

  1. Abramovitz DL, Friedman RA, Pyle AM. 1.  1996. Catalytic role of 2′-hydroxyl groups within a group II intron active site. Science 271:1410–13 [Google Scholar]
  2. Augustin S, Müller MW, Schweyen RJ. 2.  1990. Reverse self-splicing of group II intron RNAs in vitro. Nature 343:383–86 [Google Scholar]
  3. Barrientos-Durán A, Chillón I, Martínez-Abarca F, Toro N. 3.  2011. Exon sequence requirements for excision in vivo of the bacterial group II intron RmInt1. BMC Mol. Biol. 12:24 [Google Scholar]
  4. Basu RS, Murakami KS. 4.  2013. Watching the bacteriophage N4 RNA polymerase transcription by time-dependent soak-trigger-freeze X-ray crystallography. J. Biol. Chem. 288:3305–11 [Google Scholar]
  5. Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 5.  2002. Mobile introns: pathways and proteins. Mobile DNA II N Craig, R Craigie, M Gellert, A Lambowitz 761–83 Washington, DC: ASM [Google Scholar]
  6. Boudvillain M, Delencastre A, Pyle AM. 6.  2000. A new RNA tertiary interaction that links active-site domains of a group II intron and anchors them at the site of catalysis. Nature 406:315–18 [Google Scholar]
  7. Boudvillain M, Pyle AM. 7.  1998. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J. 17:7091–104 [Google Scholar]
  8. Boulanger SC, Belcher SM, Schmidt U, Dib-Hajj SD, Schmidt T, Perlman PS. 8.  1995. Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. Mol. Cell. Biol. 15:4479–88 [Google Scholar]
  9. Cardo L, Karunatilaka KS, Rueda D, Sigel RK. 9.  2012. Single molecule FRET characterization of large ribozyme folding. Methods Mol. Biol. 848:227–51 [Google Scholar]
  10. Cech TR.10.  1986. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–10 [Google Scholar]
  11. Chanfreau G, Jacquier A. 11.  1994. Catalytic site components common to both splicing steps of a group II intron. Science 266:1383–87 [Google Scholar]
  12. Chanfreau G, Jacquier A. 12.  1996. An RNA conformational change between the two chemical steps of group II self-splicing. EMBO J. 15:3466–76 [Google Scholar]
  13. Chu VT, Adamidi C, Liu Q, Perlman PS, Pyle A. 13.  2001. Control of branch-site choice by a group II intron. EMBO J. 20:6866–76 [Google Scholar]
  14. Costa M, Dème E, Jacquier A, Michel F. 14.  1997. Multiple tertiary interactions involving domain II of group II self-splicing introns. J. Mol. Biol. 267:520–36 [Google Scholar]
  15. Costa M, Fontaine JM, Loiseaux-de Goër S, Michel F. 15.  1997. A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J. Mol. Biol. 274:353–64 [Google Scholar]
  16. Costa M, Michel F. 16.  1995. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14:1276–85 [Google Scholar]
  17. Costa M, Michel F. 17.  1997. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J. 16:3289–302 [Google Scholar]
  18. Costa M, Michel F. 18.  1999. Tight binding of the 5′ exon to domain I of a group II self-splicing intron requires completion of the intron active site. EMBO J. 18:1025–37 [Google Scholar]
  19. Cousineau B, Smith D, Lawrence-Cavanagh S, Mueller JE, Yang J. 19.  et al. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94:451–62 [Google Scholar]
  20. Dai L, Chai D, Gu SQ, Gabel J, Noskov SY. 20.  et al. 2008. A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Mol. Cell 30:472–85 [Google Scholar]
  21. Dai L, Zimmerly S. 21.  2002. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res. 30:1091–102 [Google Scholar]
  22. Daniels DL, Michels WJ Jr, Pyle AM. 22.  1996. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. 256:31–49 [Google Scholar]
  23. de Lencastre A, Hamill S, Pyle AM. 23.  2005. A single active-site region for a group II intron. Nat. Struct. Mol. Biol. 12:626–27 [Google Scholar]
  24. de Lencastre A, Pyle AM. 24.  2008. Three essential and conserved regions of the group II intron are proximal to the 5′-splice site. RNA 14:11–24 [Google Scholar]
  25. Eldho NV, Dayie KT. 25.  2007. Internal bulge and tetraloop of the catalytic domain 5 of a group II intron ribozyme are flexible: implications for catalysis. J. Mol. Biol. 365:930–44 [Google Scholar]
  26. Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM. 26.  2014. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob. DNA 5:2 [Google Scholar]
  27. Fabrizio P, Abelson J. 27.  1992. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 20:3659–64 [Google Scholar]
  28. Fedorova O, Pyle AM. 28.  2005. Linking the group II intron catalytic domains: tertiary contacts and structural features of domain 3. EMBO J. 24:3906–16 [Google Scholar]
  29. Fedorova O, Pyle AM. 29.  2008. A conserved element that stabilizes the group II intron active site. RNA 14:1048–56 [Google Scholar]
  30. Fedorova O, Solem A, Pyle AM. 30.  2010. Protein-facilitated folding of group II intron ribozymes. J. Mol. Biol. 397:799–813 [Google Scholar]
  31. Fedorova O, Waldsich C, Pyle AM. 31.  2007. Group II intron folding under near-physiological conditions: collapsing to the near-native state. J. Mol. Biol. 366:1099–114 [Google Scholar]
  32. Fica SM, Mefford MA, Piccirilli JA, Staley JP. 32.  2014. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21:464–71 [Google Scholar]
  33. Fica SM, Tuttle N, Novak T, Li NS, Lu J. 33.  et al. 2013. RNA catalyses nuclear pre-mRNA splicing. Nature 503:229–34 [Google Scholar]
  34. Galej WP, Nguyen TH, Newman AJ, Nagai K. 34.  2014. Structural studies of the spliceosome: zooming into the heart of the machine. Curr. Opin. Struct. Biol. 25:57–66 [Google Scholar]
  35. Galej WP, Oubridge C, Newman AJ, Nagai K. 35.  2013. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493:638–43 [Google Scholar]
  36. Golas MM, Sander B, Bessonov S, Grote M, Wolf E. 36.  et al. 2010. 3D cryo-EM structure of an active step I spliceosome and localization of its catalytic core. Mol. Cell 40:927–38 [Google Scholar]
  37. Gordon P, Sontheimer E, Piccirilli J. 37.  2000. Kinetic characterization of the second step of group II intron splicing: role of metal ions and the cleavage site 2′-OH in catalysis. Biochemistry 39:12939–52 [Google Scholar]
  38. Gordon PM, Piccirilli JA. 38.  2001. Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. Nat. Struct. Biol. 8:893–98 [Google Scholar]
  39. Granlund M, Michel F, Norgren M. 39.  2001. Mutually exclusive distribution of IS1548 and GBSi1, an active group II intron identified in human isolates of group B streptococci. J. Bacteriol. 183:2560–69 [Google Scholar]
  40. Jacquier A, Jacquesson-Breuleux N. 40.  1991. Splice site selection and role of the lariat in a group II intron. J. Mol. Biol. 219:415–28 [Google Scholar]
  41. Jacquier A, Michel F. 41.  1987. Multiple exon-binding sites in class II self-splicing introns. Cell 50:17–29 [Google Scholar]
  42. Jacquier A, Michel F. 42.  1990. Base-pairing interactions involving the 5′ and 3′-terminal nucleotides of group II self-splicing introns. J. Mol. Biol. 213:437–47 [Google Scholar]
  43. Jaeger L, Michel F, Westhof E. 43.  1994. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J. Mol. Biol. 236:1271–76 [Google Scholar]
  44. Jarrell KA, Peebles CL, Dietrich RC, Romiti SL, Perlman PS. 44.  1988. Group II intron self-splicing: Alternative reaction conditions yield novel products. J. Biol. Chem. 263:3432–39 [Google Scholar]
  45. Jiménez-Zurdo JI, García-Rodríguez FM, Barrientos-Durán A, Toro N. 45.  2003. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J. Mol. Biol. 326:413–23 [Google Scholar]
  46. Karunatilaka KS, Solem A, Pyle AM, Rueda D. 46.  2010. Single-molecule analysis of Mss116-mediated group II intron folding. Nature 467:935–39 [Google Scholar]
  47. Keating KS, Toor N, Perlman PS, Pyle AM. 47.  2010. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16:1–9 [Google Scholar]
  48. Kennell JC, Moran JV, Perlman PS, Butow RA, Lambowitz AM. 48.  1993. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73:133–46 [Google Scholar]
  49. Konforti BB, Abramovitz DL, Duarte CM, Karpeisky A, Beigelman L, Pyle AM. 49.  1998. Ribozyme catalysis from the major groove of group II intron domain 5. Mol. Cell 1:433–41 [Google Scholar]
  50. Konforti BB, Liu Q, Pyle AM. 50.  1998. A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme. EMBO J. 17:7105–17 [Google Scholar]
  51. Lambowitz AM, Belfort M. 51.  2015. Mobile bacterial group II introns at the crux of eukaryotic evolution. Microbiol. Spectr. 3:MDNA3–0050-2014 [Google Scholar]
  52. Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS. 52.  1999. Group I and group II ribozymes as RNPs: clues to the past and guides to the future. The RNA World RF Gestland, JF Atkins 451–85 Cold Spring Harbor, NY: Cold Spring Harb. Lab [Google Scholar]
  53. Lambowitz AM, Zimmerly S. 53.  2004. Mobile group II introns. Annu. Rev. Genet. 38:1–35 [Google Scholar]
  54. Madhani HD, Guthrie C. 54.  1994. Dynamic RNA-RNA interactions in the spliceosome. Annu. Rev. Genet. 28:1–26 [Google Scholar]
  55. Madhani HD, Guthrie C. 55.  1992. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71:803–17 [Google Scholar]
  56. Marcia M, Humphris-Narayanan E, Keating KS, Somarowthu S, Rajashankar K, Pyle AM. 56.  2013. Solving nucleic acid structures by molecular replacement: examples from group II intron studies. Acta Crystallogr. D Biol. Crystallogr. 69:2174–85 [Google Scholar]
  57. Marcia M, Pyle AM. 57.  2012. Visualizing group II intron catalysis through the stages of splicing. Cell 151:497–507 [Google Scholar]
  58. Marcia M, Pyle AM. 58.  2014. Principles of ion recognition in RNA: insights from the group II intron structures. RNA 20:516–27 [Google Scholar]
  59. Marcia M, Somarowthu S, Pyle AM. 59.  2013. Now on display: a gallery of group II intron structures at different stages of catalysis. Mob. DNA 4:14 [Google Scholar]
  60. Matsuura M, Noah JW, Lambowitz AM. 60.  2001. Mechanism of maturase-promoted group II intron splicing. EMBO J. 20:7259–70 [Google Scholar]
  61. Matsuura M, Saldanha R, Ma H, Wank H, Yang J. 61.  et al. 1997. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11:2910–24 [Google Scholar]
  62. Michel F, Jacquier A. 62.  1987. Long-range intron-exon and intron-intron pairings involved in self-splicing of class II catalytic introns. Cold Spring Harb. Symp. Quant. Biol. 52:201–12 [Google Scholar]
  63. Michel F, Umesono K, Ozeki H. 63.  1989. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30 [Google Scholar]
  64. Mohr G, Smith D, Belfort M, Lambowitz AM. 64.  2000. Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14:559–73 [Google Scholar]
  65. Molina-Sánchez MD, Barrientos-Durán A, Toro N. 65.  2011. Relevance of the branch point adenosine, coordination loop, and 3′ exon binding site for in vivo excision of the Sinorhizobium meliloti group II intron RmInt1. J. Biol. Chem. 286:21154–63 [Google Scholar]
  66. Müller MW, Stocker P, Hetzer M, Schweyen RJ. 66.  1991. Fate of the junction phosphate in alternating forward and reverse self-splicing reaction of group II intron RNA. J. Mol. Biol. 222:145–50 [Google Scholar]
  67. Nagy V, Pirakitikulr N, Zhou KI, Chillon I, Luo J, Pyle AM. 67.  2013. Predicted group II intron lineages E and F comprise catalytically active ribozymes. RNA 19:1266–78 [Google Scholar]
  68. Nguyen TH, Galej WP, Bai XC, Savva CG, Newman AJ. 68.  et al. 2015. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 523:47–52 [Google Scholar]
  69. Nisa-Martínez R, Jiménez-Zurdo JI, Martínez-Abarca F, Muñoz-Adelantado E, Toro N. 69.  2007. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer. Nucleic Acids Res. 35:214–22 [Google Scholar]
  70. Noah JW, Lambowitz AM. 70.  2003. Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking. Biochemistry 42:12466–80 [Google Scholar]
  71. Padgett RA, Podar M, Boulanger SC, Perlman PS. 71.  1994. The stereochemical course of group II intron self-splicing. Science 266:1685–88 [Google Scholar]
  72. Pechlaner M, Donghi D, Zelenay V, Sigel RK. 72.  2015. Protonation-dependent base flipping at neutral pH in the catalytic triad of a self-splicing bacterial group II intron. Angew. Chem. Int. Ed. Engl. 54:9687–90 [Google Scholar]
  73. Pechlaner M, Sigel RK, van Gunsteren WF, Dolenc J. 73.  2013. Structure and conformational dynamics of the domain 5 RNA hairpin of a bacterial group II intron revealed by solution nuclear magnetic resonance and molecular dynamics simulations. Biochemistry 52:7099–113 [Google Scholar]
  74. Peebles CL, Perlman PS, Mecklenburg KL, Petrillo ML, Tabor JH. 74.  et al. 1986. A self-splicing RNA excises an intron lariat. Cell 44:213–23 [Google Scholar]
  75. Peebles CL, Zhang M, Perlman PS, Franzen JF. 75.  1995. Identification of a catalytically critical trinucleotide in domain 5 of a group II intron. PNAS 92:4422–26 [Google Scholar]
  76. Perlman PS, Butow RA. 76.  1989. Mobile introns and intron-encoded proteins. Science 246:1106–9 [Google Scholar]
  77. Podar M, Chu VT, Pyle AM, Perlman PS. 77.  1998. Group II intron splicing in vivo by first-step hydrolysis. Nature 391:915–18 [Google Scholar]
  78. Podar M, Dib-Hajj S, Perlman PS. 78.  1995. A UV-induced Mg2+-dependent cross-link traps an active form of domain 3 of a self-splicing group II intron. RNA 1:828–40 [Google Scholar]
  79. Podar M, Perlman PS, Padgett RA. 79.  1995. Stereochemical selectivity of group II intron splicing, reverse-splicing and hydrolysis reactions. Mol. Cell. Biol. 15:4466–78 [Google Scholar]
  80. Podar M, Zhou J, Zhang M, Franzen JS, Perlman PS, Peebles CL. 80.  1998. Domain 5 binds near a highly conserved dinucleotide in the joiner linking domains 2 and 3 of a group II intron. RNA 4:151–66 [Google Scholar]
  81. Pyle A.81.  2002. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem. 7:679–90 [Google Scholar]
  82. Pyle AM.82.  1996. Catalytic reaction mechanisms and structural features of Group II intron ribozymes. Nucleic Acids and Molecular Biology F Eckstein, DMJ Lilley 75–107 New York: Springer Verlag [Google Scholar]
  83. Pyle AM.83.  1996. Role of metal ions in ribozymes. Met. Ions Biol. Syst. 32:479–520 [Google Scholar]
  84. Pyle AM.84.  2010. The tertiary structure of group II introns: implications for biological function and evolution. Crit. Rev. Biochem. Mol. Biol. 45:215–32 [Google Scholar]
  85. Pyle AM, Fedorova O, Waldsich C. 85.  2007. Folding of group II introns: a model system for large, multidomain RNAs. ? Trends Biochem. Sci. 32:138–45 [Google Scholar]
  86. Pyle AM, Lambowitz AM. 86.  2006. Group II introns: ribozymes that splice RNA and invade DNA. The RNA World R Gesteland, TR Cech, JF Atkins 469–506 Cold Spring Harbor, NY: Cold Spring Harb. Lab [Google Scholar]
  87. Qin PZ, Pyle AM. 87.  1997. Stopped-flow fluorescence spectroscopy of a group II intron ribozyme reveals that domain 1 is an independent folding unit with a requirement for specific Mg2+ ions in the tertiary structure. Biochemistry 36:4718–30 [Google Scholar]
  88. Rambo RP, Doudna JA. 88.  2004. Assembly of an active group II intron-maturase complex by protein dimerization. Biochemistry 43:6486–97 [Google Scholar]
  89. Rest JS, Mindell DP. 89.  2003. Retroids in archaea: phylogeny and lateral origins. Mol. Biol. Evol. 20:1134–42 [Google Scholar]
  90. Robart AR, Chan RT, Peters JK, Rajashankar KR, Toor N. 90.  2014. Crystal structure of a eukaryotic group II intron lariat. Nature 514:193–97 [Google Scholar]
  91. Robart AR, Seo W, Zimmerly S. 91.  2007. Insertion of group II intron retroelements after intrinsic transcriptional terminators. PNAS 104:6620–25 [Google Scholar]
  92. Robart AR, Zimmerly S. 92.  2005. Group II intron retroelements: function and diversity. Cytogenet. Genome Res. 110:589–97 [Google Scholar]
  93. Saldanha R, Chen B, Wank H, Matsuura M, Edwards J, Lambowitz AM. 93.  1999. RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry 38:9069–83 [Google Scholar]
  94. Schmelzer C, Schweyen RJ. 94.  1986. Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation. Cell 46:557–65 [Google Scholar]
  95. Sharp PA.95.  1985. On the origin of RNA splicing and introns. Cell 42:397–400 [Google Scholar]
  96. Sigel R, Vaidya A, Pyle A. 96.  2000. Metal ion binding sites in a group II intron core. Nat. Struct. Biol. 7:1111–16 [Google Scholar]
  97. Simon DM, Clarke NA, McNeil BA, Johnson I, Pantuso D. 97.  et al. 2008. Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA 14:1704–13 [Google Scholar]
  98. Simon DM, Kelchner SA, Zimmerly S. 98.  2009. A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases. Mol. Biol. Evol. 26:2795–808 [Google Scholar]
  99. Simon DM, Zimmerly S. 99.  2008. A diversity of uncharacterized reverse transcriptases in bacteria. Nucleic Acids Res. 36:7219–29 [Google Scholar]
  100. Singh RN, Saldanha RJ, D'Souza LM, Lambowitz AM. 100.  2002. Binding of a group II intron-encoded reverse transcriptase/maturase to its high affinity intron RNA binding site involves sequence-specific recognition and autoregulates translation. J. Mol. Biol. 318:287–303 [Google Scholar]
  101. Solem A, Zingler N, Pyle AM. 101.  2006. A DEAD protein that activates intron self-splicing without unwinding RNA. Mol. Cell 24:611–17 [Google Scholar]
  102. Solem A, Zingler N, Pyle AM, Li-Pook-Than J. 102.  2009. Group II introns and their protein collaborators. Non-Protein Coding RNAs NG Walter, SA Woodson, RT Batey 467–82 Berlin: Springer Verlag [Google Scholar]
  103. Somarowthu S, Legiewicz M, Keating KS, Pyle AM. 103.  2014. Visualizing the ai5 γ group IIB intron. Nucleic Acids Res. 42:1947–58 [Google Scholar]
  104. Sontheimer EJ, Gordon PM, Piccirilli JA. 104.  1999. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev. 13:1729–41 [Google Scholar]
  105. Stabell FB, Tourasse NJ, Kolstø AB. 105.  2009. A conserved 3′ extension in unusual group II introns is important for efficient second-step splicing. Nucleic Acids Res. 37:3202–14 [Google Scholar]
  106. Steiner M, Karunatilaka KS, Sigel RK, Rueda D. 106.  2008. Single-molecule studies of group II intron ribozymes. PNAS 105:13853–58 [Google Scholar]
  107. Su LJ.107.  2002. The folding pathway and core structure assembly of a group II intron ribozyme PhD Thesis, Columbia Univ
  108. Su LJ, Brenowitz M, Pyle AM. 108.  2003. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J. Mol. Biol. 334:639–52 [Google Scholar]
  109. Su LJ, Waldsich C, Pyle AM. 109.  2005. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res. 33:6674–87 [Google Scholar]
  110. Swisher J, Duarte C, Su L, Pyle A. 110.  2001. Visualizing the solvent-inaccessible core of a group II intron ribozyme. EMBO J. 20:2051–61 [Google Scholar]
  111. Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM. 111.  2002. Productive folding to the native state by a group II intron ribozyme. J. Mol. Biol. 315:297–310 [Google Scholar]
  112. Toor N, Hausner G, Zimmerly S. 112.  2001. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–52 [Google Scholar]
  113. Toor N, Keating KS, Fedorova O, Rajashankar K, Wang J, Pyle AM. 113.  2010. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 16:57–69 [Google Scholar]
  114. Toor N, Keating KS, Taylor SD, Pyle AM. 114.  2008. Crystal structure of a self-spliced group II intron. Science 320:77–82 [Google Scholar]
  115. Toor N, Rajashankar K, Keating KS, Pyle AM. 115.  2008. Structural basis for exon recognition by a group II intron. Nat. Struct. Mol. Biol. 15:1221–22 [Google Scholar]
  116. Toor N, Robart AR, Christianson J, Zimmerly S. 116.  2006. Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem–loop motif of a transcriptional terminator. Nucleic Acids Res. 34:6461–71 [Google Scholar]
  117. Toro N, Jiménez-Zurdo JI, García-Rodríguez FM. 117.  2007. Bacterial group II introns: not just splicing. FEMS Microbiol. Rev. 31:342–58 [Google Scholar]
  118. Toro N, Martínez-Abarca F. 118.  2013. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties. PLOS ONE 8:e55102 [Google Scholar]
  119. Toro N, Molina-Sánchez MD, Fernández-López M. 119.  2002. Identification and characterization of bacterial class E group II introns. Gene 299:245–50 [Google Scholar]
  120. van der Veen R, Arnberg AC, van der Horst G, Bonen L, Tabak HF, Grivell LA. 120.  1986. Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 44:225–34 [Google Scholar]
  121. van der Veen R, Kwakman JH, Grivell LA. 121.  1987. Mutations at the lariat acceptor site allow self-splicing of a group II intron without lariat formation. EMBO J. 6:3827–31 [Google Scholar]
  122. Waldsich C, Pyle AM. 122.  2007. A folding control element for tertiary collapse of a group II intron ribozyme. Nat. Struct. Mol. Biol. 14:37–44 [Google Scholar]
  123. Waldsich C, Pyle AM. 123.  2008. A kinetic intermediate that regulates proper folding of a group II intron RNA. J. Mol. Biol. 375:572–80 [Google Scholar]
  124. Wank H, SanFilippo J, Singh RN, Matsuura M, Lambowitz AM. 124.  1999. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol. Cell 4:239–50 [Google Scholar]
  125. Watanabe K, Lambowitz AM. 125.  2004. High-affinity binding site for a group II intron-encoded reverse transcriptase/maturase within a stem-loop structure in the intron RNA. RNA 10:1433–43 [Google Scholar]
  126. Xiang Q, Qin PZ, Michels WJ, Freeland K, Pyle AM. 126.  1998. The sequence-specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets. Biochemistry 37:3839–49 [Google Scholar]
  127. Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y. 127.  2015. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349:1182–91 [Google Scholar]
  128. Yang J, Zimmerly S, Perlman PS, Lambowitz AM. 128.  1996. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381:332–35 [Google Scholar]
  129. Yean SL, Wuenschell G, Termini J, Lin RJ. 129.  2000. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408:881–84 [Google Scholar]
  130. Zhao C, Rajashankar K, Marcia M, Pyle AM. 130.  2015. Crystal structure of group II intron domain 1 reveals a template for RNA assembly. Nat. Chem. Biol. 11:967–72 [Google Scholar]
  131. Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM. 131.  1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83:529–38 [Google Scholar]
  132. Zimmerly S, Hausner G, Wu X. 132.  2001. Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res. 29:1238–50 [Google Scholar]
  133. Zimmerly S, Semper C. 133.  2015. Evolution of group II introns. Mob. DNA 6:7 [Google Scholar]
  134. Zingler N, Solem A, Pyle AM. 134.  2008. Protein-facilitated ribozyme folding and catalysis. Nucleic Acids Symp. Ser. 52:67–68 [Google Scholar]
  135. Zingler N, Solem A, Pyle AM. 135.  2010. Dual roles for the Mss116 cofactor during splicing of the ai5γ group II intron. Nucleic Acids Res. 38:6602–9 [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-011149
Loading
/content/journals/10.1146/annurev-biophys-062215-011149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error