1932

Abstract

In vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments. A wide variety of kinetic and thermodynamics experiments, ranging from single-molecule studies to jump kinetics and from nuclear magnetic resonance to imaging on the microscope, have elucidated how protein energy landscapes facilitate folding and how they are subject to evolutionary constraints and environmental perturbation. Here we review some recent developments in the field and refer the reader to some original work and additional reviews that cover this broad topic in protein science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-011236
2016-07-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/45/1/annurev-biophys-062215-011236.html?itemId=/content/journals/10.1146/annurev-biophys-062215-011236&mimeType=html&fmt=ahah

Literature Cited

  1. Aksel T, Barrick D. 1.  2014. Direct observation of parallel folding pathways revealed using a symmetric repeat protein system. Biophys. J. 107:220–32 [Google Scholar]
  2. Anfinsen CB.2.  1973. Principles that govern the folding of protein chains. Science 181:223–30 [Google Scholar]
  3. Asakura S, Oosawa F. 3.  1954. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255–56 [Google Scholar]
  4. Auton M, Bolen DW. 4.  2005. Predicting the energetics of osmolyte-induced protein folding/unfolding. PNAS 102:15065–68 [Google Scholar]
  5. Baker D.5.  1998. Metastable states and folding free energy barriers. Nat. Struct. Biol. 5:1021–24 [Google Scholar]
  6. Baker D.6.  2000. A surprising simplicity to protein folding. Nature 405:39–42 [Google Scholar]
  7. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. 7.  2001. Electrostatics of nanosystems: application to microtubules and the ribosome. PNAS 98:10037–41 [Google Scholar]
  8. Baldwin RL.8.  1995. The nature of protein folding pathways: the classical versus the new view. J. Biomol. NMR 5:103–9 [Google Scholar]
  9. Banerjee PR, Deniz AA. 9.  2014. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem. Soc. Rev. 43:1172–88 [Google Scholar]
  10. Barrick D.10.  2009. What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding?. Phys. Biol. 6:015001 [Google Scholar]
  11. Beauchamp KA, McGibbon R, Lin Y-S, Pande VS. 11.  2012. Simple few-state models reveal hidden complexity in protein folding. PNAS 109:17807–13 [Google Scholar]
  12. Benton LA, Smith AE, Young GB, Pielak GJ. 12.  2012. Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51:9773–75 [Google Scholar]
  13. Best RB, Hummer G. 13.  2005. Reaction coordinates and rates from transition paths. PNAS 102:6732–37 [Google Scholar]
  14. Best RB, Hummer G. 14.  2010. Coordinate-dependent diffusion in protein folding. PNAS 107:1088–93 [Google Scholar]
  15. Boersma AJ, Zuhorn IS, Poolman B. 15.  2015. A sensor for quantification of macromolecular crowding in living cells. Nat. Meth. 12:227–29 [Google Scholar]
  16. Borgia A, Wensley BG, Soranno A, Nettels D, Borgia MB. 16.  et al. 2012. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nat. Commun. 3:1195 [Google Scholar]
  17. Bowman GR, Voelz VA, Pande VS. 17.  2011. Atomistic folding simulations of the five helix bundle protein λ6–85. J. Am. Chem. Soc. 133:664–67 [Google Scholar]
  18. Brandts JF, Halvorson HR, Brennan M. 18.  1975. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14:4953–63 [Google Scholar]
  19. Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ. 19.  et al. 2009. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30:1545–614 [Google Scholar]
  20. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. 20.  1995. Funnels, pathways, and the energy landscape of protein-folding: a synthesis. Proteins 21:167–95 [Google Scholar]
  21. Cabrita LD, Dobson CM, Christodoulou J. 21.  2010. Protein folding on the ribosome. Curr. Opin. Struct. Biol. 20:33–45 [Google Scholar]
  22. Camilloni C, Rocco AG, Eberini I, Gianazza E, Broglia RA, Tiana G. 22.  2008. Urea and guanidinium chloride denature protein L in different ways in molecular dynamics simulations. Biophys. J. 94:4654–61 [Google Scholar]
  23. Cavalli A, Haberthür U, Paci E, Caflisch A. 23.  2003. Fast protein folding on downhill energy landscape. Protein Sci. 12:1801–3 [Google Scholar]
  24. Cayley S, Lewis BA, Guttman HJ, Record MT. 24.  1991. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J. Mol. Biol. 222:281–300 [Google Scholar]
  25. Chahine J, Oliveira RJ, Leite VB, Wang J. 25.  2007. Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding. PNAS 104:14646–51 [Google Scholar]
  26. Chan HS, Dill KA. 26.  1991. Polymer principles in protein structure and stability. Annu. Rev. Biophys. Biophys. Chem. 20:447–90 [Google Scholar]
  27. Chandler D.27.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–7 [Google Scholar]
  28. Chang AC, Chuang SS, Gray M, Soong Y. 28.  2003. In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl)triethoxysilane. Energy Fuels 17:468–73 [Google Scholar]
  29. Cho SS, Levy Y, Wolynes PG. 29.  2006. P versus Q: Structural reaction coordinates capture protein folding on smooth landscapes. PNAS 103:586–91 [Google Scholar]
  30. Cho Y, Zhang X, Pobre KF, Liu Y, Powers DL. 30.  et al. 2015. Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli. Cell Rep. 11:321–33 [Google Scholar]
  31. Chodera JD, Mobley DL. 31.  2013. Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu. Rev. Biophys. 42:121–42 [Google Scholar]
  32. Chung HS, McHale K, Louis JM, Eaton WA. 32.  2012. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335:981–84 [Google Scholar]
  33. Clark PL.33.  2004. Protein folding in the cell: reshaping the folding funnel. Trends Biochem. Sci. 29:527–34 [Google Scholar]
  34. Comellas G, Rienstra CM. 34.  2013. Protein structure determination by magic-angle spinning solid-state NMR, and insights into the formation, structure, and stability of amyloid fibrils. Annu. Rev. Biophys. 42:515–36 [Google Scholar]
  35. Creighton T, Goldenberg D. 35.  1984. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 179:497–526 [Google Scholar]
  36. Curtiss LA, Raghavachari K, Redfern PC, Pople JA. 36.  1997. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 106:1063–79 [Google Scholar]
  37. Daniels KG, Tonthat NK, McClure DR, Chang YC, Liu X. 37.  et al. 2014. Ligand concentration regulates the pathways of coupled protein folding and binding. J. Am. Chem. Soc. 136:822–25 [Google Scholar]
  38. Davis CM, Xiao S, Raleigh DP, Dyer RB. 38.  2012. Raising the speed limit for β-hairpin formation. J. Am. Chem. Soc. 134:14476–82 [Google Scholar]
  39. De Sancho D, Best RB. 39.  2011. What is the time scale for α-helix nucleation. ? J. Am. Chem. Soc. 133:6809–16 [Google Scholar]
  40. DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A. 40.  1999. De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68:779–819 [Google Scholar]
  41. Dhar A, Girdhar K, Singh D, Gelman H, Ebbinghaus S, Gruebele M. 41.  2011. Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of eucaryotic cells. Biophys. J. 101:421–30 [Google Scholar]
  42. Dill KA.42.  1985. Theory for the folding and stability of globular proteins. Biochemistry 24:1501–9 [Google Scholar]
  43. Dill KA, MacCallum JL. 43.  2012. The protein-folding problem, 50 years on. Science 338:1042–46 [Google Scholar]
  44. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. 44.  2012. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–52 [Google Scholar]
  45. Duan Y, Kollman PA. 45.  1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–44 [Google Scholar]
  46. Dunitz JD.46.  1995. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem. Biol. 2:709–12 [Google Scholar]
  47. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P. 47.  et al. 2001. Intrinsically disordered protein. J. Mol. Graph. Model. 19:26–59 [Google Scholar]
  48. Dyer RB.48.  2007. Ultrafast and downhill protein folding. Curr. Opin. Struct. Biol. 17:38–47 [Google Scholar]
  49. Dyson HJ, Rance M, Houghten RA, Lerner RA, Wright PE. 49.  1988. Folding of immunogenic peptide fragments of proteins in water solution: I. Sequence requirements for the formation of a reverse turn. J. Mol. Biol. 201:161–200 [Google Scholar]
  50. Dyson HJ, Wright PE. 50.  2002. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv. Protein Chem. 62:311–40 [Google Scholar]
  51. Ebbinghaus S, Dhar A, McDonald D, Gruebele M. 51.  2010. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 7:319–23 [Google Scholar]
  52. Ebbinghaus S, Gruebele M. 52.  2011. Protein folding landscapes in the living cell. J. Phys. Chem. Lett. 2:314–19 [Google Scholar]
  53. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U. 53.  et al. 2007. An extended dynamical hydration shell around proteins. PNAS 104:20749–52 [Google Scholar]
  54. Edelhoch H, Brand L, Wilchek M. 54.  1967. Fluorescence studies with tryptophyl peptides. Biochemistry 6:547–59 [Google Scholar]
  55. Ellis RJ, Minton AP. 55.  2003. Cell biology: Join the crowd. Nature 425:27–28 [Google Scholar]
  56. Englander SW.56.  2000. Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 29:213–38 [Google Scholar]
  57. Englander SW, Mayne L, Kan Z-Y, Hu W. 57.  2016. Protein folding—how and why: by hydrogen exchange, fragment separation, and mass spectrometry. Annu. Rev. Biophys. 45135–52
  58. Englander SW, Sosnick TR, Mayne LC, Shtilerman M, Qi PX, Bai Y. 58.  1998. Fast and slow folding in cytochrome c. Acc. Chem. Res. 31:737–44 [Google Scholar]
  59. Evans MS, Clark TF, Clark PL. 59.  2005. Conformations of co-translational folding intermediates. Protein Pept. Lett. 12:189–95 [Google Scholar]
  60. Fass D.60.  2012. Disulfide bonding in protein biophysics. Annu. Rev. Biophys. 41:63–79 [Google Scholar]
  61. Fedyukina DV, Cavagnero S. 61.  2011. Protein folding at the exit tunnel. Annu. Rev. Biophys. 40:337–59 [Google Scholar]
  62. Fierz B, Kiefhaber T. 62.  2007. End-to-end versus interior loop formation kinetics in unfolded polypeptide chains. J. Am. Chem. Soc. 129:672–79 [Google Scholar]
  63. Fleming KG.63.  2014. Energetics of membrane protein folding. Annu. Rev. Biophys. 43:233–55 [Google Scholar]
  64. Frauenfelder H, Sligar S, Wolynes P. 64.  1991. The energy landscapes and motions of proteins. Science 254:1598–603 [Google Scholar]
  65. Freedberg DI, Selenko P. 65.  2014. Live cell NMR. Annu. Rev. Biophys. 43:171–92 [Google Scholar]
  66. Freire E, Murphy KP, Sanchez-Ruiz JM, Galisteo ML, Privalov PL. 66.  1992. The molecular basis of cooperativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase. Biochemistry 31:250–56 [Google Scholar]
  67. Fuentes EJ, Wand AJ. 67.  1998. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure. Biochemistry 37:9877–83 [Google Scholar]
  68. Garcia-Mira MM, Sadqi M, Fischer N, Sanchez-Ruiz JM, Muñoz V. 68.  2002. Experimental identification of downhill protein folding. Science 298:2191–95 [Google Scholar]
  69. Garcia-Perez A, Burg MB. 69.  1991. Renal medullary organic osmolytes. Physiol. Rev. 71:1081–115 [Google Scholar]
  70. Ghaemmaghami S, Oas TG. 70.  2001. Quantitative protein stability measurement in vivo. Nat. Struct. Mol. Biol. 8:879–82 [Google Scholar]
  71. Glickman MH, Ciechanover A. 71.  2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:373–428 [Google Scholar]
  72. Gnutt D, Gao M, Brylski O, Heyden M, Ebbinghaus S. 72.  2014. Excluded-volume effects in living cells. Angew. Chem. Int. Ed. 54:2548–51 [Google Scholar]
  73. N.73.  1983. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12:183–210 [Google Scholar]
  74. Gosavi S, Whitford PC, Jennings PA, Onuchic JN. 74.  2008. Extracting function from a β-trefoil folding motif. PNAS 105:10384–89 [Google Scholar]
  75. Gruebele M.75.  1999. The fast protein folding problem. Annu. Rev. Phys. Chem. 50:485–516 [Google Scholar]
  76. Gruebele M.76.  2005. Downhill protein folding: Evolution meets physics. C. R. Biol. 328:701–12 [Google Scholar]
  77. Guo M, Xu Y, Gruebele M. 77.  2012. Temperature dependence of protein folding kinetics in living cells. PNAS 109:17863–67 [Google Scholar]
  78. Guzman I, Gelman H, Tai J, Gruebele M. 78.  2014. The extracellular protein VlsE is destabilized inside cells. J. Mol. Biol. 426:11–20 [Google Scholar]
  79. Hagen SJ.79.  2010. Solvent viscosity and friction in protein folding dynamics. Curr. Protein Pept. Sci. 11:385–95 [Google Scholar]
  80. Hagen SJ, Hofrichter J, Szabo A, Eaton WA. 80.  1996. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. PNAS 93:11615–17 [Google Scholar]
  81. Halle B.81.  2004. Protein hydration dynamics in solution: a critical survey. Philos. Trans. R. Soc. Lond. Ser. B. 359:1207–23 [Google Scholar]
  82. Hansmann UH.82.  1997. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281:140–50 [Google Scholar]
  83. Hartl FU, Hayer-Hartl M. 83.  2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–58 [Google Scholar]
  84. Hoffmann A, Nettels D, Clark J, Borgia A, Radford SE. 84.  et al. 2011. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys. Chem. Chem. Phys. 13:1857–71 [Google Scholar]
  85. Hoffmann EK, Lambert IH, Pedersen SF. 85.  2009. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89:193–277 [Google Scholar]
  86. Huang GS, Oas TG. 86.  1995. Structure and stability of monomeric lambda repressor: NMR evidence for two-state folding. Biochemistry 34:3884–92 [Google Scholar]
  87. Ignatova Z, Gierasch LM. 87.  2004. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. PNAS 101:523–28 [Google Scholar]
  88. Ignatova Z, Gierasch LM. 88.  2006. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. PNAS 103:13357–61 [Google Scholar]
  89. Iyer PV, Ananthanarayan L. 89.  2008. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 43:1019–32 [Google Scholar]
  90. Jackson SE, Fersht AR. 90.  1991. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30:10428–35 [Google Scholar]
  91. Jäger M, Zhang J, Bieschke J, Nguyen H, Dendle G. 91.  et al. 2006. The structure-function-folding relationship in a WW domain. PNAS 108:10648–53 [Google Scholar]
  92. Johnson CR, Morin PE, Arrowsmith CH, Freire E. 92.  1995. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry 34:5309–16 [Google Scholar]
  93. Karplus M.93.  2011. Behind the folding funnel diagram. Nat. Chem. Biol. 7:401–4 [Google Scholar]
  94. Karplus M, Sali A, Shakhnovich E. 94.  1995. Kinetics of protein folding. Nature 373:664–65 [Google Scholar]
  95. Karplus M, Weaver DL. 95.  1979. Diffusion–collision model for protein folding. Biopolymers 18:1421–37 [Google Scholar]
  96. Kauzmann W.96.  1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1–63 [Google Scholar]
  97. Kim SJ, Matsumura Y, Dumont C, Kihara H, Gruebele M. 97.  2009. Slowing down downhill folding: a three-probe study. Biophys. J. 97:295–302 [Google Scholar]
  98. Kim YC, Mittal J. 98.  2013. Crowding induced entropy-enthalpy compensation in protein association equilibria. Phys. Rev. Lett. 110:208102 [Google Scholar]
  99. Knowles DB, Lacroix AS, Deines NF, Shkel I, Record MT Jr. 99.  2011. Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. PNAS 108:12699–704 [Google Scholar]
  100. König I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B. 100.  et al. 2015. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12:773–79 [Google Scholar]
  101. Kubelka J, Hofrichter J, Eaton WA. 101.  2004. The protein folding ‘speed limit.’. Curr. Opin. Struct. Biol. 14:76–88 [Google Scholar]
  102. Lau KF, Dill KA. 102.  1989. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22:3986–97 [Google Scholar]
  103. Levinthal C.103.  1968. Are there pathways for protein folding. ? J. Chim. Phys. 65:44 [Google Scholar]
  104. Levitt M, Warshel A. 104.  1975. Computer simulation of protein folding. Nature 253:694–98 [Google Scholar]
  105. Levy ED, De S, Teichmann SA. 105.  2012. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. PNAS 109:20461–66 [Google Scholar]
  106. Li Z, Yang Y, Zhan J, Dai L, Zhou Y. 106.  2013. Energy functions in de novo protein design: current challenges and future prospects. Annu. Rev. Biophys. 42: 315–35
  107. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. 107.  2011. How fast-folding proteins fold. Science 334:517–20 [Google Scholar]
  108. Liu F, Du D, Fuller AA, Davoren JE, Wipf P. 108.  et al. 2008. An experimental survey of the transition between two-state and downhill protein folding scenarios. PNAS 105:2369–74 [Google Scholar]
  109. Liu F, Gao YG, Gruebele M. 109.  2010. A survey of λ repressor fragments from two-state to downhill folding. J. Mol. Biol. 397:789–98 [Google Scholar]
  110. Liu F, Gruebele M. 110.  2007. Tuning λ6–85 towards downhill folding at its melting temperature. J. Mol. Biol. 370:574–84 [Google Scholar]
  111. Liu J, Campos LA, Cerminara M, Wang X, Ramanathan R. 111.  et al. 2012. Exploring one-state downhill protein folding in single molecules. PNAS 109:179–84 [Google Scholar]
  112. Liu Y, Bolen D. 112.  1995. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34:12884–91 [Google Scholar]
  113. MacKinnon R.113.  2003. Potassium channels. FEBS Lett. 555:62–65 [Google Scholar]
  114. McConkey EH.114.  1982. Molecular evolution, intracellular organization, and the quinary structure of proteins. PNAS 79:3236–40 [Google Scholar]
  115. Minton AP, Wilf J. 115.  1981. Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–26 [Google Scholar]
  116. Muñoz V.116.  2002. Folding plasticity. Nat. Struct. Biol. 9:792–94 [Google Scholar]
  117. Nelson DR.117.  2012. Biophysical dynamics in disorderly environments. Annu. Rev. Biophys. 41:371–402 [Google Scholar]
  118. Nguyen H, Jäger M, Moretto A, Gruebele M, Kelly JW. 118.  2003. Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation. PNAS 100:3948–53 [Google Scholar]
  119. Noé F, Schütte C, Vanden-Eijnden E, Reich L, Weikl TR. 119.  2009. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. PNAS 106:19011–16 [Google Scholar]
  120. O'Brien EP, Ziv G, Haran G, Brooks BR, Thirumalai D. 120.  2008. Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. PNAS 105:13403–8 [Google Scholar]
  121. Onuchic JN, Wolynes PG, Luthey-Schulten Z, Socci ND. 121.  1995. Toward an outline of the topography of a realistic protein-folding funnel. PNAS 92:3626–30 [Google Scholar]
  122. Pedersen SF, Hoffmann EK, Mills JW. 122.  2001. The cytoskeleton and cell volume regulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130:385–99 [Google Scholar]
  123. Pegram LM, Record MT Jr. 123.  2008. Thermodynamic origin of Hofmeister ion effects. J. Phys. Chem. B 112:9428–36 [Google Scholar]
  124. Piana S, Sarkar K, Lindorff-Larsen K, Guo M, Gruebele M, Shaw DE. 124.  2011. Computational design and experimental testing of the fastest-folding beta-sheet protein. J. Mol. Biol. 405:43–48 [Google Scholar]
  125. Pitera JW, Swope WC, Abraham FF. 125.  2008. Observation of noncooperative folding thermodynamics in simulations of 1BBL. Biophys. J. 94:4837–46 [Google Scholar]
  126. Poland D, Scheraga HA. 126.  1966. Phase transitions in one dimension and the helix-coil transition in polyamino acids. J. Chem. Phys. 45:1456–63 [Google Scholar]
  127. Portman JJ, Takada S, Wolynes PG. 127.  1998. Variational theory for site resolved protein folding free energy surfaces. Phys. Rev. Lett. 81:5237–40 [Google Scholar]
  128. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. 128.  2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91 [Google Scholar]
  129. Prigozhin MB, Gruebele M. 129.  2013. Microsecond folding experiments and simulations: A match is made. Phys. Chem. Chem. Phys. 15:3372–88 [Google Scholar]
  130. Ramakrishnan C, Ramachandran G. 130.  1965. Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophys. J. 5:909–33 [Google Scholar]
  131. Rath A, Deber CM. 131.  2012. Protein structure in membrane domains. Annu. Rev. Biophys. 41:135–55 [Google Scholar]
  132. Record MT Jr., Anderson CF, Lohman TM. 132.  1978. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11:103–78 [Google Scholar]
  133. Roy S, Hecht MH. 133.  2000. Cooperative thermal denaturation of proteins designed by binary patterning of polar and nonpolar amino acids. Biochemistry 39:4603–7 [Google Scholar]
  134. Sabelko J, Ervin J, Gruebele M. 134.  1999. Observation of strange kinetics in protein folding. PNAS 96:6031–36 [Google Scholar]
  135. Sapir L, Harries D. 135.  2015. Is the depletion force entropic? Molecular crowding beyond steric interactions. Curr. Opin. Colloid Interface Sci. 20:3–10 [Google Scholar]
  136. Saunders AJ, Davis-Searles PR, Allen DL, Pielak GJ, Erie DA. 136.  2000. Osmolyte-induced changes in protein conformational equilibria. Biopolymers 53:293–307 [Google Scholar]
  137. Saunders MG, Voth GA. 137.  2013. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42:73–93 [Google Scholar]
  138. Scheraga HA, Khalili M, Liwo A. 138.  2007. Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58:57–83 [Google Scholar]
  139. Schroder M, Kaufman RJ. 139.  2005. The mammalian unfolded protein response. Annu Rev Biochem 74:739–89 [Google Scholar]
  140. Schuler B, Eaton WA. 140.  2008. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18:16–26 [Google Scholar]
  141. Schuler B, Sorrano A, Hofmann H, Nettels D. 141.  2016. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys 45:207–31 [Google Scholar]
  142. Senske M, Törk L, Born B, Havenith M, Herrmann C, Ebbinghaus S. 142.  2014. Protein stabilization by macromolecular crowding through enthalpy rather than entropy. J. Am. Chem. Soc. 136:9036–41 [Google Scholar]
  143. Sharp KA.143.  1995. Polyelectrolyte electrostatics: salt dependence, entropic, and enthalpic contributions to free energy in the nonlinear Poisson-Boltzmann model. Macromolecules 36:227–43 [Google Scholar]
  144. Sharp KA.144.  2015. Analysis of the size dependence of macromolecular crowding shows that smaller is better. PNAS 112:7990–95 [Google Scholar]
  145. Shea JE, Brooks III CL. 145.  2001. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52:499–535 [Google Scholar]
  146. Shoemaker BA, Portman JJ, Wolynes PG. 146.  2000. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. PNAS 97:8868–73 [Google Scholar]
  147. Smith AE, Zhang Z, Pielak GJ, Li C. 147.  2015. NMR studies of protein folding and binding in cells and cell-like environments. Curr. Opin. Struct. Biol. 30:7–16 [Google Scholar]
  148. Snow CD, Nguyen H, Pande VS, Gruebele M. 148.  2002. Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102–6 [Google Scholar]
  149. Southall NT, Dill KA, Haymet ADJ. 149.  2002. A view of the hydrophobic effect. J. Phys. Chem. B 106:521–33 [Google Scholar]
  150. Sugase K, Dyson HJ, Wright PE. 150.  2007. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–25 [Google Scholar]
  151. Sukenik S, Boyarski Y, Harries D. 151.  2014. Effect of salt on the formation of salt-bridges in β-hairpin peptides. Chem. Comm. 50:8193–96 [Google Scholar]
  152. Sukenik S, Sapir L, Gilman-Politi R, Harries D. 152.  2013. Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discuss. 160:225 [Google Scholar]
  153. Thirumalai D, Lorimer GH. 153.  2001. Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30:245–69 [Google Scholar]
  154. Udgaonkar JB.154.  2008. Multiple routes and structural heterogeneity in protein folding. Annu. Rev. Biophys. 37:489–510 [Google Scholar]
  155. Uversky VN.155.  2009. Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J. 28:305–25 [Google Scholar]
  156. Uversky VN, Oldfield CJ, Dunker AK. 156.  2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215–46 [Google Scholar]
  157. Voelz VA, Singh VR, Wedemeyer WJ, Lapidus LJ, Pande VS. 157.  2010. Unfolded state dynamics and structure of protein L characterized by simulation and experiment. J. Am. Chem. Soc. 132:4702–9 [Google Scholar]
  158. Wagner A.158.  2005. Robustness and Evolvability in Living Systems Princeton, NJ: Princeton Univ. Press
  159. Weathers EA, Paulaitis ME, Woolf TB, Hoh JH. 159.  2004. Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Lett. 576:348–52 [Google Scholar]
  160. Weber G.160.  1995. van't Hoff revisited: enthalpy of association of protein subunits. J. Phys. Chem. 99:1052–59 [Google Scholar]
  161. Wirth AJ, Liu Y, Prigozhin MB, Schulten K, Gruebele M. 161.  2015. Comparing fast pressure jump and temperature jump protein folding experiments and simulations. J. Am. Chem. Soc. 137:7152–59 [Google Scholar]
  162. Wirth AJ, Platkov M, Gruebele M. 162.  2013. Temporal variation of a protein folding energy landscape in the cell. J. Am. Chem. Soc. 135:19215–21 [Google Scholar]
  163. Wolynes PG, Luthey-Schulten Z, Onuchic JM. 163.  1996. Fast-folding experiments and the topography of protein folding energy landscapes. Chem. Biol. 3:425–32 [Google Scholar]
  164. Woodside MT, Block SM. 164.  2014. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys. 43:19–39 [Google Scholar]
  165. Xia K, Zhang S, Bathrick B, Liu S, Garcia Y, Colon W. 165.  2012. Quantifying the kinetic stability of hyperstable proteins via time-dependent SDS trapping. Biochemistry 51:100–7 [Google Scholar]
  166. Yancey PH.166.  2001. Water stress, osmolytes and proteins. Integr. Comp. Biol. 41:699–709 [Google Scholar]
  167. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. 167.  1982. Living with water stress: evolution of osmolyte systems. Science 217:1214–22 [Google Scholar]
  168. Yang WY, Gruebele M. 168.  2003. Folding at the speed limit. Nature 423:193–97 [Google Scholar]
  169. Yang WY, Gruebele M. 169.  2004. Folding λ-repressor at its speed limit. Biophys. J. 87:596–608 [Google Scholar]
  170. Yen H-CS, Xu Q, Chou DM, Zhao Z, Elledge SJ. 170.  2008. Global protein stability profiling in mammalian cells. Science 322:918–23 [Google Scholar]
  171. Zhou HX, Rivas G, Minton AP. 171.  2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97 [Google Scholar]
  172. Zhu Y, Fu X, Wang T, Tamura A, Takada S. 172.  et al. 2004. Guiding the search for a protein's maximum rate of folding. Chem. Phys. 307:99–109 [Google Scholar]
  173. Zimmerman SB, Trach SO. 173.  1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222:599–620 [Google Scholar]
  174. Ziv G, Haran G. 174.  2009. Protein folding, protein collapse, and Tanford's transfer model: lessons from single-molecule FRET. J. Am. Chem. Soc. 131:2942–47 [Google Scholar]
  175. Zuckerman DM. 175.  2011. Equilibrium sampling in biomolecular simulation. Annu. Rev. Biophys. 40:41–62 [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-011236
Loading
/content/journals/10.1146/annurev-biophys-062215-011236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error