1932

Abstract

It has been 40 years since the US Food and Drug Administration approved the estrogen receptor (ER) antagonist tamoxifen for the treatment of ER-positive breast cancer, ushering in the era of targeted therapy coupled with a companion diagnostic. The prostate cancer field quickly followed suit with the approval of the androgen receptor (AR) antagonist bicalutamide. In the years since, there has been sustained scientific interest in understanding these hormone-dependent signaling pathways and in drug discovery efforts to identify novel hormone-directed therapeutic agents. Recently, there have been breakthrough discoveries relating to mechanisms that enable reactivation of ER and AR signaling in the presence of antihormonal agents and that enable loss of hormone dependency, providing multiple routes of acquired resistance to hormone therapy. This review discusses parallels between breast and prostate cancer, including their pathobiologies, existing therapeutic modalities, acquired resistance to such therapeutics, and novel therapies being developed to target distinct states of resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030617-050512
2018-03-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/2/1/annurev-cancerbio-030617-050512.html?itemId=/content/journals/10.1146/annurev-cancerbio-030617-050512&mimeType=html&fmt=ahah

Literature Cited

  1. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M. et al. 2014. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371:1028–38 [Google Scholar]
  2. Arao Y, Hamilton KJ, Ray MK, Scott G, Mishina Y, Korach KS. 2011. Estrogen receptor α AF-2 mutation results in antagonist reversal and reveals tissue selective function of estrogen receptor modulators. PNAS 108:14986–91 [Google Scholar]
  3. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J. et al. 2013. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155:1309–22 [Google Scholar]
  4. Bahreini A, Li Z, Wang P, Levine KM, Tasdemir N. et al. 2017. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res 19:60 [Google Scholar]
  5. Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK. et al. 2013. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife 2:e00499 [Google Scholar]
  6. Bambury RM, Rathkopf DE. 2016. Novel and next-generation androgen receptor–directed therapies for prostate cancer: beyond abiraterone and enzalutamide. Urol. Oncol. 34:348–55 [Google Scholar]
  7. Barton VN, D'Amato NC, Gordon MA, Lind HT, Spoelstra NS. et al. 2015. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol. Cancer Ther. 14:769–78 [Google Scholar]
  8. Baselga J, Campone M, Piccart M, Burris HA III, Rugo HS. et al. 2012. Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N. Engl. J. Med. 366:520–29 [Google Scholar]
  9. Beatson GT. 1896. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Lancet 148:162–65 [Google Scholar]
  10. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L. et al. 2016. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22:298–305 [Google Scholar]
  11. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D. et al. 1992. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res. Treat. 2485–95
  12. Bolt MJ, Stossi F, Newberg JY, Orjalo A, Johansson HE, Mancini MA. 2013. Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic Acids Res 41:4036–48 [Google Scholar]
  13. Borras M, Laios I, el Khissiin A, Seo HS, Lempereur F. et al. 1996. Estrogenic and antiestrogenic regulation of the half-life of covalently labeled estrogen receptor in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 57:203–13 [Google Scholar]
  14. Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E. et al. 2015. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Sci. Transl. Med. 7:283ra51 [Google Scholar]
  15. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA. et al. 2005. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43 [Google Scholar]
  16. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR. et al. 2006. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38:1289–97 [Google Scholar]
  17. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y. et al. 2011. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–86 [Google Scholar]
  18. Chandarlapaty S, Chen D, He W, Sung P, Samoila A. et al. 2016. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2:1310–15 [Google Scholar]
  19. Chia SK, Bramwell VH, Tu D, Shepherd LE, Jiang S. et al. 2012. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin. Cancer Res. 18:4465–72 [Google Scholar]
  20. Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. 2011. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol. 125:13–22 [Google Scholar]
  21. Clark AS, West K, Streicher S, Dennis PA. 2002. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1:707–17 [Google Scholar]
  22. Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S. et al. 2012. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res 72:1494–503 [Google Scholar]
  23. Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y. et al. 2010. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res 12:R40 [Google Scholar]
  24. Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A. et al. 1999. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br. J. Cancer 81:242–51 [Google Scholar]
  25. D'Amato NC, Gordon MA, Babbs B, Spoelstra NS, Carson Butterfield KT. et al. 2016. Cooperative dynamics of AR and ER activity in breast cancer. Mol. Cancer Res. 14:1054–67 [Google Scholar]
  26. Dauvois S, Danielian PS, White R, Parker MG. 1992. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. PNAS 89:4037–41 [Google Scholar]
  27. Davies C, Pan H, Godwin J, Gray R, Arriagada R. et al. 2013. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–16 [Google Scholar]
  28. De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A. et al. 2010. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res. Treat. 121:1–11 [Google Scholar]
  29. DeFriend DJ, Howell A, Nicholson RI, Anderson E, Dowsett M. et al. 1994. Investigation of a new pure antiestrogen (ICI 182780) in women with primary breast cancer. Cancer Res 54:408–14 [Google Scholar]
  30. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. 2008. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–77 [Google Scholar]
  31. Doane AS, Danso M, Lal P, Donaton M, Zhang L. et al. 2006. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25:3994–4008 [Google Scholar]
  32. Dudek P, Picard D. 2008. Genomics of signaling crosstalk of estrogen receptor α in breast cancer cells. PLOS ONE 3:e1859 [Google Scholar]
  33. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P. et al. 2005. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–71 [Google Scholar]
  34. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ. et al. 2009. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11:R77 [Google Scholar]
  35. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A. et al. 2017. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377:352–60 [Google Scholar]
  36. Fribbens C, O'Leary B, Kilburn L, Hrebien S, Garcia-Murillas I. et al. 2016. Plasma ESR1 mutations and the treatment of estrogen receptor–positive advanced breast cancer. J. Clin. Oncol. 34:2961–68 [Google Scholar]
  37. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H. et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58–64 [Google Scholar]
  38. Garner F, Shomali M, Paquin D, Lyttle CR, Hattersley G. 2015. RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that demonstrates antitumor activity in breast cancer xenograft models. Anticancer Drugs 26:948–56 [Google Scholar]
  39. Gibson MK, Nemmers LA, Beckman WC Jr., Davis VL, Curtis SW, Korach KS. 1991. The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology 129:2000–10 [Google Scholar]
  40. Girault I, Lerebours F, Amarir S, Tozlu S, Tubiana-Hulin M. et al. 2003. Expression analysis of estrogen receptor α coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin. Cancer Res. 9:1259–66 [Google Scholar]
  41. Glass CK, Rosenfeld MG. 2000. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–41 [Google Scholar]
  42. Gottardis MM, Jordan VC. 1988. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 48:5183–87 [Google Scholar]
  43. Gottardis MM, Robinson SP, Satyaswaroop PG, Jordan VC. 1988. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res 48:812–15 [Google Scholar]
  44. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC. et al. 2013. Phase II trial of bicalutamide in patients with androgen receptor–positive, estrogen receptor–negative metastatic breast cancer. Clin. Cancer Res. 19:5505–12 [Google Scholar]
  45. Guo Z, Yang X, Sun F, Jiang R, Linn DE. et al. 2009. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–13 [Google Scholar]
  46. Harrod A, Fulton J, Nguyen VTM, Periyasamy M, Ramos-Garcia L. et al. 2017. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36:2286–96 [Google Scholar]
  47. Hickson I. 2016. Small molecule inhibitor targeting androgen receptor (AR) mutations associated with resistance to emerging AR antagonists Presented at Am. Assoc. Cancer Res. Annu. Meet., April 19 New Orleans, LA:
  48. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW. et al. 2009. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22 [Google Scholar]
  49. Hu R, Isaacs WB, Luo J. 2011. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 71:1656–67 [Google Scholar]
  50. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M. et al. 2012. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72:3457–62 [Google Scholar]
  51. Huggins C, Hodges CV. 1941. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–97 [Google Scholar]
  52. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. 2011. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet. 43:27–33 [Google Scholar]
  53. James ND, de Bono JS, Spears MR, Clarke NW, Mason MD. et al. 2017. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377:338–51 [Google Scholar]
  54. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F. et al. 2014. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 20:1757–67 [Google Scholar]
  55. Jordan VC. 2003. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2:205–13 [Google Scholar]
  56. Joseph JD, Darimont B, Zhou W, Arrazate A, Young A. et al. 2016. The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. eLife 5:e15828 [Google Scholar]
  57. Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G. et al. 2013. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 3:1020–29 [Google Scholar]
  58. Kach J, Conzen SD, Szmulewitz RZ. 2015. Targeting the glucocorticoid receptor in breast and prostate cancers. Sci. Transl. Med. 7:305ps19 [Google Scholar]
  59. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S. et al. 1995. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–94 [Google Scholar]
  60. Kennedy BJ. 1958. Fluoxymesterone therapy in advanced breast cancer. N. Engl. J. Med. 259:673–75 [Google Scholar]
  61. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M. et al. 2017. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83 [Google Scholar]
  62. LaMarca HL, Rosen JM. 2008. Minireview: hormones and mammary cell fate—What will I become when I grow up?. Endocrinology 149:4317–21 [Google Scholar]
  63. Li S, Shen D, Shao J, Crowder R, Liu W. et al. 2013. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4:1116–30 [Google Scholar]
  64. Lim E, Tarulli G, Portman N, Hickey TE, Tilley WD, Palmieri C. 2016. Pushing estrogen receptor around in breast cancer. Endocr. Relat. Cancer 23:T227–41 [Google Scholar]
  65. Liu H, Lee ES, De Los Reyes A, Zapf JW, Jordan VC. 2001. Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor α complex. Cancer Res 61:3632–39 [Google Scholar]
  66. Liu W, Xie CC, Zhu Y, Li T, Sun J. et al. 2008. Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10:897–907 [Google Scholar]
  67. Lupien M, Meyer CA, Bailey ST, Eeckhoute J, Cook J. et al. 2010. Growth factor stimulation induces a distinct ERα cistrome underlying breast cancer endocrine resistance. Genes Dev 24:2219–27 [Google Scholar]
  68. Magnani L, Frige G, Gadaleta RM, Corleone G, Fabris S. et al. 2017. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERα metastatic breast cancer. Nat. Genet. 49:444–50 [Google Scholar]
  69. Mahfoudi A, Roulet E, Dauvois S, Parker MG, Wahli W. 1995. Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. PNAS 92:4206–10 [Google Scholar]
  70. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G. et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–39 [Google Scholar]
  71. Marino M, Galluzzo P, Ascenzi P. 2006. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genom. 7:497–508 [Google Scholar]
  72. Marker PC, Donjacour AA, Dahiya R, Cunha GR. 2003. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol. 253:165–74 [Google Scholar]
  73. Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A. et al. 2008. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68:826–33 [Google Scholar]
  74. Massarweh S, Osborne CK, Jiang S, Wakeling AE, Rimawi M. et al. 2006. Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor–positive, HER-2/neu-positive breast cancer. Cancer Res 66:8266–73 [Google Scholar]
  75. McInerney EM, Katzenellenbogen BS. 1996. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J. Biol. Chem. 271:24172–78 [Google Scholar]
  76. McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM. et al. 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 12:3357–68 [Google Scholar]
  77. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L. et al. 2013. D538G mutation in estrogen receptor-α: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73:6856–64 [Google Scholar]
  78. Miller TW, Hennessy BT, Gonzalez-Angulo AM, Fox EM, Mills GB. et al. 2010. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor–positive human breast cancer. J. Clin. Investig. 120:2406–13 [Google Scholar]
  79. Miller TW, Perez-Torres M, Narasanna A, Guix M, Stal O. et al. 2009. Loss of Phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and IGF-IR signaling to promote antiestrogen resistance in breast cancer. Cancer Res 69:4192–201 [Google Scholar]
  80. Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E. et al. 2015. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep. 5:12007 [Google Scholar]
  81. Montano MM, Ekena K, Krueger KD, Keller AL, Katzenellenbogen BS. 1996. Human estrogen receptor ligand activity inversion mutants: receptors that interpret antiestrogens as estrogens and estrogens as antiestrogens and discriminate among different antiestrogens. Mol. Endocrinol. 10:230–42 [Google Scholar]
  82. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E. et al. 2017. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84–88 [Google Scholar]
  83. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A. et al. 2011. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19:792–804 [Google Scholar]
  84. Nagy L, Schwabe JW. 2004. Mechanism of the nuclear receptor molecular switch. Trends Biochem. Sci. 29:317–24 [Google Scholar]
  85. Need EF, Selth LA, Harris TJ, Birrell SN, Tilley WD, Buchanan G. 2012. Research resource: interplay between the genomic and transcriptional networks of androgen receptor and estrogen receptor α in luminal breast cancer cells. Mol. Endocrinol. 26:1941–52 [Google Scholar]
  86. Nettles KW, Bruning JB, Gil G, Nowak J, Sharma SK. et al. 2008. NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol. 4:241–47 [Google Scholar]
  87. Nguyen VT, Barozzi I, Faronato M, Lombardo Y, Steel JH. et al. 2015. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat. Commun. 6:10044 [Google Scholar]
  88. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST. et al. 2011. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20:119–31 [Google Scholar]
  89. Nicholson RI, Gee JM, Manning DL, Wakeling AE, Montano MM, Katzenellenbogen BS. 1995. Responses to pure antiestrogens (ICI 164384, ICI 182780) in estrogen-sensitive and -resistant experimental and clinical breast cancer. Ann. N. Y. Acad. Sci. 761:148–63 [Google Scholar]
  90. Nicholson RI, Hutcheson IR, Jones HE, Hiscox SE, Giles M. et al. 2007. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev. Endocr. Metab. Disord. 8:241–53 [Google Scholar]
  91. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG. et al. 2003. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl. Cancer Inst. 95:353–61 [Google Scholar]
  92. Osborne CK, Coronado E, Allred DC, Wiebe V, DeGregorio M. 1991. Acquired tamoxifen resistance: correlation with reduced breast tumor levels of tamoxifen and isomerization of trans-4-hydroxytamoxifen. J. Natl. Cancer Inst. 83:1477–82 [Google Scholar]
  93. Paik S, Tang G, Shak S, Kim C, Baker J. et al. 2006. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J. Clin. Oncol. 24:3726–34 [Google Scholar]
  94. Pan D, Kocherginsky M, Conzen SD. 2011. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 71:6360–70 [Google Scholar]
  95. Pink JJ, Jordan VC. 1996. Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res 56:2321–30 [Google Scholar]
  96. Prat A, Baselga J. 2008. The role of hormonal therapy in the management of hormonal-receptor-positive breast cancer with co-expression of HER2. Nat. Clin. Pract. Oncol. 5:531–42 [Google Scholar]
  97. Rathkopf DE, Antonarakis ES, Shore ND, Tutrone RF, Alumkal JJ. et al. 2017. Safety and antitumor activity of apalutamide (ARN-509) in metastatic castration-resistant prostate cancer with and without prior abiraterone acetate and prednisone. Clin. Cancer Res. 23:3544–51 [Google Scholar]
  98. Reinert T, Barrios CH. 2015. Optimal management of hormone receptor positive metastatic breast cancer in 2016. Ther. Adv. Med. Oncol. 7:304–20 [Google Scholar]
  99. Robertson JF, Bondarenko IM, Trishkina E, Dvorkin M, Panasci L. et al. 2016. Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388:2997–3005 [Google Scholar]
  100. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ. et al. 2013. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45:1446–51 [Google Scholar]
  101. Ryan CJ, Peng W, Kheoh T, Welkowsky E, Haqq CM. et al. 2014. Androgen dynamics and serum PSA in patients treated with abiraterone acetate. Prostate Cancer Prostatic Dis 17:192–98 [Google Scholar]
  102. Sakamoto T, Eguchi H, Omoto Y, Ayabe T, Mori H, Hayashi S. 2002. Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol. Cell. Endocrinol. 192:93–104 [Google Scholar]
  103. Satyaswaroop PG, Zaino RJ, Mortel R. 1984. Estrogen-like effects of tamoxifen on human endometrial carcinoma transplanted into nude mice. Cancer Res 44:4006–10 [Google Scholar]
  104. Scher HI, Lu D, Schreiber NA, Louw J, Graf RP. et al. 2016. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2:1441–49 [Google Scholar]
  105. Schiavon G, Hrebien S, Garcia-Murillas I, Cutts RJ, Pearson A. et al. 2015. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 7:313ra182 [Google Scholar]
  106. Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS. et al. 2015. Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 27:109–22 [Google Scholar]
  107. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB. et al. 2011. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3:75ra26 [Google Scholar]
  108. Shang Y, Brown M. 2002. Molecular determinants for the tissue specificity of SERMs. Science 295:2465–68 [Google Scholar]
  109. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S. et al. 2004. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst. 96:926–35 [Google Scholar]
  110. Smith BA, Sokolov A, Uzunangelov V, Baertsch R, Newton Y. et al. 2015. A basal stem cell signature identifies aggressive prostate cancer phenotypes. PNAS 112:E6544–52 [Google Scholar]
  111. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S. et al. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS 98:10869–74 [Google Scholar]
  112. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS. et al. 2015. Prospective validation of a 21-gene expression assay in breast cancer. N. Engl. J. Med. 373:2005–14 [Google Scholar]
  113. Spoerke JM, Gendreau S, Walter K, Qiu J, Wilson TR. et al. 2016. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat. Commun. 7:11579 [Google Scholar]
  114. Stender JD, Nwachukwu JC, Kastrati I, Kim Y, Strid T. et al. 2017. Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol. Cell 65:1122–35.e5 [Google Scholar]
  115. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K. et al. 2010. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J. Clin. Investig. 120:2715–30 [Google Scholar]
  116. Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I. et al. 2016. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165:593–605 [Google Scholar]
  117. Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M. et al. 1999. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–15 [Google Scholar]
  118. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA. et al. 2003. Androgen receptor mutations in androgen-independent prostate cancer: cancer and leukemia group B study 9663. J. Clin. Oncol. 21:2673–78 [Google Scholar]
  119. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y. et al. 2010. Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22 [Google Scholar]
  120. Theodorou V, Stark R, Menon S, Carroll JS. 2013. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res 23:12–22 [Google Scholar]
  121. Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC. et al. 2017. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355:1324–30 [Google Scholar]
  122. Toy W, Shen Y, Won H, Green B, Sakr RA. et al. 2013. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45:1439–45 [Google Scholar]
  123. Toy W, Weir H, Razavi P, Lawson M, Goeppert AU. et al. 2017. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov 7:277–87 [Google Scholar]
  124. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA. et al. 2009. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324:787–90 [Google Scholar]
  125. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R. et al. 1995. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9:401–6 [Google Scholar]
  126. Wakeling AE. 1990. Therapeutic potential of pure antioestrogens in the treatment of breast cancer. J. Steroid Biochem. Mol. Biol. 37:771–75 [Google Scholar]
  127. Wardell SE, Ellis MJ, Alley HM, Eisele K, VanArsdale T. et al. 2015.a Efficacy of SERD/SERM hybrid-CDK4/6 inhibitor combinations in models of endocrine therapy–resistant breast cancer. Clin. Cancer Res. 21:5121–30 [Google Scholar]
  128. Wardell SE, Nelson ER, Chao CA, Alley HM, McDonnell DP. 2015.b Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr. Relat. Cancer 22:713–24 [Google Scholar]
  129. Weir HM, Bradbury RH, Lawson M, Rabow AA, Buttar D. et al. 2016. AZD9496: an oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models. Cancer Res 76:3307–18 [Google Scholar]
  130. Welboren WJ, Sweep FC, Span PN, Stunnenberg HG. 2009.a Genomic actions of estrogen receptor α: What are the targets and how are they regulated. Endocr. Relat. Cancer 16:1073–89 [Google Scholar]
  131. Welboren WJ, van Driel MA, Janssen-Megens EM, van Heeringen SJ, Sweep FC. et al. 2009.b ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands. EMBO J 28:1418–28 [Google Scholar]
  132. Whitesell L, Lindquist SL. 2005. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5:761–72 [Google Scholar]
  133. Wolf DM, Jordan VC. 1994.a Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res. Treat. 31:117–27 [Google Scholar]
  134. Wolf DM, Jordan VC. 1994.b The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res. Treat. 31:129–38 [Google Scholar]
  135. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P. et al. 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3:87–94 [Google Scholar]
  136. Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE. et al. 2015. Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol. Cell 57:1047–58 [Google Scholar]
  137. Yu Z, Chen S, Sowalsky AG, Voznesensky OS, Mostaghel EA. et al. 2014. Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer. Clin. Cancer Res. 20:1590–600 [Google Scholar]
  138. Zhao Y, Laws MJ, Guillen VS, Ziegler Y. et al. 2017. Structurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors. Cancer Res 77:5602–13 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030617-050512
Loading
/content/journals/10.1146/annurev-cancerbio-030617-050512
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error