1932

Abstract

Cancer is a disease reliant on the generation of mutations and the subsequent selection of those subpopulations endowed with the greatest fitness advantage. Beginning with a heterogeneous landscape of somatic alterations, various selective pressures acting on a tumor can shape the way it evolves. In this review, we first discuss the current bioinformatics tools available to tease apart the heterogeneous nature of a tumor and second consider the impact that evolutionary forces have on sculpting a tumor. Neighboring subclones may alter the microenvironment cultivating either cooperation or competition between clonal populations. Additionally, the harsh environment brought about by therapy and the immune system may force adaptation. Finally, we examine recent analyses focused on precancerous samples, which help to reveal clonal selection occurring during the earliest stages of tumor development, as well as work that has identified patterns of somatic evolution observed in normal tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-042516-011348
2017-03-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/1/1/annurev-cancerbio-042516-011348.html?itemId=/content/journals/10.1146/annurev-cancerbio-042516-011348&mimeType=html&fmt=ahah

Literature Cited

  1. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S. et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21 [Google Scholar]
  2. Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R. et al. 2015. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 16:64 [Google Scholar]
  3. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A. et al. 2013. Punctuated evolution of prostate cancer genomes. Cell 153:666–77 [Google Scholar]
  4. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB. et al. 2014. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5:2997 [Google Scholar]
  5. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A. et al. 2015. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:1164–77 [Google Scholar]
  6. Brocks D, Assenov Y, Minner S, Bogatyrova O, Simon R. et al. 2014. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep 8:798–806 [Google Scholar]
  7. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ. et al. 2014. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24:743–50 [Google Scholar]
  8. Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA. et al. 2007. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13:2038–45 [Google Scholar]
  9. Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB. et al. 2011. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19:244–56 [Google Scholar]
  10. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED. et al. 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–13 [Google Scholar]
  11. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H. et al. 2012. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30:413–21 [Google Scholar]
  12. de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC. et al. 2014. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346:251–56 [Google Scholar]
  13. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. 2015. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol 16:35 [Google Scholar]
  14. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR. et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40 [Google Scholar]
  15. Ding L, Kim M, Kanchi KL, Dees ND, Lu C. et al. 2014. Clonal architectures and driver mutations in metastatic melanomas. PLOS ONE 9:e111153 [Google Scholar]
  16. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC. et al. 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–10 [Google Scholar]
  17. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P. et al. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–54 [Google Scholar]
  18. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:991–98 [Google Scholar]
  19. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T. 2012. Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–9 [Google Scholar]
  20. Egan JB, Shi CX, Tembe W, Christoforides A, Kurdoglu A. et al. 2012. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 120:1060–66 [Google Scholar]
  21. El-Kebir M, Satas G, Oesper L, Raphael BJ. 2016. Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst 3:43–53 [Google Scholar]
  22. Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M. et al. 2015. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26:64–70 [Google Scholar]
  23. Findlay JM, Castro-Giner F, Makino S, Rayner E, Kartsonaki C. et al. 2016. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat. Commun. 7:11111 [Google Scholar]
  24. Fischer A, Vazquez-Garcia I, Illingworth CJ, Mustonen V. 2014. High-definition reconstruction of clonal composition in cancer. Cell Rep 7:1740–52 [Google Scholar]
  25. Forment JV, Kaidi A, Jackson SP. 2012. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat. Rev. Cancer 12:663–70 [Google Scholar]
  26. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA. et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:2477–87 [Google Scholar]
  27. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP. et al. 2014a. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46:225–33 [Google Scholar]
  28. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. 2014b. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48:215–36 [Google Scholar]
  29. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D. et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92 [Google Scholar]
  30. Greaves M, Maley CC. 2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  31. Greenman CD, Bignell G, Butler A, Edkins S, Hinton J. et al. 2010. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics 11:164–75 [Google Scholar]
  32. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM. et al. 2015. The evolutionary history of lethal metastatic prostate cancer. Nature 520:353–57 [Google Scholar]
  33. Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM. et al. 2013. Tracking the clonal origin of lethal prostate cancer. J. Clin. Investig. 123:4918–22 [Google Scholar]
  34. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM. et al. 2016. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22:262–69 [Google Scholar]
  35. Heemskerk B, Kvistborg P, Schumacher TN. 2013. The cancer antigenome. EMBO J 32:194–203 [Google Scholar]
  36. Helleday T, Eshtad S, Nik-Zainal S. 2014. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15:585–98 [Google Scholar]
  37. Hobor S, Van Emburgh BO, Crowley E, Misale S, Di Nicolantonio F, Bardelli A. 2014. TGF-α and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin. Cancer Res. 20:6429–38 [Google Scholar]
  38. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA. et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23 [Google Scholar]
  39. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C. et al. 2006. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66:3987–91 [Google Scholar]
  40. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW. et al. 2010. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24:1731–45 [Google Scholar]
  41. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV. et al. 2014. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371:2488–98 [Google Scholar]
  42. Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C. et al. 2014. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLOS Biol 12:e1001906 [Google Scholar]
  43. Jiao W, Vembu S, Deshwar AG, Stein L, Morris Q. 2014. Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform 15:35 [Google Scholar]
  44. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K. et al. 2014. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–93 [Google Scholar]
  45. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE. et al. 2012. Clonal competition with alternating dominance in multiple myeloma. Blood 120:1067–76 [Google Scholar]
  46. Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL. et al. 2014. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25:379–92 [Google Scholar]
  47. Kosaka T, Yatabe Y, Endoh H, Yoshida K, Hida T. et al. 2006. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin. Cancer Res. 12:5764–69 [Google Scholar]
  48. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F. et al. 2013. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–48 [Google Scholar]
  49. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K. et al. 2013. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152:714–26 [Google Scholar]
  50. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG. et al. 2015. Mutations driving CLL and their evolution in progression and relapse. Nature 526:525–30 [Google Scholar]
  51. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18 [Google Scholar]
  52. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H. et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:2509–20 [Google Scholar]
  53. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM. et al. 2015. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51 [Google Scholar]
  54. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS. et al. 2014. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25:91–101 [Google Scholar]
  55. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X. et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38:468–73 [Google Scholar]
  56. Maley CC, Reid BJ, Forrest S. 2004. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol. Biomark. Prev. 13:1375–84 [Google Scholar]
  57. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P. et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86 [Google Scholar]
  58. Marusyk A, Polyak K. 2010. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805:105–17 [Google Scholar]
  59. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. 2014. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:54–58 [Google Scholar]
  60. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R. et al. 2012. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–4 [Google Scholar]
  61. Mazor T, Pankov A, Johnson BE, Hong C, Hamilton EG. et al. 2015. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 28:307–17 [Google Scholar]
  62. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. 2015. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7:283ra54 [Google Scholar]
  63. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R. et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–69 [Google Scholar]
  64. McGranahan N, Swanton C. 2015. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27:15–26 [Google Scholar]
  65. McPherson A, Roth A, Laks E, Masud T, Bashashati A. et al. 2016. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48:758–67 [Google Scholar]
  66. Meier B, Cooke SL, Weiss J, Bailly AP, Alexandrov LB. et al. 2014. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 24:1624–36 [Google Scholar]
  67. Merlo LM, Pepper JW, Reid BJ, Maley CC. 2006. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6:924–35 [Google Scholar]
  68. Merlo LM, Shah NA, Li X, Blount PL, Vaughan TL. et al. 2010. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 3:1388–97 [Google Scholar]
  69. Miller CA, White BS, Dees ND, Griffith M, Welch JS. et al. 2014. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLOS Comput. Biol. 10:e1003665 [Google Scholar]
  70. Morris LG, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi AA. et al. 2016. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7:10051–63 [Google Scholar]
  71. Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. 2015. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from The Cancer Genome Atlas. PLOS Med 12:e1001786 [Google Scholar]
  72. Mukherjee S. 2011. The Emperor of All Maladies New York: Scribner
  73. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB. et al. 2008. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–80 [Google Scholar]
  74. Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E. et al. 2015. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat. Commun. 6:8760 [Google Scholar]
  75. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T. et al. 2013. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 97:108–12 [Google Scholar]
  76. Murugaesu N, Wilson GA, Birkbak NJ, Watkins T, McGranahan N. et al. 2015. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov 5:821–31 [Google Scholar]
  77. Navin N, Kendall J, Troge J, Andrews P, Rodgers L. et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94 [Google Scholar]
  78. Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T. et al. 2015. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528:267–71 [Google Scholar]
  79. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD. et al. 2012a. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93 [Google Scholar]
  80. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD. et al. 2012b. The life history of 21 breast cancers. Cell 149:994–1007 [Google Scholar]
  81. Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:23–28 [Google Scholar]
  82. Oakes CC, Claus R, Gu L, Assenov Y, Hullein J. et al. 2014. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov 4:348–61 [Google Scholar]
  83. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC. et al. 2015. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372:601–12 [Google Scholar]
  84. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G. et al. 2013. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–27 [Google Scholar]
  85. Pardoll DM. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12:252–64 [Google Scholar]
  86. Pharoah PD, Song H, Dicks E, Intermaggio MP, Harrington P. et al. 2016. PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations. J. Natl. Cancer Inst. 108:djv347 [Google Scholar]
  87. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D. et al. 2014. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–62 [Google Scholar]
  88. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V. et al. 2015. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–28 [Google Scholar]
  89. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61 [Google Scholar]
  90. Rosenberg SA. 2012. Raising the bar: the curative potential of human cancer immunotherapy. Sci. Transl. Med. 4:127ps8 [Google Scholar]
  91. Ross-Innes CS, Becq J, Warren A, Cheetham RK, Northen H. et al. 2015. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat. Genet. 47:1038–46 [Google Scholar]
  92. Roth A, Khattra J, Yap D, Wan A, Laks E. et al. 2014. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11:396–98 [Google Scholar]
  93. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I. et al. 2013. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493:406–10 [Google Scholar]
  94. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G. et al. 2016. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov 6:147–53 [Google Scholar]
  95. Schreiber RD, Old LJ, Smyth MJ. 2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70 [Google Scholar]
  96. Schuh A, Becq J, Humphray S, Alexa A, Burns A. et al. 2012. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120:4191–96 [Google Scholar]
  97. Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J. et al. 2015. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLOS Med 12:e1001789 [Google Scholar]
  98. Segovia R, Tam AS, Stirling PC. 2015. Dissecting genetic and environmental mutation signatures with model organisms. Trends Genet 31:465–74 [Google Scholar]
  99. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL. et al. 2002. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–25 [Google Scholar]
  100. Shah SP, Roth A, Goya R, Oloumi A, Ha G. et al. 2012. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–99 [Google Scholar]
  101. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E. et al. 2015. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373:1926–36 [Google Scholar]
  102. Shen MM. 2013. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 23:567–69 [Google Scholar]
  103. Shi H, Hugo W, Kong X, Hong A, Koya RC. et al. 2014. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93 [Google Scholar]
  104. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM. et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99 [Google Scholar]
  105. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP. et al. 2015. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47:209–16 [Google Scholar]
  106. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP. et al. 2013. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. PNAS 110:4009–14 [Google Scholar]
  107. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C. et al. 2012. The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–4 [Google Scholar]
  108. Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458:719–24 [Google Scholar]
  109. Swisher EM, Harrell MI, Norquist BM, Walsh T, Brady M. et al. 2016. Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncol 2:370–72 [Google Scholar]
  110. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC. et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366:2443–54 [Google Scholar]
  111. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D. et al. 2010. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17:77–88 [Google Scholar]
  112. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C. et al. 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–11 [Google Scholar]
  113. Van Loo P, Campbell PJ. 2012. ABSOLUTE cancer genomics. Nat. Biotechnol. 30:620–21 [Google Scholar]
  114. Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH. et al. 2010. Allele-specific copy number analysis of tumors. PNAS 107:16910–15 [Google Scholar]
  115. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A. et al. 2011. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29:3085–96 [Google Scholar]
  116. Weston-Bell N, Gibson J, John M, Ennis S, Pfeifer S. et al. 2013. Exome sequencing in tracking clonal evolution in multiple myeloma following therapy. Leukemia 27:1188–91 [Google Scholar]
  117. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. 2016. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48:238–44 [Google Scholar]
  118. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ. et al. 2014. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20:1472–78 [Google Scholar]
  119. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G. et al. 2015. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21:751–59 [Google Scholar]
  120. Yau C, Mouradov D, Jorissen RN, Colella S, Mirza G. et al. 2010. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol 11:R92 [Google Scholar]
  121. Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K. et al. 2009. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res. 15:4622–29 [Google Scholar]
  122. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X. et al. 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–59 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-042516-011348
Loading
/content/journals/10.1146/annurev-cancerbio-042516-011348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error