1932

Abstract

The p53 tumor suppressor has been studied for decades, and still there are many questions left unanswered. In this review, we first describe the current understanding of the wild-type p53 functions that determine cell survival or death, and regulation of the protein, with a particular focus on the negative regulators, the murine double minute family of proteins. We also summarize tissue-, stress-, and age-specific p53 activities and the potential underlying mechanisms. Among all gene alterations identified in human cancers, missense mutations predominate, suggesting an inherent biological advantage. Numerous gain-of-function activities of mutant p53 in different model systems and contexts have been identified. The emerging theme is that mutant p53, which retains a potent transcriptional activation domain, also retains the ability to modify gene transcription, albeit indirectly. Lastly, because mutant p53 stability is necessary for its gain of function, we summarize the mechanisms through which mutant p53 is specifically stabilized. A deeper understanding of the multiple pathways that impinge upon wild-type and mutant p53 activities and how these, in turn, regulate cell behavior will help identify vulnerabilities and therapeutic opportunities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-050216-121926
2017-03-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/1/1/annurev-cancerbio-050216-121926.html?itemId=/content/journals/10.1146/annurev-cancerbio-050216-121926&mimeType=html&fmt=ahah

Literature Cited

  1. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C. et al. 2009. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137:87–98 [Google Scholar]
  2. Alana L, Sese M, Canovas V, Punyal Y, Fernandez Y. et al. 2014. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression. Mol. Cancer 13:74 [Google Scholar]
  3. Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R. et al. 2015. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523:352–56 [Google Scholar]
  4. Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A. et al. 2014. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. eLife 3:e02200 [Google Scholar]
  5. Aylon Y, Oren M. 2016. The paradox of p53: what, how, and why?. See Lozano & Levine 2016 1–14
  6. Basu S, Murphy ME. 2016. p53 family members regulate cancer stem cells. Cell Cycle 15:1403–4 [Google Scholar]
  7. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J. et al. 2012. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLOS Genet 8:e1002629 [Google Scholar]
  8. Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. 2013. Metabolic regulation by p53 family members. Cell Metab 18:617–33 [Google Scholar]
  9. Birch JM, Blair V, Kelsey AM, Evans DG, Harris M. et al. 1998. Cancer phenotype correlates with constitutional TP53 genotype in families with the Li–Fraumeni syndrome. Oncogene 17:1061–68 [Google Scholar]
  10. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L. et al. 2009. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 130:234–39 [Google Scholar]
  11. Botcheva K, McCorkle SR. 2014. Cell context dependent p53 genome-wide binding patterns and enrichment at repeats. PLOS ONE 9:e113492 [Google Scholar]
  12. Bougeard G, Sesboue R, Baert-Desurmont S, Vasseur S, Martin C. et al. 2008. Molecular basis of the Li–Fraumeni syndrome: an update from the French LFS families. J. Med. Genet 45:535–38 [Google Scholar]
  13. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA. et al. 2011. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571–83 [Google Scholar]
  14. Brosh R, Rotter V. 2009. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9:701–13 [Google Scholar]
  15. Brown JP, Wei W, Sedivy JM. 1997. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–34 [Google Scholar]
  16. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–57 [Google Scholar]
  17. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S. et al. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–501 [Google Scholar]
  18. Chang BD, Xuan Y, Broude EV, Zhu H, Schott B. et al. 1999. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808–18 [Google Scholar]
  19. Chavez-Reyes A, Parant JM, Amelse LL, de Oca Luna RM, Korsmeyer SJ, Lozano G. 2003. Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Res 63:8664–69 [Google Scholar]
  20. Cheok CF, Lane DP. 2016. Exploiting the p53 pathway for therapy. See Lozano & Levine 2016 483–96
  21. Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dotsch V. et al. 2016. Structural evolution and dynamics of the p53 proteins. See Lozano & Levine 2016 15–29
  22. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–55 [Google Scholar]
  23. Crook T, Vousden KH. 1992. Properties of p53 mutations detected in primary and secondary cervical cancers suggest mechanisms of metastasis and involvement of environmental carcinogens. EMBO J 11:3935–40 [Google Scholar]
  24. D'Abramo M, Besker N, Desideri A, Levine AJ, Melino G, Chillemi G. 2016. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 35:3272–81 [Google Scholar]
  25. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–84 [Google Scholar]
  26. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK. et al. 1993. Gain of function mutations in p53. Nat. Genet. 4:42–46 [Google Scholar]
  27. Do PM, Varanasi L, Fan S, Li C, Kubacka I. et al. 2012. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 26:830–45 [Google Scholar]
  28. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr. et al. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–21 [Google Scholar]
  29. Eischen CM, Lozano G. 2014. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum. Mutat. 35:728–37 [Google Scholar]
  30. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R. et al. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–25 [Google Scholar]
  31. Fei P, Bernhard EJ, El-Deiry WS. 2002. Tissue-specific induction of p53 targets in vivo. Cancer Res 62:7316–27 [Google Scholar]
  32. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ. 2007. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. PNAS 104:16633–38 [Google Scholar]
  33. Finch RA, Donoviel DB, Potter D, Shi M, Fan A. et al. 2002. Mdmx is a negative regulator of p53 activity in vivo. Cancer Res 62:3221–25 [Google Scholar]
  34. Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ. 1988. Activating mutations for transformation by p53 produce a gene product that forms an hsc70–p53 complex with an altered half-life. Mol. Cell. Biol. 8:531–39 [Google Scholar]
  35. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH. et al. 2012. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–58 [Google Scholar]
  36. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. 2001. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21:1874–87 [Google Scholar]
  37. Gannon HS, Jones SN. 2012. Using mouse models to explore MDM–p53 signaling in development, cell growth, and tumorigenesis. Genes Cancer 3:209–18 [Google Scholar]
  38. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, Criado LM, Klatt P. et al. 2002. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21:6225–35 [Google Scholar]
  39. Hamard PJ, Barthelery N, Hogstad B, Mungamuri SK, Tonnessen CA. et al. 2013. The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev 27:1868–85 [Google Scholar]
  40. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–16 [Google Scholar]
  41. Hsiao M, Low J, Dorn E, Ku D, Pattengale P. et al. 1994. Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am. J. Pathol. 145:702–14 [Google Scholar]
  42. Hu W, Feng Z, Teresky AK, Levine AJ. 2007. p53 regulates maternal reproduction through LIF. Nature 450:721–24 [Google Scholar]
  43. Huang L, Yan Z, Liao X, Li Y, Yang J. et al. 2011. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. PNAS 108:12001–6 [Google Scholar]
  44. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S. et al. 1994. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4:1–7 [Google Scholar]
  45. Jackson JG, Pant V, Li Q, Chang LL, Quintas-Cardama A. et al. 2012. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21:793–806 [Google Scholar]
  46. Jackson JG, Post SM, Lozano G. 2011. Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. J. Pathol. 223:127–36 [Google Scholar]
  47. Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI. et al. 2016. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–30 [Google Scholar]
  48. Jiang L, Kon N, Li T, Wang SJ, Su T. et al. 2015. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62 [Google Scholar]
  49. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. 1998. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. PNAS 95:15608–12 [Google Scholar]
  50. Jones SN, Roe AE, Donehower LA, Bradley A. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–8 [Google Scholar]
  51. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B. et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:333–39 [Google Scholar]
  52. Kapoor M, Lozano G. 1998. Functional activation of p53 via phosphorylation following DNA damage by UV but not γ radiation. PNAS 95:2834–37 [Google Scholar]
  53. Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL. et al. 2013. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 27:1016–31 [Google Scholar]
  54. Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T. et al. 2015. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat. Commun. 6:7389 [Google Scholar]
  55. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J. et al. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–53 [Google Scholar]
  56. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA. et al. 2004. Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119:861–72 [Google Scholar]
  57. Lee Y, Chong MJ, McKinnon PJ. 2001. Ataxia telangiectasia mutated–dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J. Neurosci. 21:6687–93 [Google Scholar]
  58. Li D, Marchenko ND, Moll UM. 2011a. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6–Hsp90 chaperone axis. Cell Death Differ 18:1904–13 [Google Scholar]
  59. Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T. et al. 2011b. Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol. Cancer Res. 9:577–88 [Google Scholar]
  60. Li D, Yallowitz A, Ozog L, Marchenko N. 2014. A gain-of-function mutant p53–HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis 5:e1194 [Google Scholar]
  61. Li T, Kon N, Jiang L, Tan M, Ludwig T. et al. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269–83 [Google Scholar]
  62. Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B. et al. 2000. High metastatic potential in mice inheriting a targeted p53 missense mutation. PNAS 97:4174–79 [Google Scholar]
  63. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A. et al. 2004. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat. Genet. 36:63–68 [Google Scholar]
  64. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–49 [Google Scholar]
  65. Lozano G, Levine AJ. 2016. The p53 Protein: From Cell Regulation to Cancer Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press
  66. Lu H, Taya Y, Ikeda M, Levine AJ. 1998. Ultraviolet radiation, but not γ radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. PNAS 95:6399–402 [Google Scholar]
  67. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K. et al. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–46 [Google Scholar]
  68. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L. et al. 2010. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–40 [Google Scholar]
  69. Maier B, Gluba W, Bernier B, Turner T, Mohammad K. et al. 2004. Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–19 [Google Scholar]
  70. Maki CG, Howley PM. 1997. Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol. Cell. Biol. 17:355–63 [Google Scholar]
  71. Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M. 2001. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 61:6234–38 [Google Scholar]
  72. Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M. et al. 2002. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell. Biol. 22:5527–38 [Google Scholar]
  73. Montes de Oca Luna R, Wagner DS, Lozano G. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–6 [Google Scholar]
  74. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH. et al. 2009. Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–41 [Google Scholar]
  75. Nagata Y, Anan T, Yoshida T, Mizukami T, Taya Y. et al. 1999. The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association. Oncogene 18:6037–49 [Google Scholar]
  76. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA. et al. 2004. Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119:847–60 [Google Scholar]
  77. Olivier M, Hollstein M, Hainaut P. 2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2:a001008 [Google Scholar]
  78. Oren M, Rotter V. 2010. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2:a001107 [Google Scholar]
  79. Pant V, Lozano G. 2014. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev 28:1739–51 [Google Scholar]
  80. Pant V, Xiong S, Chau G, Tsai K, Shetty G, Lozano G. 2016. Distinct downstream targets manifest p53-dependent pathologies in mice. Oncogene In press. doi: 10.1038/onc.2016.111
  81. Pant V, Xiong S, Iwakuma T, Quintas-Cardama A, Lozano G. 2011. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. PNAS 108:11995–2000 [Google Scholar]
  82. Pant V, Xiong S, Jackson JG, Post SM, Abbas HA. et al. 2013. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev 27:1857–67 [Google Scholar]
  83. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V. et al. 2001. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat. Genet 29:92–95 [Google Scholar]
  84. Pehar M, Ko MH, Li M, Scrable H, Puglielli L. 2014. P44, the ‘longevity-assurance’ isoform of P53, regulates tau phosphorylation and is activated in an age-dependent fashion. Aging Cell 13:449–56 [Google Scholar]
  85. Pehar M, O'Riordan KJ, Burns-Cusato M, Andrzejewski ME, del Alcazar CG. et al. 2010. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell 9:174–90 [Google Scholar]
  86. Peng Y, Chen L, Li C, Lu W, Chen J. 2001. Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J. Biol. Chem. 276:40583–90 [Google Scholar]
  87. Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W. et al. 2015. Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells. Genes Dev 29:1298–315 [Google Scholar]
  88. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP. et al. 2010. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–39 [Google Scholar]
  89. Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M. et al. 2004. Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64:7447–54 [Google Scholar]
  90. Shan B, Li DW, Bruschweiler-Li L, Bruschweiler R. 2012. Competitive binding between dynamic p53 transactivation subdomains to human MDM2 protein: implications for regulating the p53·MDM2/MDMX interaction. J. Biol. Chem. 287:30376–84 [Google Scholar]
  91. Sharp DA, Kratowicz SA, Sank MJ, George DL. 1999. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274:38189–96 [Google Scholar]
  92. Shiohara M, El-Deiry WS, Wada M, Nakamaki T, Takeuchi S. et al. 1994. Absence of WAF1 mutations in a variety of human malignancies. Blood 84:3781–84 [Google Scholar]
  93. Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT. et al. 1997. Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 43:34–42 [Google Scholar]
  94. Simeonova I, Jaber S, Draskovic I, Bardot B, Fang M. et al. 2013. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep 3:2046–58 [Google Scholar]
  95. Soussi T, Lozano G. 2005. p53 mutation heterogeneity in cancer. Biochem. Biophys. Res. Commun. 331:834–42 [Google Scholar]
  96. Stambolsky P, Tabach Y, Fontemaggi G, Weisz L, Maor-Aloni R. et al. 2010. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17:273–85 [Google Scholar]
  97. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I. et al. 1992. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79 [Google Scholar]
  98. Suh YA, Post SM, Elizondo-Fraire AC, Maccio DR, Jackson JG. et al. 2011. Multiple stress signals activate mutant p53 in vivo. Cancer Res 71:7168–75 [Google Scholar]
  99. Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L. et al. 2012. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11:694–703 [Google Scholar]
  100. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M. 1999. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447:5–9 [Google Scholar]
  101. Terzian T, Lozano G. 2012. Mutant p53 driven mutagenesis. p53 in the Clinics P Hainaut, M Olivier, KG Wiman 77–93 New York: Springer-Verlag [Google Scholar]
  102. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M. et al. 2008. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–44 [Google Scholar]
  103. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ. et al. 2010. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–46 [Google Scholar]
  104. Tinkum KL, Marpegan L, White LS, Sun J, Herzog ED. et al. 2011. Bioluminescence imaging captures the expression and dynamics of endogenous p21 promoter activity in living mice and intact cells. Mol. Cell. Biol. 31:3759–72 [Google Scholar]
  105. Tollini LA, Jin A, Park J, Zhang Y. 2014. Regulation of p53 by Mdm2 E3 ligase function is dispensable in embryogenesis and development, but essential in response to DNA damage. Cancer Cell 26:235–47 [Google Scholar]
  106. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N. et al. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53 [Google Scholar]
  107. Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A. et al. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 3:1339–45 [Google Scholar]
  108. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J. et al. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–65 [Google Scholar]
  109. Vijayakumaran R, Tan KH, Miranda PJ, Haupt S, Haupt Y. 2015. Regulation of mutant p53 protein expression. Front. Oncol. 5:284 [Google Scholar]
  110. Vogelstein B, Kinzler KW. 1992. p53 function and dysfunction. Cell 70:523–26 [Google Scholar]
  111. Vousden KH, Prives C. 2009. Blinded by the light: the growing complexity of p53. Cell 137:413–31 [Google Scholar]
  112. Waldman T, Kinzler KW, Vogelstein B. 1995. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187–90 [Google Scholar]
  113. Wang S, Zhao Y, Aguilar A, Bernard D, Yang C-Y. 2016. Targeting the MDM2–p53 protein–protein interaction for new cancer therapy: progress and challenges. See Lozano & Levine 2016 395–404
  114. Wang Y, Mandelkow E. 2016. Tau in physiology and pathology. Nat. Rev. Neurosci. 17:5–21 [Google Scholar]
  115. Wasylishen A, Lozano G. 2016. Attenuating the p53 pathway in human cancers: many means to the same end. See Lozano & Levine 2016 331–50
  116. Weissmueller S, Manchado E, Saborowski M, Morris JPT, Wagenblast E. et al. 2014. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157:382–94 [Google Scholar]
  117. Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N. et al. 2004. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64:8318–27 [Google Scholar]
  118. White E. 2016. Autophagy and p53. Cold Spring Harb. Perspect. Med. 6:a026120 [Google Scholar]
  119. Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH. 1998. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 18:1517–24 [Google Scholar]
  120. Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A. 2012. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLOS ONE 7:e51426 [Google Scholar]
  121. Xiong S, Pant V, Suh YA, Van Pelt CS, Wang Y. et al. 2010. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res 70:7148–54 [Google Scholar]
  122. Xiong S, Tu H, Kollareddy M, Pant V, Li Q. et al. 2014. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. PNAS 111:11145–50 [Google Scholar]
  123. Xue W, Zender L, Miething C, Dickins RA, Hernando E. et al. 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–60 [Google Scholar]
  124. Yue X, Zhao Y, Liu J, Zhang C, Yu H. et al. 2015. BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function. eLife 4:e08401 [Google Scholar]
  125. Zalcenstein A, Stambolsky P, Weisz L, Muller M, Wallach D. et al. 2003. Mutant p53 gain of function: repression of CD95 (Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22:5667–76 [Google Scholar]
  126. Zerdoumi Y, Aury-Landas J, Bonaiti-Pellie C, Derambure C, Sesboue R. et al. 2013. Drastic effect of germline TP53 missense mutations in Li–Fraumeni patients. Hum. Mutat. 34:453–61 [Google Scholar]
  127. Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D. et al. 2013. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 155:410–22 [Google Scholar]
  128. Zhang Y, Xiong S, Li Q, Hu S, Tashakori M. et al. 2014. Tissue-specific and age-dependent effects of global Mdm2 loss. J. Pathol. 233:380–91 [Google Scholar]
  129. Zhao Y, Zhang C, Yue X, Li X, Liu J. et al. 2015. Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53. Cell Death Differ 22:1824–36 [Google Scholar]
  130. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M. et al. 2015. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525:206–11 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-050216-121926
Loading
/content/journals/10.1146/annurev-cancerbio-050216-121926
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error