1932

Abstract

Cancer is a disease involving the abnormal accumulation of cells resulting from an imbalance of proliferation and programmed cell death. This review focuses on the mitochondrial apoptotic pathway, a mechanism of programmed cell death with particular relevance to cancer. Starting over 30 years ago, basic findings in model organisms have been combined with findings in clinical cytogenetics to uncover a family of proteins, the BCL-2 family, that regulates the commitment to apoptosis by controlling permeabilization of the mitochondrial outer membrane. Cancer cells are generally more poised to engage the apoptotic machinery than normal cells are, a fact that likely underlies much of the therapeutic index exploited by many types of cancer chemotherapy. More recently, small molecules directly targeting the antiapoptotic proteins of the BCL-2 family have entered the clinic for testing in cancer. One therapeutic, venetoclax (ABT-199), has recently gained FDA approval in a landmark achievement for the apoptosis community. Important future efforts will be directed at building combinations of agents that selectively induce apoptosis in cancer cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-050216-121933
2017-03-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/1/1/annurev-cancerbio-050216-121933.html?itemId=/content/journals/10.1146/annurev-cancerbio-050216-121933&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson MA, Deng J, Seymour JF, Tam C, Kim SY. et al. 2016. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53 independent mechanism. Blood 127:3215–24 [Google Scholar]
  2. Anderson NM, Harrold I, Mansour MR, Sanda T, McKeown M. et al. 2014. BCL2-specific inhibitor ABT-199 synergizes strongly with cytarabine against the early immature LOUCY cell line but not more-differentiated T-ALL cell lines. Leukemia 28:1145–48 [Google Scholar]
  3. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. 2000. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345:Pt. 2271–78 [Google Scholar]
  4. Antonsson B, Montessuit S, Sanchez B, Martinou JC. 2001. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 276:11615–23 [Google Scholar]
  5. Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I. et al. 2010. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70:855–58 [Google Scholar]
  6. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW. et al. 1985. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906 [Google Scholar]
  7. Bender CE, Fitzgerald P, Tait SW, Llambi F, McStay GP. et al. 2012. Mitochondrial pathway of apoptosis is ancestral in metazoans. PNAS 109:4904–9 [Google Scholar]
  8. Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M. et al. 2015. MLL-rearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199. Cell Rep 13:2715–27 [Google Scholar]
  9. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. 1992. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552–44 [Google Scholar]
  10. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T. et al. 1993. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608 [Google Scholar]
  11. Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT. et al. 2014. Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol. Cell 55:938–46 [Google Scholar]
  12. Carpio MA, Michaud M, Zhou W, Fisher JK, Walensky LD, Katz SG. 2015. BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. PNAS 112:7201–6 [Google Scholar]
  13. Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F. et al. 2004. The first α-helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol. Cell 16:807–18 [Google Scholar]
  14. Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H. et al. 2004. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23:4362–70 [Google Scholar]
  15. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S. et al. 2006. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–65 [Google Scholar]
  16. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI. et al. 2005. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17:393–403 [Google Scholar]
  17. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW. et al. 2001. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8:705–11 [Google Scholar]
  18. Chiou SK, Rao L, White E. 1994. Bcl-2 blocks p53-dependent apoptosis. Mol. Cell. Biol. 14:2556–63 [Google Scholar]
  19. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. 2005. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309:1732–35 [Google Scholar]
  20. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD. et al. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–14 [Google Scholar]
  21. Chittenden T, Harrington EA, O'Connor R, Flemington C, Lutz RJ. et al. 1995. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–36 [Google Scholar]
  22. Choi SS, Park IC, Yun JW, Sung YC, Hong SI, Shin HS. 1995. A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene 11:1693–98 [Google Scholar]
  23. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M. et al. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS 102:13944–49 [Google Scholar]
  24. Cleary ML, Sklar J. 1985. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. PNAS 82:7439–43 [Google Scholar]
  25. Cuconati A, Mukherjee C, Perez D, White E. 2003. DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev. 17:2922–32 [Google Scholar]
  26. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C. et al. 2013. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152:519–31 [Google Scholar]
  27. Dai H, Pang YP, Ramirez-Alvarado M, Kaufmann SH. 2014. Evaluation of the BH3-only protein Puma as a direct Bak activator. J. Biol. Chem. 289:89–99 [Google Scholar]
  28. Davids MS, Deng J, Wiestner A, Lannutti BJ, Wang L. et al. 2012. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood 120:3501–9 [Google Scholar]
  29. Debbas M, White E. 1993. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7:546–54 [Google Scholar]
  30. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A. 2007. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Investig. 117:112–21 [Google Scholar]
  31. Del Gaizo Moore V, Schlis KD, Sallan SE, Armstrong SA, Letai A. 2008. BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 111:2300–9 [Google Scholar]
  32. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A. 2007. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12:171–85 [Google Scholar]
  33. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S. et al. 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144:891–901 [Google Scholar]
  34. DiNardo C, Pollyea D, Pratz K, Thirman MJ, Letai A. et al. 2015. A phase 1b study of venetoclax (ABT-199/GDC-0199) in combination with decitabine or azacitidine in treatment-naive patients with acute mye-logenous leukemia who are ≥ to 65 years and not eligible for standard induction therapy. Blood J. 126:327 [Google Scholar]
  35. Ding J, Mooers BH, Zhang Z, Kale J, Falcone D. et al. 2014. After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J. Biol. Chem. 289:11873–96 [Google Scholar]
  36. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM. et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–72 [Google Scholar]
  37. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T. 2011. BH3 domains other than Bim and Bid can directly activate Bax/Bak. J. Biol. Chem. 286:491–501 [Google Scholar]
  38. Einsele-Scholz S, Malmsheimer S, Bertram K, Stehle D, Johanning J. et al. 2016. Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak. J. Cell Sci. 129:2213–23 [Google Scholar]
  39. Ekert PG, Read SH, Silke J, Marsden VS, Kaufmann H. et al. 2004. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J. Cell Biol. 165:835–42 [Google Scholar]
  40. Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ. et al. 2005. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–77 [Google Scholar]
  41. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C. et al. 1998. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143:217–24 [Google Scholar]
  42. Eskes R, Desagher S, Antonsson B, Martinou JC. 2000. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20:929–35 [Google Scholar]
  43. Etchin J, Montero J, Berezovskaya A, Le BT, Kentsis A. et al. 2016. Activity of a selective inhibitor of nuclear export, selinexor (KPT-330), against AML-initiating cells engrafted into immunosuppressed NSG mice. Leukemia 30:190–99 [Google Scholar]
  44. Fanidi A, Harrington EA, Evan GI. 1992. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359:554–56 [Google Scholar]
  45. Fernandez-Marrero Y, Ke F, Echeverry N, Bouillet P, Bachmann D. et al. 2016. Is BOK required for apoptosis induced by endoplasmic reticulum stress?. PNAS 113:E492–93 [Google Scholar]
  46. Fukuhara S, Rowley JD, Variakojis D, Golomb HM. 1979. Chromosome abnormalities in poorly differentiated lymphocytic lymphoma. Cancer Res 39:3119–28 [Google Scholar]
  47. Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D. et al. 2011. Phase I study of navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol. 29:909–16 [Google Scholar]
  48. Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG. et al. 1996. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13:665–75 [Google Scholar]
  49. Green DR, Kroemer G. 2009. Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–30 [Google Scholar]
  50. Green DR, Llambi F. 2015. Cell death signaling. Cold Spring Harb. Perspect. Biol. 7:a006080 [Google Scholar]
  51. Han J, Sabbatini P, White E. 1996. Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19K. Mol. Cell. Biol. 16:5857–64 [Google Scholar]
  52. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70 [Google Scholar]
  53. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  54. Hengartner MO, Horvitz HR. 1994a. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369:318–20 [Google Scholar]
  55. Hengartner MO, Horvitz HR. 1994b. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2.. Cell 76:665–76 [Google Scholar]
  56. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. 1990. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–36 [Google Scholar]
  57. Horvitz HR, Sternberg PW, Greenwald IS, Fixsen W, Ellis HM. 1983. Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48:Pt. 2453–63 [Google Scholar]
  58. Huang DC, Strasser A. 2000. BH3-only proteins—essential initiators of apoptotic cell death. Cell 103:839–42 [Google Scholar]
  59. Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E. et al. 2015. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57:860–72 [Google Scholar]
  60. Imreh G, Norberg HV, Imreh S, Zhivotovsky B. 2016. Chromosomal breaks during mitotic catastrophe trigger γH2AX-ATM-p53-mediated apoptosis. J. Cell Sci. 129:1950 [Google Scholar]
  61. Janssen K, Pohlmann S, Janicke RU, Schulze-Osthoff K, Fischer U. 2007. Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment. Blood 110:3662–72 [Google Scholar]
  62. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J. et al. 2003. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–28 [Google Scholar]
  63. Ke F, Bouillet P, Kaufmann T, Strasser A, Kerr J, Voss AK. 2013. Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis 4:e650 [Google Scholar]
  64. Kerr JF, Wyllie AH, Currie AR. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–57 [Google Scholar]
  65. Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP. et al. 2006. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol. 8:1348–58 [Google Scholar]
  66. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR. et al. 2009. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36:487–99 [Google Scholar]
  67. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–36 [Google Scholar]
  68. Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T. 2011. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 8:244–50 [Google Scholar]
  69. Komlodi-Pasztor E, Sackett DL, Fojo AT. 2012. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin. Cancer Res. 18:51–63 [Google Scholar]
  70. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP. et al. 2006. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10:375–88 [Google Scholar]
  71. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L. et al. 2016. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. In press
  72. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–73 [Google Scholar]
  73. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. 1993. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. PNAS 90:3516–20 [Google Scholar]
  74. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA. et al. 2005. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17:525–35 [Google Scholar]
  75. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M. et al. 2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–42 [Google Scholar]
  76. Letai A. 2008. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat. Rev. Cancer 8:121–32 [Google Scholar]
  77. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. 2002. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–92 [Google Scholar]
  78. Lin EY, Orlofsky A, Wang HG, Reed JC, Prystowsky MB. 1996. A1, a Bcl-2 family member, prolongs cell survival and permits myeloid differentiation. Blood 87:983–92 [Google Scholar]
  79. Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC. et al. 2000. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6:1389–99 [Google Scholar]
  80. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–57 [Google Scholar]
  81. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J. et al. 2011. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44:517–31 [Google Scholar]
  82. Llambi F, Wang YM, Victor B, Yang M, Schneider DM. et al. 2016. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell 165:421–33 [Google Scholar]
  83. Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C. et al. 2008. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–84 [Google Scholar]
  84. Lowe SW, Ruley HE, Jacks T, Housman DE. 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–67 [Google Scholar]
  85. Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L. et al. 2010. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin. Immunol. 22:113–24 [Google Scholar]
  86. Marsden VS, Kaufmann T, O'Reilly LA, Adams JM, Strasser A. 2006. Apaf-1 and caspase-9 are required for cytokine withdrawal-induced apoptosis of mast cells but dispensable for their functional and clonogenic death. Blood 107:1872–77 [Google Scholar]
  87. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA. et al. 2007. Programmed anuclear cell death delimits platelet life span. Cell 128:1173–86 [Google Scholar]
  88. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U. et al. 1989. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57:79–88 [Google Scholar]
  89. McDonnell TJ, Korsmeyer SJ. 1991. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349:254–56 [Google Scholar]
  90. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y. et al. 2011. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–77 [Google Scholar]
  91. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T. et al. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11:577–90 [Google Scholar]
  92. Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P. 2003. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J. Biol. Chem. 278:5367–76 [Google Scholar]
  93. Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J. et al. 2015. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 160:977–89 [Google Scholar]
  94. Nakano K, Vousden KH. 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7:683–94 [Google Scholar]
  95. Ni Chonghaile T, Letai A. 2008. Mimicking the BH3 domain to kill cancer cells. Oncogene 27:Suppl. 1S149–57 [Google Scholar]
  96. Ni Chonghaile T, Roderick JE, Glenfield C, Ryan J, Sallan SE. et al. 2014. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov 4:1074–87 [Google Scholar]
  97. Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A. et al. 2011. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334:1129–33 [Google Scholar]
  98. O'Brien S, Claxton DF, Crump M, Faderl S, Kipps T. et al. 2009. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 113:299–305 [Google Scholar]
  99. O'Brien S, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR. 2005. Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J. Clin. Oncol. 23:7697–702 [Google Scholar]
  100. O'Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki A. et al. 2007. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. 25:1114–20 [Google Scholar]
  101. O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM. et al. 1998. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384–95 [Google Scholar]
  102. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T. et al. 2000. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–58 [Google Scholar]
  103. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ. et al. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–81 [Google Scholar]
  104. Oltvai ZN, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–19 [Google Scholar]
  105. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L. et al. 2014. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov 4:362–75 [Google Scholar]
  106. Parikh SA, Kantarjian H, Schimmer A, Walsh W, Asatiani E. et al. 2010. Phase II study of obatoclax mesylate (GX15-070), a small-molecule BCL-2 family antagonist, for patients with myelofibrosis. Clin. Lymphoma Myeloma Leuk. 10:285–89 [Google Scholar]
  107. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD. et al. 2016. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374:311–22 [Google Scholar]
  108. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ. et al. 2012. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30:488–96 [Google Scholar]
  109. Rowley JD. 1973. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa banding. Nature 243:290–91 [Google Scholar]
  110. Rowley JD. 1988. Chromosome studies in the non-Hodgkin's lymphomas: the role of the 14;18 translocation. J. Clin. Oncol. 6:919–25 [Google Scholar]
  111. Ryan JA, Brunelle JK, Letai A. 2010. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. PNAS 107:12895–900 [Google Scholar]
  112. Ryan JA, Letai A. 2013. BH3 profiling in whole cells by fluorimeter or FACS. Methods 61:156–64 [Google Scholar]
  113. Ryan JA, Montero J, Rocco J, Letai A. 2016. iBH3: simple, fixable BH3 profiling to determine apoptotic priming in primary tissue by flow cytometry. Biol. Chem. 397:671–78 [Google Scholar]
  114. Saito M, Korsmeyer SJ, Schlesinger PH. 2000. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat. Cell Biol. 2:553–55 [Google Scholar]
  115. Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J. et al. 2013. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell 51:751–65 [Google Scholar]
  116. Schulman JJ, Wright FA, Han X, Zluhan EJ, Szczesniak LM, Wojcikiewicz RJ. 2016. The stability and expression level of Bok are governed by binding to inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 291:11820–28 [Google Scholar]
  117. Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH. et al. 1995. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. PNAS 92:7834–38 [Google Scholar]
  118. Shangary S, Johnson DE. 2002. Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-xL and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 41:9485–95 [Google Scholar]
  119. Skwarska A, Augustin E, Konopa J. 2007. Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311. Apoptosis 12:2245–57 [Google Scholar]
  120. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND. et al. 2013. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19:202–8 [Google Scholar]
  121. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF. et al. 2016. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17:768–78 [Google Scholar]
  122. Strasser A, Harris AW, Bath ML, Cory S. 1990. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348:331–33 [Google Scholar]
  123. Sulston JE. 1976. Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 275:287–97 [Google Scholar]
  124. Suryani S, Carol H, Ni Chonghaile T, Frismantas V, Sarmah C. et al. 2014. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 20:4520–31 [Google Scholar]
  125. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. 2013. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341:403–6 [Google Scholar]
  126. Suzuki M, Youle RJ, Tjandra N. 2000. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–54 [Google Scholar]
  127. Toda S, Hanayama R, Nagata S. 2012. Two-step engulfment of apoptotic cells. Mol. Cell. Biol. 32:118–25 [Google Scholar]
  128. Touzeau C, Ryan J, Guerriero J, Moreau P, Ni Chonghaile T. et al. 2016. BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia 30:761–64 [Google Scholar]
  129. Townsend EC, Murakami MA, Christodoulou A, Christie AL, Koster J. et al. 2016. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell 29:574–86 [Google Scholar]
  130. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J. et al. 2008. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–28 [Google Scholar]
  131. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. 1985. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–43 [Google Scholar]
  132. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. 1984. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–99 [Google Scholar]
  133. Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A. et al. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 3:1339–45 [Google Scholar]
  134. Varadarajan S, Vogler M, Butterworth M, Dinsdale D, Walensky LD, Cohen GM. 2013. Evaluation and critical assessment of putative MCL-1 inhibitors. Cell Death Differ 20:1475–84 [Google Scholar]
  135. Vaux DL, Cory S, Adams JM. 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–42 [Google Scholar]
  136. Vaux DL, Weissman IL, Kim SK. 1992. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258:1955–57 [Google Scholar]
  137. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G. et al. 2003. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302:1036–38 [Google Scholar]
  138. Vo TT, Ryan J, Carrasco R, Neuberg D, Rossi DJ. et al. 2012. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151:344–55 [Google Scholar]
  139. Vogler M, Dinsdale D, Dyer MJ, Cohen GM. 2009. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16:360–67 [Google Scholar]
  140. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V. et al. 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–30 [Google Scholar]
  141. Willis SN, Chen L, Dewson G, Wei A, Naik E. et al. 2005. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–305 [Google Scholar]
  142. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L. et al. 2007. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–59 [Google Scholar]
  143. Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF. et al. 2010. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–59 [Google Scholar]
  144. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. 1995. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–91 [Google Scholar]
  145. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM. et al. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–32 [Google Scholar]
  146. Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM. et al. 2007. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 14:943–51 [Google Scholar]
  147. Zhang Z, Subramaniam S, Kale J, Liao C, Huang B. et al. 2016. BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J 35:208–36 [Google Scholar]
  148. Zhou P, Qian L, Kozopas KM, Craig RW. 1997. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89:630–43 [Google Scholar]
  149. Zhou W, Yuan J. 2014. Necroptosis in health and diseases. Semin. Cell Dev. Biol. 35:14–23 [Google Scholar]
  150. Zou H, Li Y, Liu X, Wang X. 1999. An APAF-1·cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274:11549–56 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-050216-121933
Loading
/content/journals/10.1146/annurev-cancerbio-050216-121933
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error