1932

Abstract

Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-013325
2014-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-100913-013325.html?itemId=/content/journals/10.1146/annurev-cellbio-100913-013325&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson JL. 1989. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21:61–99 [Google Scholar]
  2. Asherie N, Lomakin A, Benedek GB. 1996. Phase diagram of colloidal solutions. Phys. Rev. Lett. 77:4832–35 [Google Scholar]
  3. Binder K, Stauffer D. 1976. Statistical theory of nucleation, condensation and coagulation. Adv. Phys. 25:343–96 [Google Scholar]
  4. Boisvert F-M, van Koningsbruggen S, Navascues J, Lamond AI. 2007. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8:574–85 [Google Scholar]
  5. Brangwynne CP. 2013. Phase transitions and size scaling of membrane-less organelles. J. Cell Biol. 203:875–81 [Google Scholar]
  6. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C. et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32 [Google Scholar]
  7. Brangwynne CP, Mitchison TJ, Hyman AA. 2011. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 108:4334–39 [Google Scholar]
  8. Bray AJ. 1994. Theory of phase-ordering kinetics. Adv. Phys. 43:357–459 [Google Scholar]
  9. Brundin P, Melki R, Kopito R. 2010. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11:301–7 [Google Scholar]
  10. Buchan JR, Parker R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36:932–41 [Google Scholar]
  11. Chaikin PM, Lubensky TC. 1995. Principles of Condensed Matter Physics New York: Cambridge Univ. Press699
  12. Decker CJ, Parker R. 2012. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4:a012286 [Google Scholar]
  13. Decker M, Jaensch S, Pozniakovsky A, Zinke A, O'Connell KF. et al. 2011. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr. Biol. 21:1259–67 [Google Scholar]
  14. de Gennes PG. 1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press324
  15. Doi M. 2013. Soft Matter Physics New York: Oxford Univ. Press257
  16. Doyle SM, Genest O, Wickner S. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nat. Rev. Mol. Cell Biol. 14:617–29 [Google Scholar]
  17. Durbin SD, Feher G. 1996. Protein crystallization. Annu. Rev. Phys. Chem. 47:171–204 [Google Scholar]
  18. Exner HE, Lukas HL. 1971. The experimental verification of the stationary Wagner-Lifshitz distribution of coarse particles. Metallography 4:325–38 [Google Scholar]
  19. Feric M, Brangwynne CP. 2013. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15:1253–59 [Google Scholar]
  20. Frey S, Gorlich D. 2007. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130:512–23 [Google Scholar]
  21. Friedman JR, Nunnari J. 2014. Mitochondrial form and function. Nature 505:335–43 [Google Scholar]
  22. Fritzsche M, Lewalle A, Duke T, Kruse K, Charras G. 2013. Analysis of turnover dynamics of the submembranous actin cortex. Mol. Biol. Cell 24:757–67 [Google Scholar]
  23. Fusco D, Charbonneau P. 2013. Crystallization of asymmetric patchy models for globular proteins in solution. Phys. Rev. E 88:012721 [Google Scholar]
  24. Gall JG. 2003. The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 4:975–80 [Google Scholar]
  25. Gatlin JC, Matov A, Danuser G, Mitchison TJ, Salmon ED. 2010. Directly probing the mechanical properties of the spindle and its matrix. J. Cell Biol. 188:481–89 [Google Scholar]
  26. George A, Wilson WW. 1994. Predicting protein crystallization from a dilute solution property. Acta Crystallogr. D 50:361–65 [Google Scholar]
  27. Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF. 1997. Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79:3286–89 [Google Scholar]
  28. Goehring NW, Hyman AA. 2012. Organelle control through limiting pools of cytoplasmic components. Curr. Biol. 22:9R330–39 [Google Scholar]
  29. Gönczy P. 2012. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13:425–35 [Google Scholar]
  30. Gray GW, Kelly SM. 1999. Liquid crystals for twisted nematic display devices. J. Mater. Chem. 9:2037–50 [Google Scholar]
  31. Grob A, Colleran C, McStay B. 2014. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev. 28:220–30 [Google Scholar]
  32. Haas C, Drenth J. 1999. Understanding protein crystallization on the basis of the phase diagram. J. Cryst. Growth 196:388–94 [Google Scholar]
  33. Han TW, Kato M, Xie S, Wu LC, Mirzaei H. et al. 2012. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–79 [Google Scholar]
  34. Harvard Univ 2012. Food and Science 2013 Lecture Series Cambridge, MA: Harvard Univ.
  35. Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P. et al. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–25 [Google Scholar]
  36. Hoege C, Hyman AA. 2013. Principles of PAR polarity in Caenorhabditis elegans embryos. Nat. Rev. Mol. Cell Biol 14:315–22 [Google Scholar]
  37. Huang JS, Vernon S, Wong NC. 1974. Homogeneous nucleation in a critical binary fluid mixture. Phys. Rev. Lett. 33:140–43 [Google Scholar]
  38. Hubstenberger A, Noble SL, Cameron C, Evans TC. 2013. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev. Cell 27:161–73 [Google Scholar]
  39. Humphrey D, Duggan C, Saha D, Smith D, Kas J. 2002. Active fluidization of polymer networks through molecular motors. Nature 416:413–16 [Google Scholar]
  40. Hyman AA, Brangwynne CP. 2011. Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev. Cell 21:14–16 [Google Scholar]
  41. Hyman AA, Simons K. 2012. Cell biology. Beyond oil and water—phase transitions in cells. Science 337:1047–49 [Google Scholar]
  42. Hyman T, Brangwynne C. 2012. In retrospect: the origin of life. Nature 491:524–25 [Google Scholar]
  43. Inoue S. 2008. Microtubule dynamics in cell division: exploring living cells with polarized light microscopy. Annu. Rev. Cell Dev. Biol. 24:1–28 [Google Scholar]
  44. Itabashi T, Takagi J, Shimamoto Y, Onoe H, Kuwana K. et al. 2009. Probing the mechanical architecture of the vertebrate meiotic spindle. Nat. Methods 6:167–72 [Google Scholar]
  45. Janmey PA, Hvidt S, Kas J, Lerche D, Maggs A. et al. 1994. The mechanical properties of actin gels. Elastic modulus and filament motions. J. Biol. Chem. 269:32503–13 [Google Scholar]
  46. Jonas S, Izaurralde E. 2013. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev. 27:2628–41 [Google Scholar]
  47. Kato M, Han TW, Xie S, Shi K, Du X. et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–67 [Google Scholar]
  48. Kodger TE, Sprakel J. 2013. Thermosensitive molecular, colloidal, and bulk interactions using a simple surfactant. Adv. Funct. Mater. 23:4475–82 [Google Scholar]
  49. Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K. 2004. Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92:078101 [Google Scholar]
  50. Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K. 2005. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E Soft Matter 16:5–16 [Google Scholar]
  51. Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P. et al. 2013. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:1049–60 [Google Scholar]
  52. Larson RG. 1999. The Structure and Rheology of Complex Fluids New York: Oxford Univ. Press663
  53. Lazcano A. 2010. Historical development of origins research. Cold Spring Harb. Perspect. Biol. 2:11a002089 [Google Scholar]
  54. Lee CF, Brangwynne CP, Gharakhani J, Hyman AA, Jülicher F. 2013. Spatial organization of the cell cytoplasm by position-dependent phase separation. Phys. Rev. Lett. 111:088101 [Google Scholar]
  55. Li P, Banjade S, Cheng HC, Kim S, Chen B. et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40 [Google Scholar]
  56. Li YR, King OD, Shorter J, Gitler AD. 2013. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201:361–72 [Google Scholar]
  57. Lifshitz IM, Slyozov VV. 1961. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19:35–50 [Google Scholar]
  58. Lin K-h, Crocker JC, Prasad V, Schofield A, Weitz DA. et al. 2000. Entropically driven colloidal crystallization on patterned surfaces. Phys. Rev. Lett. 85:1770–73 [Google Scholar]
  59. Luzio JP, Pryor PR, Bright NA. 2007. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol. 8:622–32 [Google Scholar]
  60. Lyklema J. 2005. Fundamentals of Interface and Colloid Science. 5 Amsterdam: Elsevier
  61. MacKintosh FC, Kas J, Janmey PA. 1995. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75:4425–28 [Google Scholar]
  62. Mahen R, Venkitaraman AR. 2012. Pattern formation in centrosome assembly. Curr. Opin. Cell Biol. 24:14–23 [Google Scholar]
  63. Malinovska L, Kroschwald S, Alberti S. 2013. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834:918–31 [Google Scholar]
  64. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143 [Google Scholar]
  65. Mizuno D, Tardin C, Schmidt CF, Mackintosh FC. 2007. Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–73 [Google Scholar]
  66. Münster S, Jawerth LM, Leslie BA, Weitz JI, Fabry B, Weitz DA. 2013. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. USA 110:12197–202 [Google Scholar]
  67. Narayanaswamy R, Levy M, Tsechnasky M, Stovall GM, O'Connell JD. et al. 2009. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl. Acad. Sci. USA 106:2510147–52 [Google Scholar]
  68. Oparin AI, Morgulis S. 1938. The Origin of Life New York: Macmillan270
  69. Ostwald W. 1900. Über die vemeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper.. Z. Phys. Chem. 34:495 [Google Scholar]
  70. Pelan BMC, Watts KM, Campbell IJ, Lips A. 1997. The stability of aerated milk protein emulsions in the presence of small molecule surfactants. J. Dairy Sci. 80:2631–38 [Google Scholar]
  71. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. 2000. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2:9–29 [Google Scholar]
  72. Petrovska I, Nüske E, Munder MC, Kulasegaran G, Malinovska L. et al. 2014. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 3:e02409 [Google Scholar]
  73. Pickett J. 2006. Mechanisms of disease: folding away the bad guys. Nat. Rev. Mol. Cell Biol. 7:792–93 [Google Scholar]
  74. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  75. Ramaswamy S. 2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  76. Ranck JL, Mateu L, Sadler DM, Tardieu A, Gulik-Krzywicki T, Luzzati V. 1974. Order-disorder conformational transitions of the hydrocarbon chains of lipids. J. Mol. Biol. 85:249–77 [Google Scholar]
  77. Robberecht W, Philips T. 2013. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14:248–64 [Google Scholar]
  78. Russell ER, Sprakel J, Kodger TE, Weitz DA. 2012. Colloidal gelation of oppositely charged particles. Soft Matter 8:8697–703 [Google Scholar]
  79. Safran SA. 1994. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes Reading, MA: Addison-Wesley Publ270
  80. Sarkies KW, Frankel NE. 1971. Nucleation theory with a nonclassical free energy. J. Chem. Phys. 54:433–34 [Google Scholar]
  81. Schadt M, Helfrich W. 1971. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl. Phys. Lett. 18:127 [Google Scholar]
  82. Schwartz JC, Wang X, Podell ER, Cech TR. 2013. RNA seeds higher-order assembly of FUS protein. Cell Rep. 5:918–25 [Google Scholar]
  83. Shimamoto Y, Maeda YT, Ishiwata S, Libchaber AJ, Kapoor TM. 2011. Insights into the micromechanical properties of the metaphase spindle. Cell 145:1062–74 [Google Scholar]
  84. Shin JH, Gardel ML, Mahadevan L, Matsudaira P, Weitz DA. 2004. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. Proc. Natl. Acad. Sci. USA 101:9636–41 [Google Scholar]
  85. Shulman JM, De Jager PL, Feany MB. 2011. Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. Mech. Dis. 6:193–222 [Google Scholar]
  86. Strome S, Wood WB. 1983. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35:15–25 [Google Scholar]
  87. Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P. 2005. Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu. Rev. Biochem. 74:433–80 [Google Scholar]
  88. Tyedmers J, Mogk A, Bukua B. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11:777–88 [Google Scholar]
  89. Updike D, Strome S. 2010. P granule assembly and function review in Caenorhabditis elegans germ cells. J. Androl. 31:53–60 [Google Scholar]
  90. Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. 2011. RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3:a002774 [Google Scholar]
  91. Weber SC, Brangwynne CP. 2012. Getting RNA and protein in phase. Cell 149:1188–91 [Google Scholar]
  92. Webster AJ, Cates ME. 1998. Stabilization of emulsions by trapped species. Langmuir 14:2068–79 [Google Scholar]
  93. Wilson EB. 1899. The structure of protoplasm. Science 10:33–45 [Google Scholar]
  94. Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. 2013. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152:791–805 [Google Scholar]
  95. Wolf N, Priess J, Hirsh D. 1983. Segregation of germline granules in early embryos of Caenorhabditis elegans: an electron microscopic analysis. J. Embryol. Exp. Morphol. 73:297–306 [Google Scholar]
  96. Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F. 2014. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl. Acad. Sci. USA 111:E2636–45 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100913-013325
Loading
/content/journals/10.1146/annurev-cellbio-100913-013325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error