1932

Abstract

The two vascular systems of our body are the blood and the lymphatic vasculature. Our understanding of the genes and molecular mechanisms controlling the development of the lymphatic vasculature network has significantly improved. The availability of novel animal models and better imaging tools led to the identification of lymphatics in tissues and organs previously thought to be devoid of them. Similarly, the classical textbook list of established functional roles of the lymphatic system has been expanded by the addition of novel findings. In this review we provide a historical perspective of some of the important landmarks that opened the doors to researchers working in this field. We also summarize some of the current views about embryonic lymphangiogenesis, particularly about the source(s), commitment, and differentiation of lymphatic endothelial cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-124944
2016-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-124944.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-124944&mimeType=html&fmt=ahah

Literature Cited

  1. Ambrose CT. 2007. Rudbeck's complaint: a 17th-century Latin letter relating to basic immunology. Scand. J. Immunol. 66:486–93 [Google Scholar]
  2. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S. et al. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212:991–99 [Google Scholar]
  3. Aspelund A, Tammela T, Antila S, Nurmi H, Leppanen VM. et al. 2014. The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Investig. 124:3975–86 [Google Scholar]
  4. Banerji S, Ni J, Wang SX, Clasper S, Su J. et al. 1999. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144:789–801 [Google Scholar]
  5. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z. et al. 2010. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116:661–70 [Google Scholar]
  6. Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J. et al. 2011. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ. Res. 109:486–91 [Google Scholar]
  7. Bucchieri F, Farina F, Zummo G, Cappello F. 2015. Lymphatic vessels of the dura mater: a new discovery?. J. Anat. 227:702–3 [Google Scholar]
  8. Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N. et al. 2006. Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev. Dyn. 235:1554–62 [Google Scholar]
  9. Calnek BW, Fabricant J, Schat KA, Murthy KK. 1978. Rejection of a transplantable Marek's disease lymphoma in normal versus immunologically deficient chickens. J. Natl. Cancer Inst. 60:623–31 [Google Scholar]
  10. Carramolino L, Fuentes J, Garcia-Andres C, Azcoitia V, Riethmacher D, Torres M. 2010. Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ. Res. 106:1197–201 [Google Scholar]
  11. Chen X, Qin J, Cheng CM, Tsai MJ, Tsai SY. 2012. COUP-TFII is a major regulator of cell cycle and Notch signaling pathways. Mol. Endocrinol. 26:1268–77 [Google Scholar]
  12. Chikly B. 1997. Who discovered the lymphatic system. Lymphology 30:186–93 [Google Scholar]
  13. Chong DC, Koo Y, Xu K, Fu S, Cleaver O. 2011. Stepwise arteriovenous fate acquisition during mammalian vasculogenesis. Dev. Dyn. 240:2153–65 [Google Scholar]
  14. Coffin JD, Poole TJ. 1988. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102:735–48 [Google Scholar]
  15. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J. et al. 2004. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Investig. 113:1040–50 [Google Scholar]
  16. Dieterich LC, Seidel CD, Detmar M. 2014. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 17:359–71 [Google Scholar]
  17. Drake CJ, Fleming PA. 2000. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95:1671–79 [Google Scholar]
  18. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T. et al. 1998. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–49 [Google Scholar]
  19. Facucho-Oliveira J, Bento M, Belo JA. 2011. Ccbe1 expression marks the cardiac and lymphatic progenitor lineages during early stages of mouse development. Int. J. Dev. Biol. 55:1007–14 [Google Scholar]
  20. Foldi M. 1996. The brain and the lymphatic system (I). Lymphology 29:1–9 [Google Scholar]
  21. François M, Caprini A, Hosking B, Orsenigo F, Wilhelm D. et al. 2008. Sox18 induces development of the lymphatic vasculature in mice. Nature 456:643–47 [Google Scholar]
  22. François M, Harvey NL, Hogan BM. 2011. The transcriptional control of lymphatic vascular development. Physiology 26:146–55 [Google Scholar]
  23. Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG. et al. 2007. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol. Cell. Biol. 27:595–604 [Google Scholar]
  24. Gordon EJ, Gale NW, Harvey NL. 2008. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev. Dyn. 237:1901–9 [Google Scholar]
  25. Hagerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H. et al. 2013. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32:629–44 [Google Scholar]
  26. Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH. et al. 2005. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37:1072–81 [Google Scholar]
  27. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT. et al. 2009. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326:294–98 [Google Scholar]
  28. Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT. et al. 2014. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J. Clin. Investig. 124:273–84 [Google Scholar]
  29. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K. et al. 2003. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol. 162:575–86 [Google Scholar]
  30. Hirakow R, Hiruma T. 1981. Scanning electron microscopic study on the development of primitive blood vessels in chick embryos at the early somite-stage. Anat. Embryol. 163:299–306 [Google Scholar]
  31. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC. et al. 2009. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41:396–98 [Google Scholar]
  32. Hong YK, Detmar M. 2003. Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res. 314:85–92 [Google Scholar]
  33. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S. et al. 2002. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 225:351–57 [Google Scholar]
  34. Huntington GS, McClure CFW. 1910. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica).. Am. J. Anat. 10:177–312 [Google Scholar]
  35. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C. et al. 2003. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am. J. Hum. Genet. 72:1470–78 [Google Scholar]
  36. Jang JY, Koh YJ, Lee SH, Lee J, Kim KH. et al. 2013. Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes. Blood 122:2151–61 [Google Scholar]
  37. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL. et al. 2008. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22:3282–91 [Google Scholar]
  38. Jurisic G, Sundberg JP, Detmar M. 2013. Blockade of VEGF receptor-3 aggravates inflammatory bowel disease and lymphatic vessel enlargement. Inflamm. Bowel Dis. 19:1983–89 [Google Scholar]
  39. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH. et al. 1995. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. PNAS 92:3566–70 [Google Scholar]
  40. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J. et al. 2004. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5:74–80 [Google Scholar]
  41. Karpanen T, Alitalo K. 2008. Molecular biology and pathology of lymphangiogenesis. Annu. Rev. Pathol. 3:367–97 [Google Scholar]
  42. Karpinich NO, Caron KM. 2014. Schlemm's canal: more than meets the eye, lymphatics in disguise. J. Clin. Investig. 124:3701–3 [Google Scholar]
  43. Kerjaschki D. 2014. The lymphatic vasculature revisited. J. Clin. Investig. 124:874–77 [Google Scholar]
  44. Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA. 2008. Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135:3755–64 [Google Scholar]
  45. Kizhatil K, Ryan M, Marchant JK, Henrich S, John SW. 2014. Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLOS Biol. 12:e1001912 [Google Scholar]
  46. Klotz L, Norman S, Vieira JM, Masters M, Rohling M. et al. 2015. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62–67 [Google Scholar]
  47. Koltowska K, Paterson S, Bower NI, Baillie GJ, Lagendijk AK. et al. 2015. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev. 29:1618–30 [Google Scholar]
  48. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M. et al. 1996. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122:3829–37 [Google Scholar]
  49. Lee S, Kang J, Yoo J, Ganesan SK, Cook SC. et al. 2009. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113:1856–59 [Google Scholar]
  50. Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS. et al. 2013. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 17:671–84 [Google Scholar]
  51. Lin FJ, Chen X, Qin J, Hong YK, Tsai MJ, Tsai SY. 2010. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J. Clin. Investig. 120:1694–707 [Google Scholar]
  52. Lindskog H, Kim YH, Jelin EB, Kong Y, Guevara-Gallardo S. et al. 2014. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141:1120–28 [Google Scholar]
  53. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ. et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–41 [Google Scholar]
  54. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T. et al. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15:545–52 [Google Scholar]
  55. Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR. et al. 2014. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev. Cell 31:690–706 [Google Scholar]
  56. Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI. et al. 2001. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7:199–205 [Google Scholar]
  57. Martel C, Li W, Fulp B, Platt AM, Gautier EL. et al. 2013. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Investig. 123:1571–79 [Google Scholar]
  58. Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K. et al. 2015. Nonvenous origin of dermal lymphatic vasculature. Circ. Res. 116:1649–54 [Google Scholar]
  59. Mezey E, Palkovits M. 2015. Neuroanatomy: forgotten findings of brain lymphatics. Nature 524:415 [Google Scholar]
  60. Mishima K, Watabe T, Saito A, Yoshimatsu Y, Imaizumi N. et al. 2007. Prox1 induces lymphatic endothelial differentiation via integrin α9 and other signaling cascades. Mol. Biol. Cell 18:1421–29 [Google Scholar]
  61. Miura M, Kato S, von Ludinghausen M. 1998. Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. Arch. Histol. Cytol. 61:277–86 [Google Scholar]
  62. Mouta Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y. et al. 2001. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 61:8079–84 [Google Scholar]
  63. Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y. et al. 2015. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522:56–61 [Google Scholar]
  64. Ny A, Koch M, Schneider M, Neven E, Tong RT. et al. 2005. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat. Med. 11:998–1004 [Google Scholar]
  65. Oliver G. 2004. Lymphatic vasculature development. Nat. Rev. Immun. 4:35–45 [Google Scholar]
  66. Oliver G, Alitalo K. 2005. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol. 21:457–83 [Google Scholar]
  67. Oliver G, Srinivasan RS. 2008. Lymphatic vasculature development: current concepts. Ann. N. Y. Acad. Sci. 1131:75–81 [Google Scholar]
  68. Oliver G, Srinivasan RS. 2010. Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development 137:363–72 [Google Scholar]
  69. Pan MR, Chang TM, Chang HC, Su JL, Wang HW, Hung WC. 2009. Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J. Cell Sci. 122:3358–64 [Google Scholar]
  70. Pan Y, Wang WD, Yago T. 2014. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc. Res. 94:96–102 [Google Scholar]
  71. Pan Y, Xia L. 2015. Emerging roles of podoplanin in vascular development and homeostasis. Front. Med. 9:4421–30 [Google Scholar]
  72. Park DY, Lee J, Park I, Choi D, Lee S. et al. 2014. Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity. J. Clin. Investig. 124:3960–74 [Google Scholar]
  73. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I. et al. 2002. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21:4593–99 [Google Scholar]
  74. Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. 2001. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 276:19420–30 [Google Scholar]
  75. Proulx ST, Luciani P, Dieterich LC, Karaman S, Leroux JC, Detmar M. 2013. Expansion of the lymphatic vasculature in cancer and inflammation: new opportunities for in vivo imaging and drug delivery. J. Control. Release 172:550–57 [Google Scholar]
  76. Randolph GJ, Angeli V, Swartz MA. 2005. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5:617–28 [Google Scholar]
  77. Sabin FR. 1902. On the origin of the lymphatic system from the veins and the development of the lymph hearts and the thoracic duct in the pig. Am. J. Anat. 1:367–91 [Google Scholar]
  78. Sabin FR. 1913. The Origin and Development of the Lymphatic System Baltimore: Johns Hopkins Press
  79. Sabin FR. 1917. Origin and development of the primitive vessels of the chick and of the pig. Contrib. Embryol. 6:61–124 [Google Scholar]
  80. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D. et al. 2003. T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 22:3546–56 [Google Scholar]
  81. Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J. et al. 2006. Lymphatic endothelium–specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J. Pathol. 209:67–77 [Google Scholar]
  82. Schneider M, Othman-Hassan K, Christ B, Wilting J. 1999. Lymphangioblasts in the avian wing bud. Dev. Dyn. 216:311–19 [Google Scholar]
  83. Song K, Herzog BH, Sheng M, Fu J, McDaniel JM. et al. 2013. Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma. Cancer Res. 73:7254–64 [Google Scholar]
  84. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S. et al. 2007. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21:2422–32 [Google Scholar]
  85. Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME. et al. 2014. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28:2175–87 [Google Scholar]
  86. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S. et al. 2010. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24:696–707 [Google Scholar]
  87. Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B. et al. 2015. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10:101708–21 [Google Scholar]
  88. Suzuki-Inoue K, Inoue O, Ding G, Nishimura S, Hokamura K. et al. 2010. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets.. J. Biol. Chem. 285:24494–507 [Google Scholar]
  89. Tammela T, Alitalo K. 2010. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–76 [Google Scholar]
  90. Truong TN, Li H, Hong YK, Chen L. 2014. Novel characterization and live imaging of Schlemm's canal expressing Prox-1. PLOS ONE 9:e98245 [Google Scholar]
  91. Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P. et al. 2010. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115:3997–4005 [Google Scholar]
  92. van der Putte SC. 1975. The development of the lymphatic system in man. Adv. Anat. Embryol. Cell Biol. 51:3–60 [Google Scholar]
  93. van der Putte SC, van Limborgh J. 1980. The embryonic development of the main lymphatics in man. Acta Morphol. Neerl. Scand. 18:323–35 [Google Scholar]
  94. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G. et al. 2002. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21:1505–13 [Google Scholar]
  95. Wigle JT, Oliver G. 1999. Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–78 [Google Scholar]
  96. Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C. et al. 2013. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Investig. 123:2803–15 [Google Scholar]
  97. Wilting J, Aref Y, Huang R, Tomarev SI, Schweigerer L. et al. 2006. Dual origin of avian lymphatics. Dev. Biol. 292:165–73 [Google Scholar]
  98. Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. 2009. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells 14:425–34 [Google Scholar]
  99. Yang Y, Garcia-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP. et al. 2012. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120:2340–48 [Google Scholar]
  100. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. 2006. Live imaging of lymphatic development in the zebrafish. Nat. Med. 12:711–16 [Google Scholar]
  101. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. 2005. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104 [Google Scholar]
  102. Yucel YH, Johnston MG, Ly T, Patel M, Drake B. et al. 2009. Identification of lymphatics in the ciliary body of the human eye: a novel “uveolymphatic” outflow pathway. Exp. Eye Res. 89:810–19 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-124944
Loading
/content/journals/10.1146/annurev-cellbio-111315-124944
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error