1932

Abstract

This review aims to illustrate the potential of kinetic analysis in general and microkinetic modeling in particular for rational catalyst design. Both ab initio calculations and experiments providing intrinsic kinetic data allow us to assess the effects of catalytic properties and reaction conditions on the activity and selectivity of the targeted reactions. Three complementary approaches for kinetic analysis of complex reaction networks are illustrated, using select examples of acid zeolite–catalyzed reactions from the authors' recent work. Challenges for future research aimed at defining targets for synthesis strategies that enable us to tune zeolite properties are identified.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060713-040032
2014-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-060713-040032.html?itemId=/content/journals/10.1146/annurev-chembioeng-060713-040032&mimeType=html&fmt=ahah

Literature Cited

  1. Bartholomew CH, Farrauto RJ. 1.  2005. Fundamentals of Industrial Catalytic Processes, 2nd. New York: Wiley-AIChE
  2. Keil FJ. 2.  2013. Complexities in modeling of heterogeneous catalytic reactions. Comput. Math. Appl. 65:1674–97 [Google Scholar]
  3. Marin GB. 3.  2007. Chemical Engineering Kinetics. Adv. Chem. Eng. 32 London: Academic
  4. Ertl G. 4.  2009. Reactions at Solid Surfaces New York: Wiley & Sons
  5. Chorkendorff I, Niemantsverdriet JW. 5.  2003. Concepts of Modern Catalysis and Kinetics Weinheim: Wiley-VCH
  6. Campbell CT. 6.  1989. Studies of model catalysts with well-defined surfaces combining ultrahigh-vacuum surface characterization with medium-pressure and high-pressure kinetics. Adv. Catal. 36:1–54 [Google Scholar]
  7. Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Trevino AA. 7.  1993. The Microkinetics of Heterogeneous Catalysis Washington, DC: Am. Chem. Soc.
  8. Masel RI. 8.  2001. Chemical Kinetics and Catalysis New York: Wiley-Intersci.
  9. Bell AT, Head-Gordon M. 9.  2011. Quantum mechanical modeling of catalytic processes. Annu. Rev. Chem. Biomol. Eng. 2:453–77 [Google Scholar]
  10. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG. 10.  2011. A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem. Eng. Sci. 66:4319–55 [Google Scholar]
  11. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. 11.  2009. Towards the computational design of solid catalysts. Nat. Chem. 1:37–46 [Google Scholar]
  12. Hansen N, Keil FJ. 12.  2013. Multiscale approaches for modeling hydrocarbon conversion reactions in zeolites. Chem. Ing. Tech. 85:413–19 [Google Scholar]
  13. Sabbe MK, Reyniers MF, Reuter K. 13.  2012. First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs. Catal. Sci. Technol. 2:2010–24 [Google Scholar]
  14. van Santen RA, Sautet P. 14.  2009. Computational Methods in Catalysis and Material Science Weinhem, Ger.: Wiley-VCH
  15. van Santen RA, Neurock M. 15.  2006. Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach Weinheim, Ger: Wiley-VCH
  16. Smit B. 16.  2008. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108:4125–84 [Google Scholar]
  17. Kim J, Smit B. 17.  2012. Efficient Monte Carlo simulations of gas molecules inside porous materials. J. Chem. Theory Comput. 8:2336–43 [Google Scholar]
  18. Gubbins KE, Liu YC, Moor JD, Palmera JC. 18.  2011. The role of molecular modeling in confined systems: impact and prospects. Phys. Chem. Chem. Phys. 13:58–85 [Google Scholar]
  19. Cheng J, Hu P. 19.  2008. Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. J. Am. Chem. Soc. 130:10868–69 [Google Scholar]
  20. Martens GG, Marin GB, Martens JA, Jacobs PA, Baron GV. 20.  2000. A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites. J. Catal. 195:253–67 [Google Scholar]
  21. Van Borm R, Reyniers MF, Marin GB. 21.  2012. Catalytic cracking of alkanes on FAU: single-event microkinetic modeling including acidity descriptors. AIChE J. 58:2202–15 [Google Scholar]
  22. Craciun I, Reyniers MF, Marin GB. 22.  2012. Liquid-phase alkylation of benzene with octenes over Y zeolites: kinetic modeling including acidity descriptors. J. Catal. 294:136–50 [Google Scholar]
  23. Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA. 23.  2001. Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-zeolite. J. Catal. 202:324–39 [Google Scholar]
  24. Marin GB, Yablonsky GS. 24.  2011. Kinetics of Chemical Reactions: Decoding Complexity Weinheim, Ger: Wiley-VCH
  25. Uhe A, Kozuch S, Shaik S. 25.  2010. Automatic analysis of computed catalytic cycles. J. Comput. Chem. 32:978–85 [Google Scholar]
  26. Stegelmann C, Andreasen A, Campbell CT. 26.  2009. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131:8077–82 [Google Scholar]
  27. Green WH. 27.  2007. Predictive kinetics: a new approach for the 21st century. Chemical Engineering Kinetics GB Marin 1–50 Adv. Chem. Eng. 32 London: Academic [Google Scholar]
  28. Vinu R, Broadbelt LJ. 28.  2012. Unraveling reaction pathways and specifying reaction kinetics for complex systems. Annu. Rev. Chem. Biomol. Eng. 3:29–54 [Google Scholar]
  29. Campbell CT. 29.  2004. Towards tomorrow's catalysts. Nature 432:282–83 [Google Scholar]
  30. Cejka J, Corma A, Zones S. 30.  2010. Zeolites and Catalysis Weinheim, Ger: Wiley-VCH (2 volumes)
  31. Corma A. 31.  1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97:2373–420 [Google Scholar]
  32. Corma A. 32.  2003. State of the art and future challenges of zeolites as catalysts. J. Catal. 216:298–312 [Google Scholar]
  33. Cundy CS, Cox PA. 33.  2003. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103:663–701 [Google Scholar]
  34. Cejka J, Mintova S. 34.  2007. Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. Sci. Eng. 49:457–509 [Google Scholar]
  35. Davis ME. 35.  2002. Ordered porous materials for emerging application. Nature 417:813–21 [Google Scholar]
  36. Weisz PB, Frilette VJ. 36.  1960. Intracrystalline and molecular-shape-selective catalysis by zeolite salts. J. Phys. Chem. 64:382 [Google Scholar]
  37. Weisz PB, Frilette VJ, Maatman RW, Mower EB. 37.  1962. Catalysis by crystalline aluminosilicates II. Molecular-shape selective reactions. J. Catal. 1:307–12 [Google Scholar]
  38. Martens JA, Tielen M, Jacobs PA, Weitkamp J. 38.  1984. Estimation of the void structure and pore dimensions of molecular-sieve zeolites using the hydroconversion of normal-decane. Zeolites 4:98–107 [Google Scholar]
  39. Weitkamp J, Ernst S, Kumar R. 39.  1986. The spaciousness index: a novel test reaction for characterizing the effective pore width of bifunctional zeolite catalysts. Appl. Catal. 27:207–10 [Google Scholar]
  40. Deem MW, Pophale R, Cheeseman PA, Earl DJ. 40.  2009. Computational discovery of new zeolite-like materials. J. Phys. Chem. C 113:21353–60 [Google Scholar]
  41. Pophale R, Cheeseman PA, Deem MW. 41.  2011. A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 13:12407–12 [Google Scholar]
  42. Treacy MMJ, Rivin I, Balkovsky E, Randall KH, Foster MD. 42.  2004. Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microporous Mesoporous Mater. 74:121–32 [Google Scholar]
  43. Gounder R, Iglesia E. 43.  2013. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 49:3491–509 [Google Scholar]
  44. Niwa M, Katada N, Okumura K. 44.  2010. Characterization and Design of Zeolite Catalysts Berlin: Springer-Verlag
  45. Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA. 45.  2001. Eurokin. Chemical reaction kinetics in practice. CATTECH 5:36–60 [Google Scholar]
  46. Mears DE. 46.  1971. Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20:127–31 [Google Scholar]
  47. Mears DE. 47.  1971. Tests for transport limitations in experimental catalytic reactors. Ind. Eng. Chem. Proc. Des. Dev. 10:541–47 [Google Scholar]
  48. Berger RJ, Kapteijn F, Moulijn JA, Marin GB, De Wilde J. 48.  et al. 2008. Dynamic methods for catalytic kinetics. Appl. Catal. A 342:3–28 [Google Scholar]
  49. Shannon SL, Goodwin JG. 49.  1995. Characterization of catalytic surfaces by isotopic-transient kinetics during steady-state reaction. Chem. Rev. 95:677–95 [Google Scholar]
  50. Gleaves JT, Ebner JR, Kuechler TC. 50.  1988. Temporal analysis of products (TAP)—a unique catalyst evaluation system with submillisecond time resolution. Catal. Rev. Sci. Eng. 30:49–116 [Google Scholar]
  51. Gleaves JT, Yablonsky GS, Phanawadee P, Schuurman Y. 51.  1997. TAP-2: an interrogative kinetics approach. Appl. Catal. A 160:55–88 [Google Scholar]
  52. Yablonsky GS, Constales D, Gleaves JT. 52.  2002. Multi-scale problems in the quantitative characterization of complex catalytic materials. Syst. Anal. Model. Simul. 42:1143–66 [Google Scholar]
  53. Craciun I, Reyniers MF, Marin GB. 53.  2007. Effects of acid properties of Y zeolites on the liquid-phase alkylation of benzene with 1-octene: a reaction path analysis. J. Mol. Catal. A Chem. 277:1–14 [Google Scholar]
  54. Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T. 54.  2001. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27:99–139 [Google Scholar]
  55. Clymans PJ, Froment GF. 55.  1984. Computer-generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins. Comput. Chem. Eng. 8:137–42 [Google Scholar]
  56. Vandewiele NM, Van Geem KM, Reyniers MF, Marin GB. 56.  2012. Genesys: kinetic model construction using chemo-informatics. Chem. Eng. Sci. 207:526–38 [Google Scholar]
  57. Van Borm R, Aerts A, Reyniers MF, Martens JA, Marin GB. 57.  2010. Catalytic cracking of 2,2,4-trimethylpentane on FAU, MFI, and bimodal porous materials: influence of acid properties and pore topology. Ind. Eng. Chem. Res. 49:6815–23 [Google Scholar]
  58. Van Borm R, Reyniers MF, Martens JA, Marin GB. 58.  2010. Catalytic cracking of methylcyclohexane on FAU, MFI, and bimodal porous materials: influence of acid properties and pore topology. Ind. Eng. Chem. Res. 49:10486–95 [Google Scholar]
  59. Nguyen CM, Reyniers MF, Marin GB. 59.  2012. Reactions of bioalcohols in H-FAU, H-MOR, H-ZSM-5 and H-ZSM-22 Presented at AIChE Annu. Meet., Pittsburgh, PA
  60. Nguyen CM, Alexopoulos K, Reyniers MF, Marin GB. 60.  2013. Ab initio based microkinetic modelling of ethanol dehydration in zeolites Presented at EuropaCat XI, Sept. 1–6, Lyon, France
  61. Berna JL, Cavalli L, Renta C. 61.  1995. A life-cycle inventory for the production of linear alkylbenzene sulphonates in Europe. Tenside Surfactants Deterg. 32:122–27 [Google Scholar]
  62. Corma A, Garcia H. 62.  2003. Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 103:4307–66 [Google Scholar]
  63. Yadav GD, Siddiqui MINI. 63.  2009. UDCaT-5: a novel mesoporous superacid catalyst in the selective synthesis of linear phenyldodecanes by the alkylation of benzene with 1-dodecene. Ind. Eng. Chem. Res. 48:10803–9 [Google Scholar]
  64. Clark JH. 64.  1999. Green chemistry: challenges and opportunities. Green Chem. 1:1–8 [Google Scholar]
  65. De Almeida JLG, Dufaux M, Ben Taarit Y, Naccache C. 65.  1994. Effect of pore-size and aluminum content on the production of linear alkylbenzenes over HY, H-ZSM-5 and H-ZSM-12 zeolites: alkylation of benzene with 1-dodecene. Appl. Catal. A Gen. 114:141–59 [Google Scholar]
  66. Cao Y, Kessas R, Naccache C, Ben Taarit Y. 66.  1999. Alkylation of benzene with dodecene. The activity and selectivity of zeolite type catalysts as a function of the porous structure. Appl. Catal. A Gen. 184:231–38 [Google Scholar]
  67. Bhore NA, Klein MT, Bischoff KB. 67.  1990. The delplot technique: a new method for reaction pathway analysis. Ind. Eng. Chem. Res. 29:313–16 [Google Scholar]
  68. Smirniotis PG, Ruckenstein E. 68.  1995. Alkylation of benzene or toluene with MeOH or C2H4 over ZSM-5 or β zeolite: effect of the zeolite pore openings and of the hydrocarbons involved on the mechanism of alkylation. Ind. Eng. Chem. Res. 34:1517–28 [Google Scholar]
  69. Namuangruk S, Pantu P, Limtrakul J. 69.  2004. Alkylation of benzene with ethylene over faujasite zeolite investigated by the ONIOM method. J. Catal. 225:523–30 [Google Scholar]
  70. Rosenbach N Jr, dos Santos APA, Franco M, Mota CJA. 70.  2010. The tertbutyl cation on zeolite Y: a theoretical and experimental study. Chem. Phys. Lett. 485:124–28 [Google Scholar]
  71. Boronat M, Corma A. 71.  2008. Are carbenium and carbonium ions reaction intermediates in zeolite-catalyzed reactions?. Appl. Catal. A 336:2–10 [Google Scholar]
  72. Tuma C, Sauer J. 72.  2005. Protonated isobutene in zeolites: Tert-butyl cation or alkoxide?. Angew. Chem. Int. Ed. 44:4769–71 [Google Scholar]
  73. Haw JF. 73.  2002. Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys. 4:5431–41 [Google Scholar]
  74. Haouas M, Fink G, Taulelle F, Sommer J. 74.  2010. Low-temperature alkane C-H bond activation by zeolites: an in situ solid-state NMR H/D exchange study for a carbenium concerto. Chemistry 16:9034–39 [Google Scholar]
  75. van Santen RA, Neurock M, Shetty SG. 75.  2010. Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem. Rev. 110:2005–48 [Google Scholar]
  76. Rozanska X, van Santen RA, Demuth T, Hutschka F, Hafner J. 76.  2003. A periodic DFT study of isobutene chemisorption in proton-exchanged zeolites: dependence of reactivity on the zeolite framework structure. J. Phys. Chem. B 107:1309–15 [Google Scholar]
  77. Boronat M, Viruela PM, Corma A. 77.  2004. Reaction intermediates in acid catalysis by zeolites: prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure. J. Am. Chem. Soc. 126:3300–9 [Google Scholar]
  78. Nguyen CM, De Moor BA, Reyniers MF, Marin GB. 78.  2012. Isobutene protonation in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22. J. Phys. Chem. C 116:18236–49 [Google Scholar]
  79. Macht J, Carr RT, Iglesia E. 79.  2009. Consequences of acid strength for isomerization and elimination catalysis on solid acids. J. Am. Chem. Soc. 131:6554–65 [Google Scholar]
  80. Carr RT, Neurock M, Iglesia E. 80.  2011. Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. J. Catal. 278:78–93 [Google Scholar]
  81. Macht J, Carr RT, Iglesia E. 81.  2009. Functional assessment of the strength of solid acid catalysts. J. Catal. 264:54–66 [Google Scholar]
  82. De Moor BA, Reyniers MF, Sierka M, Sauer J, Marin GB. 82.  2008. Physisorption and chemisorption of hydrocarbons in H-FAU using QM-Pot(MP2//B3LYP) calculations. J. Phys. Chem. C 112:11796–812 [Google Scholar]
  83. De Moor BA, Reyniers MF, Gobin OC, Lercher JA, Marin GB. 83.  2011. Adsorption of C2-C8 n-alkanes in zeolites. J. Phys. Chem. C 115:1204–19 [Google Scholar]
  84. Nguyen CM, Reyniers MF, Marin GB. 84.  2010. Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Phys. Chem. Chem. Phys. 12:9481–93 [Google Scholar]
  85. Nguyen CM, Reyniers MF, Marin GB. 85.  2011. Theoretical study of the adsorption of the butanol isomers in H-ZSM-5. J. Phys. Chem. C 115:8658–69 [Google Scholar]
  86. Nguyen CM, De Moor BA, Reyniers MF, Marin GB. 86.  2011. Physisorption and chemisorption of linear alkenes in zeolites: a combined QM-Pot(MP2//B3LYP:GULP)-statistical thermodynamics study. J. Phys. Chem. C 115:23831–47 [Google Scholar]
  87. Chu Y, Han B, Fang H, Zheng A, Deng F. 87.  2012. Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: a theoretical calculation study. Microporous Mesoporous Mater. 151:241–49 [Google Scholar]
  88. Niwa M, Suzuki K, Morishita N, Sastre G, Okumura K, Katada N. 88.  2013. Dependence of cracking activity on the Brønsted acidity of Y zeolite: DFT study and experimental confirmation. Catal. Sci. Technol. 8:1919–27 [Google Scholar]
  89. Almutairi SMT, Mezari B, Filonenko GA, Magusin PCMM, Rigutto MS. 89.  et al. 2013. Influence of extraframework aluminum on the Brønsted acidity and catalytic reactivity of faujasite zeolite. ChemCatChem 5:452–66 [Google Scholar]
  90. Feng W, Vynckier E, Froment GF. 90.  1993. Single event kinetics of catalytic cracking. Ind. Eng. Chem. Res. 32:2997–3005 [Google Scholar]
  91. Vynckier E, Froment GF. 91.  1991. Modeling of the kinetics of complex processes based upon elementary steps. Kinetic and Thermodynamic Lumping of Multicomponent Mixtures 10 G Astaritra, SI Sandler 131–61 Amsterdam: Elsevier Sci. [Google Scholar]
  92. Beirnaert HC, Vermeulen R, Froment GF. 92.  1994. A recycle electrobalance reactor for the study of catalyst deactivation by coke formation. Stud. Surf. Sci. Catal. 88:97–112 [Google Scholar]
  93. Funke HH, Argo AM, Falconer JF, Noble RD. 93.  1997. Separations of cyclic, branched, and linear hydrocarbon mixtures through silicalite membranes. Ind. Eng. Chem. Res. 36:137–43 [Google Scholar]
  94. Webster CE, Drago RS, Zerner MC. 94.  1999. A method for characterizing effective pore sizes of catalysts. J. Phys. Chem. B 103:1242–49 [Google Scholar]
  95. Costa C, Lopes JM, Lemos F, Ramôa Ribeiro F. 95.  1999. Activity–acidity relationship in zeolite Y. Part 3. Application of Brønsted type equations. J. Mol. Catal. A Chem. 144:233–38 [Google Scholar]
  96. Costa C, Dzikh IP, Lopes JM, Lemos F, Ramôa Ribeiro F. 96.  2000. Activity–acidity relationship in zeolite ZSM-5. Application of Brønsted-type equations. J. Mol. Catal. A Chem. 154:193–201 [Google Scholar]
  97. Lemos F, Lemos MANDA, Wang X, Ramos Pinto R, Borges P. 97.  et al. 2002. Analysis and modelling of multi-site acid catalysts. Principles and Methods for Accelerated Catalyst Design and Testing EG Derouane, V Parmon, F Lemos, F Ramôa Ribeiro 217–43 Dordrecht, Neth: Kluwer Acad. Publ. [Google Scholar]
  98. Borges P, Ramos Pinto R, Lemos MANDA, Lemos F, Védrine JC. 98.  et al. 2005. Activity–acidity relationship for alkane cracking over zeolites: n-hexane cracking over HZSM-5. J. Mol. Catal. A Chem. 229:127–35 [Google Scholar]
  99. Borges P, Ramos Pinto R, Oliveira P, Lemos MANDA, Lemos F. 99.  et al. 2009. Contributions for the study of the acid transformation of hydrocarbons over zeolites. J. Mol. Catal. A Chem. 305:60–68 [Google Scholar]
  100. Fonseca N, Lemos F, Laforge S, Magnoux P, Ramôa Ribeiro F. 100.  2010. Influence of acidity on the H-Y zeolite performance in n-decane catalytic cracking: evidence of a series/parallel mechanism. React. Kinet. Mech. Catal. 100:249–63 [Google Scholar]
  101. Oliveira P, Borges P, Ramos Pinto R, Lemos MANDA, Lemos F. 101.  et al. 2010. Light olefin transformation over ZSM-5 zeolites with different acid strengths—a kinetic model. Appl. Catal. A 384:177–85 [Google Scholar]
  102. Yaluris G, Madon RJ, Rudd DF, Dumesic JA. 102.  1994. Catalytic cycles and selectivity of hydrocarbon cracking on Y-zeolite-based catalysts. Ind. Eng. Chem. Res. 33:2913–23 [Google Scholar]
  103. Yaluris G, Rekoske JE, Aparicio LM, Madon RJ, Dumesic JA. 103.  1995. Isobutane cracking over Y-zeolites. I. Development of a kinetic model. J. Catal. 153:54–64 [Google Scholar]
  104. Yaluris G, Madon RJ, Dumesic JA. 104.  1999. Catalytic ramifications of steam deactivation of Y zeolites: an analysis using 2-methylhexane cracking. J. Catal. 186:134–46 [Google Scholar]
  105. Watson BA, Klein MT, Harding RH. 105.  1996. Mechanistic modeling of n-heptane cracking on HZSM-5. Ind. Eng. Chem. Res. 35:1506–16 [Google Scholar]
  106. Watson BA, Klein MT, Harding RH. 106.  1997. Catalytic cracking of alkylbenzenes: modeling the reaction pathways and mechanisms. Appl. Catal. A 160:13–39 [Google Scholar]
  107. Watson BA, Klein MT, Harding RH. 107.  1997. Mechanistic modeling of a 1-phenyloctane/n-hexadecane mixture on rare earth Y zeolite. Ind. Eng. Chem. Res. 36:2954–63 [Google Scholar]
  108. Narasimhan CSL, Thybaut JW, Marin GB, Jacobs PA, Martens JA. 108.  et al. 2003. Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22. J. Catal. 220:399–413 [Google Scholar]
  109. Van Borm R. 109.  2012. Single-event microkinetics of hydrocarbon cracking on zeotype catalysts: effect of acidity and shape selectivity PhD thesis, Ghent Univ.
  110. Bhan A, Gounder R, Macht J, Iglesia E. 110.  2008. Entropy considerations in monomolecular cracking of alkanes on acidic zeolites. J. Catal. 253:221–24 [Google Scholar]
  111. Narbeshuber TF, Vinek H, Lercher JA. 111.  1995. Monomolecular conversion of light alkanes over H-ZSM-5. J. Catal. 157:388–95 [Google Scholar]
  112. Babitz SM, Williams BA, Miller JT, Snurr RQ, Haag WO, Kung HH. 112.  1999. Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Appl. Catal. A Gen. 179:71–86 [Google Scholar]
  113. Ramachandran CE, Williams BA, van Bokhoven JA, Miller JT. 113.  2005. Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. J. Catal. 233:100–8 [Google Scholar]
  114. Xu B, Sievers C, Hong SB, Prins R, van Bokhoven JA. 114.  2006. Catalytic activity of Brønsted acid sites in zeolites: intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 244:163–68 [Google Scholar]
  115. Gounder R, Iglesia E. 115.  2009. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. J. Am. Chem. Soc. 131:1958–71 [Google Scholar]
  116. Tranca DC, Hansen N, Swisher JA, Smit B, Keil FJ. 116.  2012. Combined density functional theory and Monte Carlo analysis of monomolecular cracking of light alkanes over H-ZSM-5. J. Phys. Chem. C 116:23408–17 [Google Scholar]
  117. Zimmerman PM, Tranca DC, Gomes J, Lambrecht DS, Head-Gordon M, Bell AT. 117.  2012. Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI. J. Am. Chem. Soc. 134:19468–76 [Google Scholar]
  118. Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH. 118.  2011. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 4:793–804 [Google Scholar]
  119. Haro P, Ollero P, Trippe F. 119.  2013. Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Process. Technol. 114:35–48 [Google Scholar]
  120. Alvarenga RAF, Dewulf J. 120.  2013. Plastic vs. fuel: Which use of the Brazilian ethanol can bring more environmental gains?. Renew. Energy 59:49–52 [Google Scholar]
  121. Angelici C, Weckhuysen BM, Bruijnincx PCA. 121.  2013. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6:1–21 [Google Scholar]
  122. Tret'yakov VF, Makarfia YI, Tret'yakov KV, Frantsuzovaa NA, Talyshinskiia RM. 122.  2010. The catalytic conversion of bioethanol to hydrocarbon fuel: a review and study. Catal. Ind. 2:402–20 [Google Scholar]
  123. Chiang H, Bhan A. 123.  2010. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal. 271:251–61 [Google Scholar]
  124. Zhang M, Yu Y. 124.  2013. Dehydration of ethanol to ethylene. Ind. Eng. Chem. Res. 52:9505–14 [Google Scholar]
  125. Johansson R, Hruby SL, Rass-Hansen J, Christensen CH. 125.  2009. The hydrocarbon pool in ethanol-to-gasoline over HZSM-5 catalyst. Catal. Lett. 127:1–6 [Google Scholar]
  126. Blaszkowski SR, van Santen RA. 126.  1997. Theoretical study of C−C bond formation in the methanol-to-gasoline process. J. Am. Chem. Soc. 119:5020–27 [Google Scholar]
  127. De Moor BA, Ghysels A, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB. 127.  2011. Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies. J. Chem. Theory Comput. 7:1090–101 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060713-040032
Loading
/content/journals/10.1146/annurev-chembioeng-060713-040032
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error