1932

Abstract

The cellular microenvironment is extremely complex, and a plethora of materials and methods have been employed to mimic its properties in vitro. In particular, scientists and engineers have taken an interdisciplinary approach in their creation of synthetic biointerfaces that replicate chemical and physical aspects of the cellular microenvironment. Here the focus is on the use of synthetic materials or a combination of synthetic and biological ligands to recapitulate the defined surface chemistries, microstructure, and function of the cellular microenvironment for a myriad of biomedical applications. Specifically, strategies for altering the surface of these environments using self-assembled monolayers, polymer coatings, and their combination with patterned biological ligands are explored. Furthermore, methods for augmenting an important physical property of the cellular microenvironment, topography, are highlighted, and the advantages and disadvantages of these approaches are discussed. Finally, the progress of materials for prolonged stem cell culture, a key component in the translation of stem cell therapeutics for clinical use, is featured.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060713-040042
2015-07-24
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/6/1/annurev-chembioeng-060713-040042.html?itemId=/content/journals/10.1146/annurev-chembioeng-060713-040042&mimeType=html&fmt=ahah

Literature Cited

  1. Place ES, Evans ND, Stevens MM. 1.  2009. Complexity in biomaterials for tissue engineering. Nat. Mater. 8:6457–70 [Google Scholar]
  2. Ross AM, Jiang Z, Bastmeyer M, Lahann J. 2.  2012. Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8:3336–55 [Google Scholar]
  3. Lutolf MP, Hubbell JA. 3.  2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:147–55 [Google Scholar]
  4. Lutolf MP, Gilbert PM, Blau HM. 4.  2009. Designing materials to direct stem-cell fate. Nature 462:7272433–41 [Google Scholar]
  5. Geiger B, Spatz JP, Bershadsky AD. 5.  2009. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:121–33 [Google Scholar]
  6. Molnar P, Wang WS, Natarajan A, Rumsey JW, Hickman JJ. 6.  2007. Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Biotechnol. Prog. 23:1265–68 [Google Scholar]
  7. Hatakeyama H, Kikuchi A, Yamato M, Okano T. 7.  2007. Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 28:253632–43 [Google Scholar]
  8. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE. 8.  2001. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3:335–73 [Google Scholar]
  9. Chou SY, Cheng CM, Leduc PR. 9.  2009. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials 30:183136–42 [Google Scholar]
  10. Hudalla GA, Murphy WL. 10.  2011. Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. Soft Matter 7:209561–71 [Google Scholar]
  11. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. 10a.  2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105:41103–70 [Google Scholar]
  12. Koepsel JT, Murphy WL. 11.  2009. Patterning discrete stem cell culture environments via localized self-assembled monolayer replacement. Langmuir 25:2112825–34 [Google Scholar]
  13. Tenhaeff WE, Gleason KK. 12.  2008. Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Adv. Funct. Mater. 18:7979–92 [Google Scholar]
  14. Hanefeld P, Westedt U, Wombacher R, Kissel T, Schaper A. 13.  et al. 2006. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications. Biomacromolecules 7:72086–90 [Google Scholar]
  15. Lahann J. 14.  2006. Vapor-based polymer coatings for potential biomedical applications. Polym. Int. 55:121361–70 [Google Scholar]
  16. Senkevich JJ, Desu SB. 15.  1998. Poly(chloro-p-xylylene)/SiO2 multilayer thin films deposited near room temperature by thermal CVD. Thin Solid Films 322:1–2148–57 [Google Scholar]
  17. Cetinkaya M, Boduroglu S, Demirel MC. 16.  2007. Growth of nanostructured thin films of poly (p-xytylene) derivatives by vapor deposition. Polymer 48:144130–34 [Google Scholar]
  18. Gu HW, Xu CJ, Weng LT, Xu B. 17.  2003. Solventless polymerization: spatial migration of a catalyst to form polymeric thin films in microchannels. J. Am. Chem. Soc. 125:319256–57 [Google Scholar]
  19. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H. 18.  et al. 2010. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22:181993–2027 [Google Scholar]
  20. Gorham WF. 19.  1966. A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polym. Sci. A-1 Polym. Chem. 4:123027–39 [Google Scholar]
  21. Rodger DC, Fong AJ, Wen L, Ameri H, Ahuja AK. 20.  et al. 2008. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens. Actuators B Chem. 132:2449–60 [Google Scholar]
  22. Ragheb AO, Bates BL, Fearnot NE, Kozma TG, Voorhees WD III, Gershlick AH. 22.  2004. Coated implantable medical device. US Patent No. 6774278
  23. Fortin JB, Lu TM. 22.  2004. Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films Boston: Kluwer Acad. Publ.
  24. Falconnet D, Csucs G, Grandin HM, Textor M. 23.  2006. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:163044–63 [Google Scholar]
  25. Hersel U, Dahmen C, Kessler H. 24.  2003. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:244385–415 [Google Scholar]
  26. Jiang X, Chen H-Y, Galvan G, Yoshida M, Lahann J. 25.  2008. Vapor-based initiator coatings for atom transfer radical polymerization. Adv. Funct. Mater. 18:127–35 [Google Scholar]
  27. Lahann J, Balcells M, Rodon T, Lee J, Choi IS. 26.  et al. 2002. Reactive polymer coatings: a platform for patterning proteins and mammalian cells onto a broad range of materials. Langmuir 18:93632–38 [Google Scholar]
  28. Lahann J, Langer R. 27.  2002. Novel poly(p-xylylenes): thin films with tailored chemical and optical properties. Macromolecules 35:114380–86 [Google Scholar]
  29. Nandivada H, Chen HY, Bondarenko L, Lahann J. 28.  2006. Reactive polymer coatings that “click.”. Angew. Chem. Int. Ed. 45:203360–63 [Google Scholar]
  30. Nandivada H, Chen HY, Lahann J. 29.  2005. Vapor-based synthesis of poly [(4-formyl-p-xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications. Macromol. Rapid Commun. 26:221794–99 [Google Scholar]
  31. Elkasabi YM, Lahann J, Krebsbach PH. 30.  2011. Cellular transduction gradients via vapor-deposited polymer coatings. Biomaterials 32:71809–15 [Google Scholar]
  32. Elkasabi Y, Chen HY, Lahann J. 31.  2006. Multipotent polymer coatings based on chemical vapor deposition copolymerization. Adv. Mater. 18:121521–26 [Google Scholar]
  33. Elkasabi Y, Yoshida M, Nandivada H, Chen HY, Lahann J. 32.  2008. Towards multipotent coatings: chemical vapor deposition and biofunctionalization of carbonyl-substituted copolymers. Macromol. Rapid Commun. 29:11855–70 [Google Scholar]
  34. Best MD. 33.  2009. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48:286571–84 [Google Scholar]
  35. Kolb HC, Finn MG, Sharpless KB. 34.  2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40:112004–21 [Google Scholar]
  36. Lahann J. 35.  2009. Click Chemistry for Biotechnology and Materials Science Chichester, UK: Wiley
  37. Nwe K, Brechbiel MW. 36.  2009. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother. Radiopharm. 24:3289–302 [Google Scholar]
  38. Nandivada H, Jiang XW, Lahann J. 37.  2007. Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater. 19:2197–208 [Google Scholar]
  39. Chen HY, Elkasabi Y, Lahann J. 38.  2006. Surface modification of confined microgeometries via vapor-deposited polymer coatings. J. Am. Chem. Soc. 128:1374–80 [Google Scholar]
  40. Lahann J, Choi IS, Lee J, Jenson KF, Langer R. 39.  2001. A new method toward microengineered surfaces based on reactive coating. Angew. Chem. Int. Ed. 40:173166–68 [Google Scholar]
  41. Aly AA, Ehrhardt S, Hopf H, Dix I, Jones PG. 40.  2006. Cycloadditions to alkenyl[2.2]paracyclophanes. Eur. J. Organ. Chem. 2006:2335–50 [Google Scholar]
  42. Quist AP, Oscarsson S. 41.  2010. Micropatterned surfaces: techniques and applications in cell biology. Expert Opin. Drug Discov. 5:6569–81 [Google Scholar]
  43. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. 42.  2006. Microscale technologies for tissue engineering and biology. PNAS 103:82480–87 [Google Scholar]
  44. Ross AM, Lahann J. 43.  2013. Surface engineering the cellular microenvironment via patterning and gradients. J. Polym. Sci. B Polym. Phys. 51:10775–94 [Google Scholar]
  45. Vieu C, Carcenac F, Pépin A, Chen Y, Mejias M. 44.  et al. 2000. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164:1–4111–17 [Google Scholar]
  46. Xia YN, Whitesides GM. 45.  1998. Soft lithography. Annu. Rev. Mater. Sci. 28:153–84 [Google Scholar]
  47. Perl A, Reinhoudt DN, Huskens J. 46.  2009. Microcontact printing: limitations and achievements. Adv. Mater. 21:222257–68 [Google Scholar]
  48. Wu CC, Reinhoudt DN, Otto C, Subramaniam V, Velders AH. 47.  2011. Strategies for patterning biomolecules with dip-pen nanolithography. Small 7:8989–1002 [Google Scholar]
  49. Schmidt RC, Healy KE. 48.  2009. Controlling biological interfaces on the nanometer length scale. J. Biomed. Mater. Res. 90A:41252–61 [Google Scholar]
  50. Hook AL, Voelcker NH, Thissen H. 49.  2009. Patterned and switchable surfaces for biomolecular manipulation. Acta Biomater. 5:72350–70 [Google Scholar]
  51. Kolodziej CM, Maynard HD. 50.  2012. Electron-beam lithography for patterning biomolecules at the micron and nanometer scale. Chem. Mater. 24:5774–80 [Google Scholar]
  52. Mendes PM, Yeung CL, Preece JA. 51.  2007. Bio-nanopatterning of surfaces. Nanoscale Res. Lett. 2:8373–84 [Google Scholar]
  53. Kantawong F, Burgess KEV, Jayawardena K, Hart A, Burchmore RJ. 52.  et al. 2009. Whole proteome analysis of osteoprogenitor differentiation induced by disordered nanotopography and mediated by ERK signalling. Biomaterials 30:274723–31 [Google Scholar]
  54. Dos Reis G, Fenili F, Gianfelice A, Bongiorno G, Marchesi D. 53.  et al. 2010. Direct microfabrication of topographical and chemical cues for the guided growth of neural cell networks on polyamidoamine hydrogels. Macromol. Biosci. 10:8842–52 [Google Scholar]
  55. Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T. 54.  2011. Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules 12:51414–18 [Google Scholar]
  56. Goudar VS, Suran S, Varma MM. 55.  2012. Photoresist functionalisation method for high-density protein microarrays using photolithography. Micro Nano Lett. 7:6549–53 [Google Scholar]
  57. Bhatnagar P, Malliaras GG, Kim I, Batt CA. 56.  2010. Multiplexed protein patterns on a photosensitive hydrophilic polymer matrix. Adv. Mater. 22:111242–46 [Google Scholar]
  58. Kane RS, Takayama S, Ostuni E, Ingber DE. 57.  1999. Whitesides GM, patterning proteins and cells using soft lithography. Biomaterials 20:23–242363–76 [Google Scholar]
  59. Brady MJ, Davidson A. 58.  1983. Correction for chromatic aberration in microscope projection photolithography. Rev. Sci. Instrum. 54:101292–95 [Google Scholar]
  60. Michel R, Lussi JW, Csucs G, Reviakine I, Danuser G. 59.  et al. 2002. Selective molecular assembly patterning: a new approach to micro- and nanochemical patterning of surfaces for biological applications. Langmuir 18:83281–87 [Google Scholar]
  61. Jang K, Xu Y, Sato K, Tanaka Y, Mawatari K, Kitamori T. 60.  2012. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation. Microchim. Acta 179:1–249–55 [Google Scholar]
  62. Falconnet D, Koenig A, Assi T, Textor M. 61.  2004. A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv. Funct. Mater. 14:8749–56 [Google Scholar]
  63. Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL. 62.  2006. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:122519–24 [Google Scholar]
  64. Scotchford CA, Ball M, Winkelmann M, Voros J, Csucs C. 63.  et al. 2003. Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: protein adsorption and early cell interactions. Biomaterials 24:71147–58 [Google Scholar]
  65. Kim M, Choi JC, Jung HR, Katz JS, Kim MG, Doh J. 64.  2010. Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist. Langmuir 26:1412112–18 [Google Scholar]
  66. Turkova J. 65.  1999. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B 722:1–211–31 [Google Scholar]
  67. Xia WY, Liu W, Cui L, Liu YC, Zhong W. 66.  et al. 2004. Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J. Biomed. Mater. Res. Appl. Biomater. 71B:2373–80 [Google Scholar]
  68. Csucs G, Kunzler T, Feldman K, Robin F, Spencer ND. 67.  2003. Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps. Langmuir 19:156104–9 [Google Scholar]
  69. Lehnert D, Wehrle-Haller B, David C, Weiland U, Ballestrem C. 68.  et al. 2004. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117:141–52 [Google Scholar]
  70. Li XX, Hou S, Feng XZ, Yu Y, Ma JJ, Li LY. 69.  2009. Patterning of neural stem cells on poly(lactic-co-glycolic acid) film modified by hydrophobin. Colloids Surf. B Biointerfaces 74:1370–74 [Google Scholar]
  71. Teng YD, Lavik EB, Qu XL, Park KI, Ourednik J. 70.  et al. 2002. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. PNAS 99:53024–29 [Google Scholar]
  72. Schmid H, Michel B. 71.  2000. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:83042–49 [Google Scholar]
  73. Mayer M, Yang J, Gitlin I, Gracias DH, Whitesides GM. 72.  2004. Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. Proteomics 4:82366–76 [Google Scholar]
  74. Schulte VA, Hu YB, Diez M, Bunger D, Moller M, Lensen MC. 73.  2010. A hydrophobic perfluoropolyether elastomer as a patternable biomaterial for cell culture and tissue engineering. Biomaterials 31:338583–95 [Google Scholar]
  75. Truong TT, Lin RS, Jeon S, Lee HH, Maria J. 74.  et al. 2007. Soft lithography using acryloxy perfluoropolyether composite stamps. Langmuir 23:52898–905 [Google Scholar]
  76. Lovchik R, von Arx C, Viviani A, Delamarche E. 75.  2008. Cellular microarrays for use with capillary-driven microfluidics. Anal. Bioanal. Chem. 390:3801–8 [Google Scholar]
  77. Mrksich M, Whitesides GM. 76.  1996. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25:55–78 [Google Scholar]
  78. Petrie TA, Stanley BT, Garcia AJ. 77.  2009. Micropatterned surfaces with controlled ligand tethering. J. Biomed. Mater. Res. 90A:3755–65 [Google Scholar]
  79. Flynn NT, Tran TNT, Cima MJ, Langer R. 78.  2003. Long-term stability of self-assembled monolayers in biological media. Langmuir 19:2610909–15 [Google Scholar]
  80. Ross AM, Zhang D, Deng XP, Chang SL, Lahann J. 79.  2011. Chemical-vapor-deposition-based polymer substrates for spatially resolved analysis of protein binding by imaging ellipsometry. Anal. Chem. 83:3874–80 [Google Scholar]
  81. Deng XP, Lahann J. 80.  2012. A generic strategy for co-presentation of heparin-binding growth factors based on CVD polymerization. Macromol. Rapid Commun. 33:171459–65 [Google Scholar]
  82. Tsai M-Y, Lin C-Y, Huang C-H, Gu J-A, Huang S-T. 81.  et al. 2012. Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chem. Commun. 48:8910969–71 [Google Scholar]
  83. Wilson DL, Martin R, Hong S, Cronin-Golomb M, Mirkin CA, Kaplan DL. 82.  2001. Surface organization and nanopatterning of collagen by dip-pen nanolithography. PNAS 98:2413660–64 [Google Scholar]
  84. Agarwal G, Sowards LA, Naik RR, Stone MO. 83.  2003. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc. 125:2580–83 [Google Scholar]
  85. Ginger DS, Zhang H, Mirkin CA. 84.  2004. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43:130–45 [Google Scholar]
  86. Chen H-Y, Hirtz M, Deng X, Laue T, Fuchs H, Lahann J. 85.  2010. Substrate-independent dip-pen nanolithography based on reactive coatings. J. Am. Chem. Soc. 132:5118023–25 [Google Scholar]
  87. Cheung CL, Camarero JA, Woods BW, Lin TW, Johnson JE, De Yoreo JJ. 86.  2003. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc. 125:236848–49 [Google Scholar]
  88. Lim JH, Ginger DS, Lee KB, Heo J, Nam JM, Mirkin CA. 87.  2003. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Ed. 42:202309–12 [Google Scholar]
  89. Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA. 88.  2002. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296:55741836–38 [Google Scholar]
  90. Sekula S, Fuchs J, Weg-Remers S, Nagel P, Schuppler S. 89.  et al. 2008. Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4:101785–93 [Google Scholar]
  91. Curran JM, Stokes R, Irvine E, Graham D, Amro NA. 90.  et al. 2010. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab Chip 10:131662–70 [Google Scholar]
  92. Yang SM, Jang SG, Choi DG, Kim S, Yu HK. 91.  2006. Nanomachining by colloidal lithography. Small 2:4458–75 [Google Scholar]
  93. Wood MA. 92.  2007. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J. R. Soc. Interface 4:121–17 [Google Scholar]
  94. Jeong JR, Kim S, Kim SH, Bland JAC, Shin SC, Yang SM. 93.  2007. Fabrication of hexagonal lattice Co/Pd multilayer nanodot arrays using colloidal lithography. Small 3:91529–33 [Google Scholar]
  95. Malmstrom J, Christensen B, Jakobsen HP, Lovmand J, Foldbjerg R. 94.  et al. 2010. Large area protein patterning reveals nanoscale control of focal adhesion development. Nano Lett. 10:2686–94 [Google Scholar]
  96. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S. 95.  et al. 2008. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αvβ5 integrin. Stem Cells 26:92257–65 [Google Scholar]
  97. Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N. 96.  et al. 2008. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem. Biophys. Res. Commun. 375:127–32 [Google Scholar]
  98. Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA. 97.  2010. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev. Biol. 10:12 [Google Scholar]
  99. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou YE. 98.  et al. 2010. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28:6606–10 [Google Scholar]
  100. Klim JR, Li LY, Wrighton PJ, Piekarczyk MS, Kiessling LL. 99.  2010. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7:12989–94 [Google Scholar]
  101. Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. 100.  2013. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:11–7 [Google Scholar]
  102. Wei Y, Li BS, Fu CK, Qi HX. 101.  2010. Electroactive conducting polymers for biomedical applications. Acta Polym. Sinica121399–405
  103. Colter DC, Class R, DiGirolamo CM, Prockop DJ. 102.  2000. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. PNAS 97:73213–18 [Google Scholar]
  104. Nakaji-Hirabayashi T, Kato K, Arima Y, Iwata H. 103.  2007. Oriented immobilization of epidermal growth factor onto culture substrates for the selective expansion of neural stem cells. Biomaterials 28:243517–29 [Google Scholar]
  105. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-De-Souza NC, Krebsbach PH. 104.  et al. 2010. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28:6581–83 [Google Scholar]
  106. Villa-Diaz LG, Brown SE, Liu Y, Ross AM, Lahann J. 105.  et al. 2012. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells 30:61174–81 [Google Scholar]
  107. Nandivada H, Villa-Diaz LG, O'Shea KS, Smith GD, Krebsbach PH, Lahann J. 106.  2011. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat. Protoc. 6:71037–43 [Google Scholar]
  108. Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL. 107.  2007. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem. Biol. 2:5347–55 [Google Scholar]
  109. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL. 108.  2010. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7:12989–94 [Google Scholar]
  110. Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E. 109.  2010. Synthetic surfaces for human embryonic stem cell culture. J. Biotechnol. 146:3143–46 [Google Scholar]
  111. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL. 110.  et al. 2010. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9:9768–78 [Google Scholar]
  112. Irwin EF, Gupta R, Dashti DC, Healy KE. 111.  2011. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32:296912–19 [Google Scholar]
  113. Li Y, Chuang E, Rodriguez R, Firpo M, Healy K. 112.  2006. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J. Biomed. Mater. Res. A 79:1–5 [Google Scholar]
  114. Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. 113.  2010. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31:349135–44 [Google Scholar]
  115. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y. 114.  et al. 2010. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28:6606–10 [Google Scholar]
  116. Ross AM, Nandivada H, Ryan AL, Lahann J. 115.  2012. Synthetic substrates for long-term stem cell culture. Polymer 53:132533–39 [Google Scholar]
  117. Hwang NS, Varghese S, Zhang Z, Elisseeff J. 116.  2006. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate modified hydrogels. Tissue Eng. 12:92695–706 [Google Scholar]
  118. Zoldan J, Karagiannis ED, Lee CY, Anderson DG, Langer R, Levenberg S. 117.  2011. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 32:369612–21 [Google Scholar]
  119. Hwang NS, Varghese S, Li HW, Elisseeff J. 118.  2011. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res. 344:3499–509 [Google Scholar]
  120. Mallon BS, Park KY, Chen KG, Hamilton RS, McKay RDG. 119.  2006. Toward xeno-free culture of human embryonic stem cells. Int. J. Biochem. Cell Biol. 38:71063–75 [Google Scholar]
  121. Saha K, Mei Y, Reisterer CM, Pyzocha NK, Yang J. 120.  et al. 2011. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. PNAS 108:4618714–19 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060713-040042
Loading
/content/journals/10.1146/annurev-chembioeng-060713-040042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error