1932

Abstract

Polymersome vesicles and wormlike filomicelles self-assembled with amphiphilic, degradable block copolymers have recently shown promise in application to cancer therapy. In the case of filomicelles, dense, hydrophilic brushes of poly(ethylene glycol) on these nanoparticles combine with flexibility to nonspecifically delay clearance by phagocytes in vivo, which has motivated the development of “self” peptides that inhibit nanoparticle clearance through specific interactions. Delayed clearance, as well as robustness of polymer assemblies, opens the dosage window for delivery of increased drug loads in the polymer assemblies and increased tumor accumulation of drug(s). Antibody-targeting and combination therapies, such as with radiotherapy, are emerging in preclinical animal models of cancer. Such efforts are expected to combine with further advances in polymer composition, structure, and protein/peptide functionalization to further enhance transport through the circulation and permeation into disease sites.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060713-040447
2014-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-060713-040447.html?itemId=/content/journals/10.1146/annurev-chembioeng-060713-040447&mimeType=html&fmt=ahah

Literature Cited

  1. Bangham AD, Standish MM, Watkins JC. 1.  1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13:238–52 [Google Scholar]
  2. Gregoriadis G, Ryman BE. 2.  1971. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem. J. 124:58P [Google Scholar]
  3. Mayhew E, Papahadjopoulos D, Rustum YM, Dave C. 3.  1976. Inhibition of tumor cell growth in vitro and in vivo by 1-β-d-arabinofuranosylcytosine entrapped within phospholipid vesicles. Cancer Res. 36:4406–11 [Google Scholar]
  4. Juliano RL, Stamp D. 4.  1978. Pharmacokinetics of liposome-encapsulated anti-tumor drugs. Studies with vinblastine, actinomycin D, cytosine arabinoside, and daunomycin. Biochem. Pharmacol. 27:21–27 [Google Scholar]
  5. Immordino ML, Dosio F, Cattel L. 5.  2006. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1:297–315 [Google Scholar]
  6. Park JW. 6.  2002. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4:95–99 [Google Scholar]
  7. Discher DE, Eisenberg A. 7.  2002. Polymer vesicles. Science 297:967–73 [Google Scholar]
  8. Brinkhuis RP, Rutjes FPJT, van Hest JCM. 8.  2011. Polymeric vesicles in biomedical applications. Polym. Chem. 2:1449–62 [Google Scholar]
  9. Blanazs A, Armes SP, Ryan AJ. 9.  2009. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 30:267–77 [Google Scholar]
  10. Kataoka K, Harada A, Nagasaki Y. 10.  2012. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 64:37–48 [Google Scholar]
  11. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M. 11.  et al. 2007. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2:249–55 [Google Scholar]
  12. Vriezema DM, Garcia PML, Sancho Oltra N, Hatzakis NS, Kuiper SM. 12.  et al. 2007. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed. 46:7378–82 [Google Scholar]
  13. Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee C-C. 13.  et al. 2013. pH-responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 7:3912–25 [Google Scholar]
  14. Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL. 14.  et al. 2009. Flexible filaments for in vivo imaging and delivery: Persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol. Pharm. 6:1343–52 [Google Scholar]
  15. Sancho Oltra N, Swift J, Mahmud A, Rajagopal K, Loverde SM, Discher DE. 15.  2013. Filomicelles in nanomedicine—from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors. J. Mater. Chem. B 1:5177–85 [Google Scholar]
  16. Nair LS, Laurencin CT. 16.  2006. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng./Biotechnol. 102:47–90 [Google Scholar]
  17. Yang Y, Pan D, Luo K, Li L, Gu Z. 17.  2013. Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–43 [Google Scholar]
  18. Zhang Y, Chan HF, Leong KW. 18.  2013. Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65:104–20 [Google Scholar]
  19. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennik WE. 19.  2011. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control. Release 152:168–76 [Google Scholar]
  20. Dash TK, Konkimalla VB. 20.  2012. Poly-∈-caprolactone based formulations for drug delivery and tissue engineering: a review.. J. Control. Release 158:15–33 [Google Scholar]
  21. Albertsson A-C, Ljungquist O. 21.  1986. Degradable polymers. I. Synthesis, characterization, and long-term in vitro degradation of a 14C-labeled aliphatic polyester. J. Macromol. Sci. A Pure Appl. Chem. 23:393–409 [Google Scholar]
  22. Albertsson A-C, Ljungquist O. 22.  1986. Degradable polymers. II. Synthesis, characterization, and degradation of an aliphatic thermoplastic block copolyester. J. Macromol. Sci. A Pure Appl. Chem. 23:411–22 [Google Scholar]
  23. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J. 23.  et al. 2004. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. 43:6323–27 [Google Scholar]
  24. Liu L, Zheng M, Renette T, Kissel T. 24.  2012. Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. Bioconjugate Chem. 23:1211–20 [Google Scholar]
  25. Letchford K, Burt H. 25.  2007. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65:259–69 [Google Scholar]
  26. Rajagopal K, Mahmud A, Christian DA, Pajerowski JD, Brown AEX. 26.  et al. 2010. Curvature-coupled hydration of semicrystalline polymer amphiphiles yields flexible worm micelles but favors rigid vesicles: polycaprolactone-based block copolymers. Macromolecules 43:9736–46 [Google Scholar]
  27. Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W. 27.  2005. Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46:3540–63 [Google Scholar]
  28. Rajagopal K, Christian DA, Harada T, Tian A, Discher DE. 28.  2010. Polymersomes and wormlike micelles made fluorescent by direct modifications of block copolymer amphiphiles. Int. J. Polym. Sci. 2010:379286 [Google Scholar]
  29. Danino D. 29.  2012. Cryo-TEM of soft molecular assemblies. Curr. Opin. Colloid Interface Sci. 17:316–29 [Google Scholar]
  30. Liaw J, Aoyagi T, Kataoka K, Sakurai Y, Okano T. 30.  1998. Visualization of PEO-PBLA-pyrene polymeric micelles by atomic force microscopy. Pharm. Res. 15:1721–26 [Google Scholar]
  31. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. 31.  2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–84 [Google Scholar]
  32. Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. 32.  1996. Drug delivery systems: water soluble taxol 2′-poly(ethylene glycol) ester prodrugs—design and in vivo effectiveness. J. Med. Chem. 39:424–31 [Google Scholar]
  33. Yang B-B, Lum PK, Hayashi MM, Roskos LK. 33.  2004. Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J. Pharm. Sci. 93:1367–73 [Google Scholar]
  34. Schreiber S. 34.  2011. Certolizumab pegol for the treatment of Crohn's disease. Ther. Adv. Gastroenterol. 4:375–89 [Google Scholar]
  35. Klibanov AL, Maruyama K, Torchilin VP, Huang L. 35.  1990. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–37 [Google Scholar]
  36. Garay RP, Labaune JP. 36.  2011. Immunogenicity of polyethylene glycol (PEG). Open Conf. Proc. J. 2:104–7 [Google Scholar]
  37. Ichihara M, Shimizu T, Imoto A, Hashiguchi Y, Uehara Y. 37.  et al. 2011. Anti-PEG IgM response against PEGylated liposomes in mice and rats. Pharmaceutics 3:1–11 [Google Scholar]
  38. Brown L, McArthur SL, Wright PC, Lewis A, Battaglia G. 38.  2010. Polymersome production on a microfluidic platform using pH sensitive block copolymers. Lab Chip 10:1922–28 [Google Scholar]
  39. Murdoch C, Reeves KJ, Hearnden V, Colley H, Massignani M. 39.  et al. 2010. Internalization and biodistribution of polymersomes into oral squamous cell carcinoma cells in vitro and in vivo. Nanomedicine 5:1025–36 [Google Scholar]
  40. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. 40.  2013. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–75 [Google Scholar]
  41. Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. 41.  2011. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 108:10980–85 [Google Scholar]
  42. Severi E, Hood DW, Thomas GH. 42.  2007. Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–22 [Google Scholar]
  43. Constantinou A, Epenetos AA, Hreczuk-Hirst D, Jain S, Deonarain MP. 43.  2008. Modulation of antibody pharmacokinetics by chemical polysialylation. Bioconjugate Chem. 19:643–50 [Google Scholar]
  44. Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C. 44.  et al. 2008. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16:1450–58 [Google Scholar]
  45. Pangburn TO, Georgiou K, Bates FS, Kokkoli E. 45.  2012. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir 28:12816–30 [Google Scholar]
  46. Lin JJ, Ghoroghchian PP, Zhang Y, Hammer DA. 46.  2006. Adhesion of antibody-functionalized polymersomes. Langmuir 22:3975–79 [Google Scholar]
  47. Kim B-S, Yang W-Y, Ryu J-H, Yoo Y-S, Lee M. 47.  2005. Carbohydrate-coated nanocapsules from amphiphilic rod-coil molecule: binding to bacterial type 1 pili. Chem. Commun. 15:2035–37 [Google Scholar]
  48. Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA. 48.  et al. 2010. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 4:6805–17 [Google Scholar]
  49. Brož P, Benito SM, Saw CL, Burger P, Heider H. 49.  et al. 2005. Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control. Release 102:475–88 [Google Scholar]
  50. Diamandis EP, Christopoulos TK. 50.  1991. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin. Chem. 37:625–36 [Google Scholar]
  51. Rigler P, Meier W. 51.  2006. Encapsulation of fluorescent molecules by functionalized polymeric nanocontainers: investigation by confocal fluorescence imaging and fluorescence correlation spectroscopy. J. Am. Chem. Soc. 128:367–73 [Google Scholar]
  52. Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE. 52.  2004. Targeted worm micelles. Biomacromolecules 5:1714–19 [Google Scholar]
  53. Shuvaev VV, Ilies MA, Simone E, Zaitsev S, Kim Y. 53.  et al. 2011. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano 5:6991–99 [Google Scholar]
  54. Nehring R, Palivan CG, Moreno-Flores S, Mantion A, Tanner P. 54.  et al. 2010. Protein decorated membranes by specific molecular interactions. Soft Matter 6:2815–24 [Google Scholar]
  55. Felici M, Marzá-Pérez M, Hatzakis NS, Nolte RJM, Feiters MC. 55.  2008. β-Cyclodextrin-appended giant amphiphile: aggregation to vesicle polymersomes and immobilisation of enzymes. Chem. Eur. J. 14:9914–20 [Google Scholar]
  56. Opsteen JA, Brinkhuis RP, Teeuwen RLM, Löwik DWPM, van Hest JCM. 56.  2007. “Clickable” polymersomes. Chem. Commun. 30:3136–38 [Google Scholar]
  57. Pang Z, Lu W, Gao H, Hu K, Chen J. 57.  et al. 2008. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J. Control. Release 128:120–27 [Google Scholar]
  58. van Dongen SFM, Verdurmen WPR, Peters RJRW, Nolte RJM, Brock R, van Hest JCM. 58.  2010. Cellular integration of an enzyme-loaded polymersome nanoreactor. Angew. Chem. Int. Ed. 49:7213–16 [Google Scholar]
  59. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. 59.  2006. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release 116:150–58 [Google Scholar]
  60. Geng Y, Discher DE. 60.  2006. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer 47:2519–25 [Google Scholar]
  61. Geng Y, Discher D. 61.  2005. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc. 127:12780–81 [Google Scholar]
  62. Loverde SM, Ortiz V, Kamien RD, Klein ML, Discher DE. 62.  2010. Curvature-driven molecular demixing in the budding and breakup of mixed component worm-like micelles. Soft Matter 6:1419–25 [Google Scholar]
  63. Jeong IK, Gao GH, Li Y, Kang SW, Lee DS. 63.  2013. A biodegradable polymersome with pH-tuning on-off membrane based on poly(β-amino ester) for drug delivery. Macromol. Biosci. 13:946–53 [Google Scholar]
  64. Yan Q, Wang J, Yin Y, Yuan J. 64.  2013. Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction. Angew. Chem. Int. Ed. 52:5070–73 [Google Scholar]
  65. Sanson C, Schatz C, Le Meins J-F, Soum A, Thévenot J. 65.  et al. 2010. A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J. Control. Release 147:428–35 [Google Scholar]
  66. Napoli A, Valentini M, Tirelli N, Müller M, Hubbell JA. 66.  2004. Oxidation-responsive polymeric vesicles. Nat. Mater. 3:183–89 [Google Scholar]
  67. Xu H, Meng F, Zhong Z. 67.  2009. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J. Mater. Chem. 19:4183–90 [Google Scholar]
  68. Cerritelli S, Velluto D, Hubbell JA. 68.  2007. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 8:1966–72 [Google Scholar]
  69. Dan K, Pan R, Ghosh S. 69.  2011. Aggregation and pH responsive disassembly of a new acid-labile surfactant synthesized by thiol-acrylate Michael addition reaction. Langmuir 27:612–17 [Google Scholar]
  70. Cabane E, Malinova V, Menon S, Palivan CG, Meier W. 70.  2011. Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 7:9167–76 [Google Scholar]
  71. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. 71.  2013. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–57 [Google Scholar]
  72. Mayer LD, Bally MB, Cullis PR. 72.  1986. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim. Biophys. Acta 857:123–26 [Google Scholar]
  73. Upadhyay KK, Bhatt AN, Castro E, Mishra AK, Chuttani K. 73.  et al. 2010. In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol. Biosci. 10:503–12 [Google Scholar]
  74. Ayen WY, Kumar N. 74.  2012. In vivo evaluation of doxorubicin-loaded (PEG)3-PLA nanopolymersomes (PolyDoxSome) using DMBA-induced mammary carcinoma rat model and comparison with marketed LipoDox™. Pharm. Res. 29:2522–33 [Google Scholar]
  75. Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J. 75.  2011. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf. B 87:454–63 [Google Scholar]
  76. Meng F, Zhong Z, Feijen J. 76.  2009. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10:197–209 [Google Scholar]
  77. Hu C-MJ, Aryal S, Zhang L. 77.  2010. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1:323–34 [Google Scholar]
  78. Kim H-O, Kim E, An Y, Choi J, Jang E. 78.  et al. 2013. A biodegradable polymersome containing Bcl-xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol. Biosci. 13:745–54 [Google Scholar]
  79. Pang Z, Feng L, Hua R, Chen J, Gao H. 79.  et al. 2010. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol. Pharm. 7:1995–2005 [Google Scholar]
  80. Baumann BC, Kao GD, Mahmud A, Harada T, Swift J. 80.  et al. 2013. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 4:64–79 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060713-040447
Loading
/content/journals/10.1146/annurev-chembioeng-060713-040447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error