1932

Abstract

In this review we summarize recent efforts in understanding nano-aggregation in acid- and ion-containing polymer systems. The acid and ionic groups have specific interactions that drive aggregation and alter polymer behavior at the nano-, micro-, and bulk length scales. Advancements in synthetic methods, characterization techniques, and computer simulations have enabled researchers to better understand the morphologies and dynamics, particularly at the nanoscale. This overview of recent advancements in nano-aggregated polymer systems highlights the current understanding of the field and presents promising directions for future investigations and new applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101531
2017-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101531.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101531&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Materials Genome Initiative. 2011. Materials Genome Initiative for Global Competitiveness MGI White Pap., Committee Technol., Nat. Sci. Technol. Counc Washington, DC: https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf
  2. Ouchi M, Terashima T, Sawamoto M. 2.  2009. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 109:4963–5050 [Google Scholar]
  3. Lutz J-F, Lehn J-M, Meijer EW, Matyjaszewski K. 3.  2016. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1:16024 [Google Scholar]
  4. Greviskes BP, Bertoldi K, Deschanel S, Samuels SL, Spahr D. 4.  et al. 2010. Effects of sodium and zinc neutralization on large deformation hysteresis of an ethylene methacrylic acid butyl acrylate copolymer. Polymer 51:3532–39 [Google Scholar]
  5. Deschanel S, Greviskes BP, Bertoldi K, Sarva SS, Chen W. 5.  et al. 2009. Rate dependent finite deformation stress–strain behavior of an ethylene methacrylic acid copolymer and an ethylene methacrylic acid butyl acrylate copolymer. Polymer 50:227–35 [Google Scholar]
  6. Lehn J-M. 6.  2013. Perspectives in chemistry—steps towards complex matter. Angew. Chem. Int. Ed. 52:2836–50 [Google Scholar]
  7. Grady BP. 7.  2008. Review and critical analysis of the morphology of random ionomers across many length scales. Polym. Eng. Sci. 48:1029–51 [Google Scholar]
  8. Eisenberg A, Hird B, Moore RB. 8.  1990. A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–107 [Google Scholar]
  9. Seitz ME, Chan CD, Opper KL, Baughman TW, Wagener KB, Winey KI. 9.  2010. Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J. Am. Chem. Soc. 132:8165–74 [Google Scholar]
  10. Adi Eisenberg J-SK. 10.  1998. Introduction to Ionomers New York: Wiley326 pp.
  11. Yarusso DJ, Cooper SL. 11.  1983. Microstructure of ionomers: interpretation of small-angle X-ray scattering data. Macromolecules 16:1871–80 [Google Scholar]
  12. Yarusso DJ, Cooper SL. 12.  1985. Analysis of SAXS data from ionomer systems. Polymer 26:371–78 [Google Scholar]
  13. Kinning DJ, Thomas EL. 13.  1984. Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules 17:1712–18 [Google Scholar]
  14. Ding YS, Hubbard SR, Hodgson KO, Register RA, Cooper SL. 14.  1988. Anomalous small-angle X-ray scattering from a sulfonated polystyrene ionomer. Macromolecules 21:1698–703 [Google Scholar]
  15. Li C, Register RA, Cooper SL. 15.  1989. Direct observation of ionic aggregates in sulphonated polystyrene ionomers. Polymer 30:1227–33 [Google Scholar]
  16. Benetatos NM, Heiney PA, Winey KI. 16.  2006. Reconciling STEM and X-ray scattering data from a poly(styrene-ran-methacrylic acid) ionomer: ionic aggregate size. Macromolecules 39:5174–76 [Google Scholar]
  17. Zhou NC, Chan CD, Winey KI. 17.  2008. Reconciling STEM and X-ray scattering data to determine the nanoscale ionic aggregate morphology in sulfonated polystyrene ionomers. Macromolecules 41:6134–40 [Google Scholar]
  18. Chan CD, Seitz ME, Winey KI. 18.  2011. Disordered spheres with extensive overlap in projection: image simulation and analysis. Microsc. Microanal. 17:872–78 [Google Scholar]
  19. Agrawal A, Perahia D, Grest GS. 19.  2016. Cluster morphology-polymer dynamics correlations in sulfonated polystyrene melts: computational study. Phys. Rev. Lett. 116:158001 [Google Scholar]
  20. Hall LM, Stevens MJ, Frischknecht AL. 20.  2011. Effect of polymer architecture and ionic aggregation on the scattering peak in model ionomers. Phys. Rev. Lett. 106:127801 [Google Scholar]
  21. Buitrago CF, Bolintineanu DS, Seitz ME, Opper KL, Wagener KB. 21.  et al. 2015. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers. Macromolecules 48:1210–20 [Google Scholar]
  22. Lin K-J, Maranas JK. 22.  2012. Cation coordination and motion in a poly(ethylene oxide)-based single ion conductor. Macromolecules 45:6230–40 [Google Scholar]
  23. Capek I. 23.  2004. Dispersions of polymer ionomers: I. Adv. Colloid Interface Sci. 112:1–29 [Google Scholar]
  24. Capek I. 24.  2005. Nature and properties of ionomer assemblies. II. Adv. Colloid Interface Sci. 118:73–112 [Google Scholar]
  25. Antony P, De SK. 25.  2001. Ionic thermoplastic elastomers: a review. J. Macromol. Sci. Part C: Polym. Rev. 41:41–77 [Google Scholar]
  26. Rosales AM, Segalman RA, Zuckermann RN. 26.  2013. Polypeptoids: a model system to study the effect of monomer sequence on polymer properties and self-assembly. Soft Matter 9:8400–14 [Google Scholar]
  27. Chen Q, Bao N, Wang J-HH, Tunic T, Liang S, Colby RH. 27.  2015. Linear viscoelasticity and dielectric spectroscopy of ionomer/plasticizer mixtures: a transition from ionomer to polyelectrolyte. Macromolecules 48:8240–52 [Google Scholar]
  28. Murata K, Izuchi S, Yoshihisa Y. 28.  2000. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 45:1501–8 [Google Scholar]
  29. Abraham KM, Alamgir M. 29.  1990. Li+‐conductive solid polymer electrolytes with liquid‐like conductivity. J. Electrochem. Soc. 137:1657–58 [Google Scholar]
  30. Meyer WH. 30.  1998. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10:439–48 [Google Scholar]
  31. Weber RL, Ye Y, Schmitt AL, Banik SM, Elabd YA, Mahanthappa MK. 31.  2011. Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44:5727–35 [Google Scholar]
  32. Ohno H. 32.  2007. Design of ion conductive polymers based on ionic liquids. Macromol. Symp. 249–50:551–56 [Google Scholar]
  33. Ohno H, Yoshizawa M, Ogihara W. 33.  2004. Development of new class of ion conductive polymers based on ionic liquids. Electrochim. Acta 50:255–61 [Google Scholar]
  34. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. 34.  2011. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energ. 88:981–1007 [Google Scholar]
  35. Mauritz KA, Moore RB. 35.  2004. State of understanding of Nafion. Chem. Rev. 104:4535–86 [Google Scholar]
  36. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. 36.  2004. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104:4587–612 [Google Scholar]
  37. Matyjaszewski K. 37.  2011. Architecturally complex polymers with controlled heterogeneity. Science 333:1104–5 [Google Scholar]
  38. Atallah P, Wagener KB, Schulz MD. 38.  2013. ADMET: the future revealed. Macromolecules 46:4735–41 [Google Scholar]
  39. Zhang L, Katzenmeyer BC, Cavicchi KA, Weiss RA, Wesdemiotis C. 39.  2013. Sulfonation distribution in sulfonated polystyrene ionomers measured by MALDI-ToF MS. ACS Macro Lett 2:217–21 [Google Scholar]
  40. Dou S, Zhang S, Klein RJ, Runt J, Colby RH. 40.  2006. Synthesis and characterization of poly(ethylene glycol)-based single-ion conductors. Chem. Mater. 18:4288–95 [Google Scholar]
  41. Klein RJ, Welna DT, Weikel AL, Allcock HR, Runt J. 41.  2007. Counterion effects on ion mobility and mobile ion concentration of doped polyphosphazene and polyphosphazene ionomers. Macromolecules 40:3990–95 [Google Scholar]
  42. Fragiadakis D, Dou S, Colby RH, Runt J. 42.  2008. Molecular mobility, ion mobility, and mobile ion concentration in poly(ethylene oxide)-based polyurethane ionomers. Macromolecules 41:5723–28 [Google Scholar]
  43. Baughman TW, Chan CD, Winey KI, Wagener KB. 43.  2007. Synthesis and morphology of well-defined poly(ethylene-co-acrylic acid) copolymers. Macromolecules 40:6564–71 [Google Scholar]
  44. Opper KL, Markova D, Klapper M, Müllen K, Wagener KB. 44.  2010. Precision phosphonic acid functionalized polyolefin architectures. Macromolecules 43:3690–98 [Google Scholar]
  45. Wagener KB, Boncella JM, Nel JG. 45.  1991. Acyclic diene metathesis (ADMET) polymerization. Macromolecules 24:2649–57 [Google Scholar]
  46. Rojas G, Inci B, Wei Y, Wagener KB. 46.  2009. Precision polyethylene: changes in morphology as a function of alkyl branch size. J. Am. Chem. Soc. 131:17376–86 [Google Scholar]
  47. Middleton LR, Szewczyk S, Azoulay J, Murtagh D, Rojas G. 47.  et al. 2015. Hierarchical acrylic acid aggregate morphologies produce strain-hardening in precise polyethylene-based copolymers. Macromolecules 48:3713–24 [Google Scholar]
  48. Aitken BS, Buitrago CF, Heffley JD, Lee M, Gibson HW. 48.  et al. 2012. Precision ionomers: synthesis and thermal/mechanical characterization. Macromolecules 45:681–87 [Google Scholar]
  49. Fortier-McGill B, Toader V, Reven L. 49.  2012. 1H solid state NMR study of poly(methacrylic acid) hydrogen-bonded complexes. Macromolecules 45:6015–26 [Google Scholar]
  50. Fortier-McGill B, Toader V, Reven L. 50.  2014. 13C MAS NMR study of poly(methacrylic acid)–polyether complexes and multilayers. Macromolecules 47:4298–307 [Google Scholar]
  51. Chen Q, Masser H, Shiau H-S, Liang S, Runt J. 51.  et al. 2014. Linear viscoelasticity and Fourier transform infrared spectroscopy of polyether–ester–sulfonate copolymer ionomers. Macromolecules 47:3635–44 [Google Scholar]
  52. Alam TM, Jenkins JE, Bolintineanu DS, Stevens MJ, Frischknecht AL. 52.  et al. 2012. Heterogeneous coordination environments in lithium-neutralized ionomers identified using 1H and 7Li MAS NMR. Materials 5:1508–27 [Google Scholar]
  53. Alam TM, Jenkins JE, Seitz ME, Buitrago CF, Winey KI. 53.  et al. 2011. 1H MAS NMR spectroscopy of polyethylene acrylic acid copolymers and ionomers. NMR Spectroscopy of Polymers: Innovative Strategies for Complex Macromolecules HN Cheng, T Asakura, AD English 115–31 Washington, DC: ACS [Google Scholar]
  54. Grady BP, Floyd JA, Genetti WB, Vanhoorne P, Register RA. 54.  1999. X-ray absorption spectroscopy studies of zinc-neutralized ethylene-methacrylic acid ionomers. Polymer 40:283–88 [Google Scholar]
  55. Spencer MW, Wetzel MD, Troeltzsch C, Paul DR. 55.  2012. Effects of acid neutralization on the properties of K+ and Na+ poly(ethylene-co-methacrylic acid) ionomers. Polymer 53:569–80 [Google Scholar]
  56. Wakabayashi K, Register RA. 56.  2006. Morphological origin of the multistep relaxation behavior in semicrystalline ethylene/methacrylic acid ionomers. Macromolecules 39:1079–86 [Google Scholar]
  57. Loo YL, Wakabayashi K, Huang YE, Register RA, Hsiao BS. 57.  2005. Thin crystal melting produces the low-temperature endotherm in ethylene/methacrylic acid ionomers. Polymer 46:5118–24 [Google Scholar]
  58. Quiram DJ, Register RA, Ryan AJ. 58.  1998. Crystallization and ionic associations in semicrystalline ionomers. Macromolecules 31:1432–35 [Google Scholar]
  59. Tadano K, Hirasawa E, Yamamoto H, Yano S. 59.  1989. Order-disorder transition of ionic clusters in ionomers. Macromolecules 22:226–33 [Google Scholar]
  60. Santonja-Blasco L, Zhang X, Alamo RG. 60.  Crystallization of precision ethylene copolymers. Adv. Polymer Sci. 276:133–82 [Google Scholar]
  61. Kaner P, Ruiz-Orta C, Boz E, Wagener KB, Tasaki M. 61.  et al. 2014. Kinetic control of chlorine packing in crystals of a precisely substituted polyethylene. Toward advanced polyolefin materials. Macromolecules 47:236–45 [Google Scholar]
  62. Alamo RG, Jeon K, Smith RL, Boz E, Wagener KB, Bockstaller MR. 62.  2008. Crystallization of polyethylenes containing chlorines: precise versus random placement. Macromolecules 41:7141–51 [Google Scholar]
  63. Gao H, Vadlamudi M, Alamo RG, Hu W. 63.  2013. Monte Carlo simulations of strong memory effect of crystallization in random copolymers. Macromolecules 46:6498–506 [Google Scholar]
  64. Reid BO, Vadlamudi M, Mamun A, Janani H, Gao H. 64.  et al. 2013. Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 46:6485–97 [Google Scholar]
  65. Castagna AM, Wang W, Winey KI, Runt J. 65.  2010. Influence of the degree of sulfonation on the structure and dynamics of sulfonated polystyrene copolymers. Macromolecules 43:10498–504 [Google Scholar]
  66. Castagna AM, Wang W, Winey KI, Runt J. 66.  2011. Structure and dynamics of zinc-neutralized sulfonated polystyrene ionomers. Macromolecules 44:2791–98 [Google Scholar]
  67. Castagna AM, Wang W, Winey KI, Runt J. 67.  2011. Influence of cation type on structure and dynamics in sulfonated polystyrene ionomers. Macromolecules 44:5420–26 [Google Scholar]
  68. Benetatos NM, Chan CD, Winey KI. 68.  2007. Quantitative morphology study of Cu-neutralized poly(styrene-ran-methacrylic acid) ionomers: STEM imaging, X-ray scattering, and real-space structural modeling. Macromolecules 40:1081–88 [Google Scholar]
  69. Batra A, Cohen C, Kim H, Winey KI. 69.  2006. Counterion effect on the rheology and morphology of tailored poly(dimethylsiloxane) ionomers. Macromolecules 39:1630–38 [Google Scholar]
  70. Benetatos NM, Winey KI. 70.  2005. Ionic aggregates in Zn- and Na-neutralized poly(ethylene-ran-methacrylic acid) blown films. J. Polym. Sci. Part B: Polym. Phys. 43:3549–54 [Google Scholar]
  71. Kirkmeyer BP, Puetter RC, Yahil A, Winey KI. 71.  2003. Deconvolution of scanning transmission electron microscopy images of ionomers. J. Polym. Sci. Part B: Polym. Phys. 41:319–26 [Google Scholar]
  72. Kirkmeyer BP, Weiss RA, Winey KI. 72.  2001. Spherical and vesicular ionic aggregates in Zn-neutralized sulfonated polystyrene ionomers. J. Polym. Sci. Part B: Polym. Phys. 39:477–83 [Google Scholar]
  73. Winey KI, Laurer JH, Kirkmeyer BP. 73.  2000. Ionic aggregates in partially Zn-neutralized poly(ethylene-ran-methacrylic acid) ionomers: shape, size, and size distribution. Macromolecules 33:507–13 [Google Scholar]
  74. Taubert A, Winey KI. 74.  2002. Imaging and X-ray microanalysis of a poly(ethylene-ran-methacrylic acid) ionomer melt neutralized with sodium. Macromolecules 35:7419–26 [Google Scholar]
  75. Kirkmeyer BP, Taubert A, Kim J-S, Winey KI. 75.  2002. Vesicular ionic aggregates in poly(styrene-ran-methacrylic acid) ionomers neutralized with Cs. Macromolecules 35:2648–53 [Google Scholar]
  76. Benetatos NM, Winey KI. 76.  2007. Nanoscale morphology of poly(styrene-ran-methacrylic acid) ionomers: the role of preparation method, thermal treatment, and acid copolymer structure. Macromolecules 40:3223–28 [Google Scholar]
  77. Handlin DL, MacKnight WJ, Thomas EL. 77.  1981. Critical evaluation of electron microscopy of ionomers. Macromolecules 14:795–801 [Google Scholar]
  78. Hall LM, Stevens MJ, Frischknecht AL. 78.  2012. Dynamics of model ionomer melts of various architectures. Macromolecules 45:8097–108 [Google Scholar]
  79. Buitrago CF, Alam TM, Opper KL, Aitken BS, Wagener KB, Winey KI. 79.  2013. Morphological trends in precise acid- and ion-containing polyethylenes at elevated temperature. Macromolecules 46:8995–9002 [Google Scholar]
  80. Buitrago CF, Jenkins JE, Opper KL, Aitken BS, Wagener KB. 80.  et al. 2013. Room temperature morphologies of precise acid- and ion-containing polyethylenes. Macromolecules 46:9003–12 [Google Scholar]
  81. Choi UH, Middleton LR, Soccio M, Buitrago CF, Aitken BS. 81.  et al. 2015. Dynamics of precise ethylene ionomers containing ionic liquid functionality. Macromolecules 48:410–20 [Google Scholar]
  82. Buitrago CF, Opper KL, Wagener KB, Winey KI. 82.  2012. Precise acid copolymer exhibits a face-centered cubic structure. ACS Macro Lett 1:71–74 [Google Scholar]
  83. Agrawal A, Perahia D, Grest GS. 83.  2015. Clustering effects in ionic polymers: molecular dynamics simulations. Phys. Rev. E 92:022601 [Google Scholar]
  84. Bolintineanu DS, Stevens MJ, Frischknecht AL. 84.  2013. Atomistic simulations predict a surprising variety of morphologies in precise ionomers. ACS Macro Lett 2:206–10 [Google Scholar]
  85. Bolintineanu DS, Stevens MJ, Frischknecht AL. 85.  2013. Influence of cation type on ionic aggregates in precise ionomers. Macromolecules 46:5381–92 [Google Scholar]
  86. Lueth CA, Bolintineanu DS, Stevens MJ, Frischknecht AL. 86.  2014. Hydrogen-bonded aggregates in precise acid copolymers. J. Chem. Phys. 140:054902 [Google Scholar]
  87. Trigg EB, Stevens MJ, Winey KI. 87.  2017. Chain folding produces a multilayered morphology in a precise polymer: simulations and experiments. J. Am. Chem. Soc. 139:3747–55 [Google Scholar]
  88. Salas-de la Cruz D, Green MD, Ye YS, Elabd YA, Long TE, Winey KI. 88.  2012. Correlating backbone-to-backbone distance to ionic conductivity in amorphous polymerized ionic liquids. J. Polym. Sci. Part B: Polym. Phys. 50:338–46 [Google Scholar]
  89. Wang J-HH, Yang CH-C, Masser H, Shiau H-S, O'Reilly MV. 89.  et al. 2015. Ion states and transport in styrenesulfonate methacrylic PEO9 random copolymer ionomers. Macromolecules 48:7273–85 [Google Scholar]
  90. Liu H, Paddison SJ. 90.  2016. Direct comparison of atomistic molecular dynamics simulations and X-ray scattering of polymerized ionic liquids. ACS Macro Lett 5:537–43 [Google Scholar]
  91. Wollmann D, Williams CE, Eisenberg A. 91.  1990. Small-angle X-ray scattering in “bottlebrush” ionomers. J. Polym. Sci. Part B: Polym. Phys. 28:1979–86 [Google Scholar]
  92. Naderi A, Makuška R, Claesson PM. 92.  2008. Interactions between bottle-brush polyelectrolyte layers: effects of ionic strength and oppositely charged surfactant. J. Colloid Interface Sci. 323:191–202 [Google Scholar]
  93. Liu X, Thormann E, Dedinaite A, Rutland M, Visnevskij C. 93.  et al. 2013. Low friction and high load bearing capacity layers formed by cationic-block-non-ionic bottle-brush copolymers in aqueous media. Soft Matt 9:5361–71 [Google Scholar]
  94. Yao K, Chen Y, Zhang J, Bunyard C, Tang C. 94.  2013. Cationic salt-responsive bottle-brush polymers. Macromol. Rapid Commun. 34:645–51 [Google Scholar]
  95. Carrillo J-MY, Brown WM, Dobrynin AV. 95.  2012. Explicit solvent simulations of friction between brush layers of charged and neutral bottle-brush macromolecules. Macromolecules 45:8880–91 [Google Scholar]
  96. Lin KJ, Maranas JK. 96.  2013. Does decreasing ion-ion association improve cation mobility in single ion conductors?. Phys. Chem. Chem. Phys. 15:16143–51 [Google Scholar]
  97. Sinha K, Maranas J. 97.  2014. Does ion aggregation impact polymer dynamics and conductivity in PEO-based single ion conductors?. Macromolecules 47:2718–26 [Google Scholar]
  98. Sinha K, Maranas JK. 98.  2011. Segmental dynamics and ion association in PEO-based single ion conductors. Macromolecules 44:5381–91 [Google Scholar]
  99. Lin K-J, Li K, Maranas JK. 99.  2013. Differences between polymer/salt and single ion conductor solid polymer electrolytes. RSC Adv 3:1564 [Google Scholar]
  100. Middleton LR, Tarver JD, Cordaro J, Tyagi M, Soles CL. 100.  et al. 2016. Heterogeneous chain dynamics and aggregate lifetimes in precise acid-containing polyethylenes: experiments and simulations. Macromolecules 49:9176–85 [Google Scholar]
  101. Ruan D, Simmons DS. 101.  2015. Roles of chain stiffness and segmental rattling in ionomer glass formation. J. Polym. Sci. Part B: Polym. Phys. 53:1458–69 [Google Scholar]
  102. Ruan D, Simmons DS. 102.  2015. Glass formation near covalently grafted interfaces: ionomers as a model case. Macromolecules 48:2313–23 [Google Scholar]
  103. Beers KM, Balsara NP. 103.  2012. Design of cluster-free polymer electrolyte membranes and implications on proton conductivity. ACS Macro Lett 1:1155–60 [Google Scholar]
  104. Tierney NK, Register RA. 104.  2002. Ion hopping in ethylene–methacrylic acid ionomer melts as probed by rheometry and cation diffusion measurements. Macromolecules 35:2358–64 [Google Scholar]
  105. Tierney NK, Register RA. 105.  2002. The role of excess acid groups in the dynamics of ethylene–methacrylic acid ionomer melts. Macromolecules 35:6284–90 [Google Scholar]
  106. Vanhoorne P, Register RA. 106.  1996. Low-shear melt rheology of partially-neutralized ethylene–methacrylic acid ionomers. Macromolecules 29:598–604 [Google Scholar]
  107. Ting CL, Stevens MJ, Frischknecht AL. 107.  2015. Structure and dynamics of coarse-grained ionomer melts in an external electric field. Macromolecules 48:809–18 [Google Scholar]
  108. Ting CL, Sorensen-Unruh KE, Stevens MJ, Frischknecht AL. 108.  2016. Nonequilibrium simulations of model ionomers in an oscillating electric field. J. Chem. Phys. 145:044902 [Google Scholar]
  109. Lu K, Maranas JK, Milner ST. 109.  2016. Ion-mediated charge transport in ionomeric electrolytes. Soft Matter 12:3943–54 [Google Scholar]
  110. Lu K, Rudzinski JF, Noid WG, Milner ST, Maranas JK. 110.  2014. Scaling behavior and local structure of ion aggregates in single-ion conductors. Soft Matter 10:978–89 [Google Scholar]
  111. Lin K-J, Maranas JK. 111.  2013. Superionic behavior in polyethylene-oxide-based single-ion conductors. Phys. Rev. E 88:052602 [Google Scholar]
  112. Gao J, Wang Y, Norder B, Garcia SJ, Picken SJ. 112.  et al. 2015. Water and sodium transport and liquid crystalline alignment in a sulfonated aramid membrane. J. Membr. Sci. 489:194–203 [Google Scholar]
  113. Feldman KE, Kade MJ, Meijer EW, Hawker CJ, Kramer EJ. 113.  2009. Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 42:9072–81 [Google Scholar]
  114. Shabbir A, Javakhishvili I, Cerveny S, Hvilsted S, Skov AL. 114.  et al. 2016. Linear viscoelastic and dielectric relaxation response of unentangled UPy-based supramolecular networks. Macromolecules 49:3899–910 [Google Scholar]
  115. Lewis CL, Stewart K, Anthamatten M. 115.  2014. The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers. Macromolecules 47:729–40 [Google Scholar]
  116. Rubinstein M, Semenov AN. 116.  1998. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31:1386–97 [Google Scholar]
  117. Green MS, Tobolsky AV. 117.  1946. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14:80–92 [Google Scholar]
  118. Chen Q, Tudryn GJ, Colby RH. 118.  2013. Ionomer dynamics and the sticky Rouse model. J. Rheol. 57:1441–62 [Google Scholar]
  119. Chen Q, Huang C, Weiss RA, Colby RH. 119.  2015. Viscoelasticity of reversible gelation for ionomers. Macromolecules 48:1221–30 [Google Scholar]
  120. Huang C, Wang C, Chen Q, Colby RH, Weiss RA. 120.  2016. Reversible gelation model predictions of the linear viscoelasticity of oligomeric sulfonated polystyrene ionomer blends. Macromolecules 49:3936–47 [Google Scholar]
  121. Stadler FJ, Pyckhout-Hintzen W, Schumers J-M, Fustin C-A, Gohy J-F, Bailly C. 121.  2009. Linear viscoelastic rheology of moderately entangled telechelic polybutadiene temporary networks. Macromolecules 42:6181–92 [Google Scholar]
  122. Qiao X, Weiss RA. 122.  2013. Nonlinear rheology of lightly sulfonated polystyrene ionomers. Macromolecules 46:2417–24 [Google Scholar]
  123. Scogna RC, Register RA. 123.  2008. Rate-dependence of yielding in ethylene–methacrylic acid copolymers. Polymer 49:992–98 [Google Scholar]
  124. Scogna RC, Register RA. 124.  2009. Yielding in ethylene/methacrylic acid ionomers. Polymer 50:585–90 [Google Scholar]
  125. Lee L-BW, Register RA, Dean DM. 125.  2005. Origin of directional tear in blown films of ethylene/methacrylic acid copolymers and ionomers. J. Polym. Sci. Part B: Polym. Phys. 43:97–106 [Google Scholar]
  126. Scogna RC, Register RA. 126.  2009. Plastic deformation of ethylene/methacrylic acid copolymers and ionomers. J. Polym. Sci. Part B: Polym. Phys. 47:1588–98 [Google Scholar]
  127. Vanhoorne P, Register RA. 127.  1996. Low-shear melt rheology of partially-neutralized ethylene-methacrylic acid ionomers. Macromolecules 29:598–604 [Google Scholar]
  128. Colby RH, Zheng X, Rafailovich MH, Sokolov J, Peiffer DG. 128.  et al. 1998. Dynamics of lightly sulfonated polystyrene ionomers. Phys. Rev. Lett. 81:3876–79 [Google Scholar]
  129. Middleton LR, Trigg EB, Schwartz E, Opper KL, Baughman TW. 129.  et al. 2016. Role of periodicity and acid chemistry on the morphological evolution and strength in precise polyethylenes. Macromolecules 49:8209–18 [Google Scholar]
  130. Zhang L, Brostowitz NR, Cavicchi KA, Weiss RA. 130.  2014. Perspective: ionomer research and applications. Macromol. React. Eng. 8:81–99 [Google Scholar]
  131. Dolog R, Weiss RA. 131.  2013. Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 46:7845–52 [Google Scholar]
  132. Dong J, Weiss RA. 132.  2011. Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44:8871–79 [Google Scholar]
  133. Meng Q, Hu J. 133.  2009. A review of shape memory polymer composites and blends. Compos. Part A: Appl. Sci. Manuf. 40:1661–72 [Google Scholar]
  134. Seiffert S, Sprakel J. 134.  2012. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 41:909–30 [Google Scholar]
  135. Shi Y, Yoonessi M, Weiss RA. 135.  2013. High temperature shape memory polymers. Macromolecules 46:4160–67 [Google Scholar]
  136. Kalista SJ Jr., Ward TC. 136.  2007. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J. R. Soc. Interface 4:405–11 [Google Scholar]
  137. Varley RJ, van der Zwaag S. 137.  2008. Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym. Test. 27:11–19 [Google Scholar]
  138. Kalista SJ. 138.  2004. Self-healing of thermoplastic poly(ethylene-co-methacrylic acid) copolymers following projectile puncture MS Thesis, Virginia Polytech. Inst. State Univ. [Google Scholar]
  139. Varley RJ, Shen S, van der Zwaag S. 139.  2010. The effect of cluster plasticisation on the self healing behaviour of ionomers. Polymer 51:679–86 [Google Scholar]
  140. Varley RJ, van der Zwaag S. 140.  2008. Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56:5737–50 [Google Scholar]
  141. Vega JM, Grande AM, van der Zwaag S, Garcia SJ. 141.  2014. On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. Eur. Polym. J. 57:121–26 [Google Scholar]
  142. Ward TC, Kalista SJ. 142.  2007. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J. R. Soc. Interface 4:405–11 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060816-101531
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101531
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error