1932

Abstract

In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering—for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061114-123303
2015-07-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/6/1/annurev-chembioeng-061114-123303.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123303&mimeType=html&fmt=ahah

Literature Cited

  1. Blazeck J, Reed B, Garg R, Gerstner R, Pan A. 1.  et al. 2013. Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 97:3037–52 [Google Scholar]
  2. Curran KA, Crook NC, Karim AS, Gupta A, Wagman AM, Alper HS. 2.  2014. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat. Commun. 5:4002 [Google Scholar]
  3. Proshkin S, Mironov A, Nudler E. 3.  2014. Riboswitches in regulation of Rho-dependent transcription termination. Biochim. Biophys. Acta 1839:974–77 [Google Scholar]
  4. Lu W, Ye L, Xu H, Xie W, Gu J, Yu H. 4.  2014. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides. Biotechnol. Bioeng. 111:761–69 [Google Scholar]
  5. Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA. 5.  et al. 2013. Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res. 41:5139–48 [Google Scholar]
  6. Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S. 6.  et al. 2013. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a “terminatome” toolbox. ACS Synth. Biol. 2:337–47 [Google Scholar]
  7. Ito Y, Yamanishi M, Ikeuchi A, Imamura C, Tokuhiro K. 7.  et al. 2013. Characterization of five terminator regions that increase the protein yield of a transgene in Saccharomyces cerevisiae. J. Biotechnol. 168:486–92 [Google Scholar]
  8. Curran KA, Karim AS, Gupta A, Alper HS. 8.  2013. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab. Eng. 19:88–97 [Google Scholar]
  9. Mairhofer J, Wittwer A, Cserjan-Puschmann M, Striedner G. 9.  2015. Preventing T7 RNA polymerase read-through transcription—a synthetic termination signal capable of improving bioprocess stability. ACS Synth. Biol. 4265–73
  10. Casini A, Christodoulou G, Freemont PS, Baldwin GS, Ellis T, MacDonald JT. 10.  2014. R2oDNA designer: computational design of biologically neutral synthetic DNA sequences. ACS Synth. Biol. 3:525–28 [Google Scholar]
  11. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. 11.  2005. Gene regulation at the single-cell level. Science 307:1962–65 [Google Scholar]
  12. Khalil AS, Lu TK, Bashor CJ, Ramirez CL, Pyenson NC. 12.  et al. 2012. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150:647–58 [Google Scholar]
  13. Nielsen AA, Segall-Shapiro TH, Voigt CA. 13.  2013. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr. Opin. Chem. Biol. 17:878–92 [Google Scholar]
  14. Slusarczyk AL, Lin A, Weiss R. 14.  2012. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 13:406–20 [Google Scholar]
  15. Chirieleison SM, Allen PB, Simpson ZB, Ellington AD, Chen X. 15.  2013. Pattern transformation with DNA circuits. Nat. Chem. 5:1000–5 [Google Scholar]
  16. Omabegho T, Sha R, Seeman NC. 16.  2009. A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71 [Google Scholar]
  17. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. 17.  2013. Amplifying genetic logic gates. Science 340:599–603 [Google Scholar]
  18. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R. 18.  et al. 2013. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41:W204–12 [Google Scholar]
  19. Carbonell P, Parutto P, Baudier C, Junot C, Faulon JL. 19.  2014. Retropath: automated pipeline for embedded metabolic circuits. ACS Synth. Biol. 3:565–77 [Google Scholar]
  20. Li MZ, Elledge SJ. 20.  2007. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4:251–56 [Google Scholar]
  21. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. 21.  2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6:343–45 [Google Scholar]
  22. Quan J, Tian J. 22.  2011. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat. Protoc. 6:242–51 [Google Scholar]
  23. Engler C, Gruetzner R, Kandzia R, Marillonnet S. 23.  2009. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLOS ONE 4:e5553 [Google Scholar]
  24. Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R, Vaiskunaite R. 24.  2007. USERTM friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res. 35:1992–2002 [Google Scholar]
  25. Shetty R, Endy D, Knight T. 25.  2008. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2:5 [Google Scholar]
  26. Shao Z, Zhao H, Zhao H. 26.  2009. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37:e16 [Google Scholar]
  27. Hillson NJ, Rosengarten RD, Keasling JD. 27.  2012. j5 DNA assembly design automation software. ACS Synth. Biol. 1:14–21 [Google Scholar]
  28. Matzas M, Stahler PF, Kefer N, Siebelt N, Boisguerin V. 28.  et al. 2010. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol. 28:1291–94 [Google Scholar]
  29. Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G. 29.  et al. 2014. Total synthesis of a functional designer eukaryotic chromosome. Science 344:55–58 [Google Scholar]
  30. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G. 30.  et al. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–98 [Google Scholar]
  31. Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM. 31.  2012. Genome-scale promoter engineering by coselection MAGE. Nat. Meth. 9:591–93 [Google Scholar]
  32. DiCarlo JE, Conley AJ, Penttila M, Jantti J, Wang HH, Church GM. 32.  2013. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2:741–49 [Google Scholar]
  33. Kim H, Ishidate T, Ghanta KS, Seth M, Conte D Jr. 33.  et al. 2014. A Co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 197:1069–80 [Google Scholar]
  34. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 34.  2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41:4336–43 [Google Scholar]
  35. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J. 35.  et al. 2013. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–87 [Google Scholar]
  36. Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC. 36.  et al. 2014. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife. doi:10.7554/eLife.03703
  37. Tomari Y, Zamore PD. 37.  2005. Perspective: machines for RNAi. Genes Dev. 19:517–29 [Google Scholar]
  38. Crook NC, Schmitz AC, Alper HS. 38.  2014. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth. Biol. 3:307–13 [Google Scholar]
  39. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. 39.  2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31:170–74 [Google Scholar]
  40. Lithwick G, Margalit H. 40.  2003. Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res. 13:2665–73 [Google Scholar]
  41. Lanza A, Curran K, Rey L, Alper H. 41.  2014. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst. Biol. 8:33 [Google Scholar]
  42. Hockenberry AJ, Sirer MI, Amaral LAN, Jewett MC. 42.  2014. Quantifying position-dependent codon usage bias. Mol. Bio. Evol. 31:71880–93 [Google Scholar]
  43. Chowdhury A, Zomorrodi AR, Maranas CD. 43.  2014. Bilevel optimization techniques in computational strain design. Comput. Chem. Eng. 72:363–72 [Google Scholar]
  44. Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY. 44.  et al. 2008. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26:1155–60 [Google Scholar]
  45. Blazeck J, Miller J, Pan A, Gengler J, Holden C. 45.  et al. 2014. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl. Microbiol. Biotechnol. 98:8155–64 [Google Scholar]
  46. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS. 46.  et al. 2013. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31:1039–46 [Google Scholar]
  47. Zhang F, Carothers JM, Keasling JD. 47.  2012. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30:354–59 [Google Scholar]
  48. Liu D, Xiao Y, Evans B, Zhang F. 48.  2015. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth. Biol. 4132–40
  49. Lan EI, Liao JC. 49.  2011. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13:353–63 [Google Scholar]
  50. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. 50.  2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77:2905–15 [Google Scholar]
  51. Blazeck J, Hill A, Liu L, Knight R, Miller J. 51.  et al. 2014. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5:3131 [Google Scholar]
  52. Lennen RM, Politz MG, Kruziki MA, Pfleger BF. 52.  2013. Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J. Bacteriol. 195:135–44 [Google Scholar]
  53. Xu P, Vansiri A, Bhan N, Koffas MA. 53.  2012. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth. Biol. 1:256–66 [Google Scholar]
  54. Xu P, Gu Q, Wang W, Wong L, Bower AG. 54.  et al. 2013. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4:1409 [Google Scholar]
  55. Royce LA, Boggess E, Fu Y, Liu P, Shanks JV. 55.  et al. 2014. Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage. PLOS ONE 9:e89580 [Google Scholar]
  56. Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P. 56.  2014. Microbial synthesis of pinene. ACS Synth. Biol. 3:466–75 [Google Scholar]
  57. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB. 57.  2014. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth. Biol. In press. doi:10.1021/sb5002517
  58. Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T. 58.  2014. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol. Bioeng. 111:1396–405 [Google Scholar]
  59. Sarria S, Wong B, García Martín H, Keasling JD, Peralta-Yahya P. 59.  2014. Microbial synthesis of pinene. ACS Synth. Biol. 3:466–75 [Google Scholar]
  60. McKenna R, Nielsen DR. 60.  2011. Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 13:544–54 [Google Scholar]
  61. Curran KA, Leavitt JM, Karim AS, Alper HS. 61.  2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15:55–66 [Google Scholar]
  62. Jung YK, Kim TY, Park SJ, Lee SY. 62.  2010. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105:161–71 [Google Scholar]
  63. Jung YK, Lee SY. 63.  2011. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J. Biotechnol. 151:94–101 [Google Scholar]
  64. Cardenas J, Da Silva NA. 64.  2014. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metab. Eng. 25c:194–203 [Google Scholar]
  65. Choi KY, Wernick DG, Tat CA, Liao JC. 65.  2014. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23:53–61 [Google Scholar]
  66. Friedman M. 66.  2007. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 51:116–34 [Google Scholar]
  67. Wu J, Du G, Zhou J, Chen J. 67.  2014. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J. Biotechnol. 188:72–80 [Google Scholar]
  68. Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MA. 68.  2011. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13:578–87 [Google Scholar]
  69. Jayaraj S, Reid R, Santi DV. 69.  2005. GeMS: an advanced software package for designing synthetic genes. Nucleic Acids Res. 33:3011–16 [Google Scholar]
  70. Santos CN, Koffas M, Stephanopoulos G. 70.  2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13:392–400 [Google Scholar]
  71. Shin SY, Jung SM, Kim MD, Han NS, Seo JH. 71.  2012. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme Microb. Technol. 51:211–16 [Google Scholar]
  72. Robinson JA. 72.  1991. Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 332:107–14 [Google Scholar]
  73. Sundermann U, Bravo-Rodriguez K, Klopries S, Kushnir S, Gomez H. 73.  et al. 2012. Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase. ACS Chem. Biol. 8:443–50 [Google Scholar]
  74. Yuzawa S, Chiba N, Katz L, Keasling JD. 74.  2012. Construction of a part of a 3-hydroxypropionate cycle for heterologous polyketide biosynthesis in Escherichia coli. Biochemistry 51:9779–81 [Google Scholar]
  75. Kapur S, Lowry B, Yuzawa S, Kenthirapalan S, Chen AY. 75.  et al. 2012. Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. PNAS 109:4110–15 [Google Scholar]
  76. Poust S, Hagen A, Katz L, Keasling JD. 76.  2014. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr. Opin. Biotechnol. 30:32–39 [Google Scholar]
  77. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K. 77.  et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–32 [Google Scholar]
  78. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. 78.  2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21:796–802 [Google Scholar]
  79. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F. 79.  et al. 2010. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74 [Google Scholar]
  80. Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS. 80.  et al. 2014. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl. Microbiol. Biotechnol. 98:1567–81 [Google Scholar]
  81. Wriessnegger T, Augustin P, Engleder M, Leitner E, Müller M. 81.  et al. 2014. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab. Eng. 24:18–29 [Google Scholar]
  82. Gassel S, Breitenbach J, Sandmann G. 82.  2014. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl. Microbiol. Biotechnol. 98:345–50 [Google Scholar]
  83. Reyes LH, Gomez JM, Kao KC. 83.  2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21:26–33 [Google Scholar]
  84. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. 84.  2014. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol. Bioeng. 111:125–33 [Google Scholar]
  85. Xue Z, Sharpe PL, Hong S-P, Yadav NS, Xie D. 85.  et al. 2013. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31:734–40 [Google Scholar]
  86. Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R. 86.  2013. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. PNAS 110:E623–32 [Google Scholar]
  87. Thodey K, Galanie S, Smolke CD. 87.  2014. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10:837–44 [Google Scholar]
  88. Iwasaki T, Maegawa Y, Ohshima T, Mashima K. 88.  2000. Esterification. Kirk-Othmer Encyclopedia of Chemical Technology A Seidel. Hoboken, NJ: John Wiley & Sons [Google Scholar]
  89. Rodriguez GM, Tashiro Y, Atsumi S. 89.  2014. Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol. 10:259–65 [Google Scholar]
  90. Gronenberg LS, Marcheschi RJ, Liao JC. 90.  2013. Next generation biofuel engineering in prokaryotes. Curr. Opin. Chem. Biol. 17:462–71 [Google Scholar]
  91. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB. 91.  2013. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4:246 [Google Scholar]
  92. Graham JM, Graham LE, Zulkifly SB, Pfleger BF, Hoover SW, Yoshitani J. 92.  2012. Freshwater diatoms as a source of lipids for biofuels. J. Ind. Microbiol. Biotechnol. 39:419–28 [Google Scholar]
  93. Bozarth A, Maier U-G, Zauner S. 93.  2009. Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol. 82:195–201 [Google Scholar]
  94. Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O. 94.  2013. Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab. Eng. 17:30–41 [Google Scholar]
  95. Lan EI, Liao JC. 95.  2013. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour. Technol. 135:339–49 [Google Scholar]
  96. Lee SM, Jellison T, Alper HS. 96.  2012. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78:5708–16 [Google Scholar]
  97. Young EM, Tong A, Bui H, Spofford C, Alper HS. 97.  2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. PNAS 111:131–36 [Google Scholar]
  98. Leal NA, Kim HJ, Hoshika S, Kim MJ, Carrigan MA, Benner SA. 98.  2014. Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. ACS Synth. Biol. In press. doi:10.1021/sb500268n
  99. Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N. 99.  et al. 2014. A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–88 [Google Scholar]
  100. He J, Li S, Deng Y, Fu H, Laforteza BN. 100.  et al. 2014. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science 343:1216–20 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061114-123303
Loading
/content/journals/10.1146/annurev-chembioeng-061114-123303
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error