1932

Abstract

Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, , of four classes of materials: (Bi,Sb)(Te,Se), PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061114-123348
2015-07-24
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/6/1/annurev-chembioeng-061114-123348.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123348&mimeType=html&fmt=ahah

Literature Cited

  1. Joffe AF. 1.  1958. The revival of thermoelectricity. Sci. Am. 199:531–37 [Google Scholar]
  2. Snyder GJ. 2.  2008. Small thermoelectric generators. Interface 17:354–56 [Google Scholar]
  3. Goldsmid HJ. 3.  2010. Introduction to Thermoelectricity Heidelberg, Ger: Springer
  4. Wood C. 4.  1988. Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51:459–539 [Google Scholar]
  5. Goldsmid HJ, Penn A. 5.  1968. Boundary scattering of phonons in solid solutions. Phys. Lett. A 2:8523–24 [Google Scholar]
  6. Hicks LD, Dresselhaus MS. 6.  1993. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47:2416631 [Google Scholar]
  7. Hicks LD, Dresselhaus MS. 7.  1993. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47:1912727 [Google Scholar]
  8. Medlin DL, Snyder GJ. 8.  2009. Interfaces in bulk thermoelectric materials. Curr. Opin. Colloid Interface Sci. 14:4226–35 [Google Scholar]
  9. Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren Z, Chen G. 9.  2012. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5:15147–62 [Google Scholar]
  10. Bachmann M, Czerner M, Heiliger C. 10.  2012. Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials. Phys. Rev. B 86:111–6 [Google Scholar]
  11. Sootsman JR, Chung DY, Kanatzidis MG. 11.  2009. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48:468616–39 [Google Scholar]
  12. Goldsmid HJ. 12.  1986. Electronic Refrigeration London: Pion
  13. Lan Y, Minnich A, Chen G, Ren Z. 13.  2010. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20:3357–76 [Google Scholar]
  14. Snyder GJ, Toberer ES. 14.  2008. Complex thermoelectric materials. Nat. Mater. 7:2105–14 [Google Scholar]
  15. Zhao Y, Dyck JS, Burda C. 15.  2011. Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. J. Mater. Chem. 21:4317049 [Google Scholar]
  16. Li D, Qin XY, Liu YF, Wang NN, Song CJ, Sun RR. 16.  2013. Improved thermoelectric properties for solution grown Bi2Te3−xSex nanoplatelet composites. RSC Adv. 3:82632 [Google Scholar]
  17. Finefrock SW, Fang H, Yang H, Darsono H, Wu Y. 17.  2014. Large-scale solution-phase production of Bi2Te3 and PbTe nanowires using Te nanowire templates. Nanoscale 6:7872–76 [Google Scholar]
  18. Chen Z, Lin MY, Xu GD, Chen S, Zhang JH, Wang MM. 18.  2014. Hydrothermal synthesized nanostructure Bi–Sb–Te thermoelectric materials. J. Alloys Compd. 588:384–87 [Google Scholar]
  19. Zhang Y, Hu L, Zhu T. 19.  Data in Figure 2a adapted with perimission from 2013. High yield Bi2Te3 single crystal nanosheets with uniform morphology via a solvothermal synthesis. Cryst. Growth Des. 132645–51Data in Figure 2a adapted with permission from Reference 19. Copyright 2013 American Chemical Society. [Google Scholar]
  20. Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW. 20.  et al. 2012. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 11:3233–40 [Google Scholar]
  21. Gupta RP, Sharp J, Peng A, Perera S, Ballinger C. 21.  et al. 2012. Inorganic colloidal solution-based approach to nanocrystal synthesis of (Bi,Sb)2Te3. J. Electron. Mater. 41:61573–78 [Google Scholar]
  22. Talapin DV, Murray CB. 22.  2005. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:574586–89 [Google Scholar]
  23. Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S. 23.  et al. 2009. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4:April235–38 [Google Scholar]
  24. Wang H, Porter WD, Böttner H, König J, Chen L. 24.  et al. 2013. Transport properties of bulk thermoelectrics—an international round-robin study, part i: Seebeck coefficient and electrical resistivity. J. Electron. Mater. 42:4654–64 [Google Scholar]
  25. Wang H, Porter WD, Böttner H, König J, Chen L. 25.  et al. 2013. Transport properties of bulk thermoelectrics: an international round-robin study, part ii: thermal diffusivity, specific heat, and thermal conductivity. J. Electron. Mater. 42:61073–84 [Google Scholar]
  26. Kutasov VA, Lukyanova LN, Vedernikov MV. 26.  2006. Shifting the maximum figure-of-merit of (Bi, Sb)2(Te, Se)3 thermoelectrics to lower temperatures. Thermoelectrics Handbook: Macro to Nano DM Rowe 37–137-18 Boca Raton, FL: Taylor & Francis [Google Scholar]
  27. Heremans JP, Dresselhaus MS, Bell LE, Morelli DT. 27.  2013. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8:7471–73 [Google Scholar]
  28. Oh MW, Son JH, Kim BS, Park SD, Min BK, Lee HW. 28.  2014. Antisite defects in n-type Bi2(Te,Se)3: experimental and theoretical studies. J. Appl. Phys. 115:13133706 [Google Scholar]
  29. Scanlon DO, King PDC, Singh RP, de la Torre A, Walker SM. 29.  et al. 2012. Controlling bulk conductivity in topological insulators: key role of anti-site defects. Adv. Mater. 24:162154–58 [Google Scholar]
  30. Scherrer H, Scherrer S. 30.  2006. Thermoelectric properties of bismuth antimony telluride solid solutions. Thermoelectrics Handbook: Macro to Nano DM Rowe 27–127-18 Boca Raton, FL: Taylor & Francis [Google Scholar]
  31. Xie W, Wang S, Zhu S, He J, Tang X. 31.  et al. 2012. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 48:72745–60 [Google Scholar]
  32. Wang S, Xie W, Li H, Tang X. 32.  2011. Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics 19:71024–31 [Google Scholar]
  33. Ge J-P, Li Y-D. 33.  2003. Ultrasonic synthesis of nanocrystals of metal selenides and tellurides. J. Mater. Chem. 13:4911–15 [Google Scholar]
  34. Liu C-J, Liu G-J, Tsao C-W, Huang Y-J. 34.  2009. Improvement of thermoelectric power factor of hydrothermally prepared Bi0.5Sb1.5Te3 compared with its solvothermally prepared counterpart. J. Electron. Mater. 38:71499–503 [Google Scholar]
  35. Dong G-H, Zhu Y-J, Chen L-D. 35.  2010. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J. Mater. Chem. 20:101976 [Google Scholar]
  36. Scheele M, Oeschler N, Veremchuk I, Reinsberg K, Kreuziger A. 36.  et al. 2010. ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. ACS Nano 474283–91Data in Figure 1a adapted with permission from Reference 36. Copyright 2010 American Chemical Society. [Google Scholar]
  37. Zhao Y, Dyck JS, Hernandez BM, Burda C. 37.  2010. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132144982–83Data in Figures 1a and 2a adapted with permission from Reference 37. Copyright 2010 American Chemical Society. [Google Scholar]
  38. Zhao Y, Dyck JS, Hernandez BM, Burda C. 38.  2010. Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J. Phys. Chem. C 1142611607–13Data in Figures 1a and 2a adapted with permission from Reference 38. Copyright 2010 American Chemical Society. [Google Scholar]
  39. Ren W, Cheng C, Ren Z, Zhong Y. 39.  2010. The effect of the precursor nanopowder size on the thermoelectric properties of nanostructured Bi–Sb–Te bulk materials. Phys. B Condens. Matter. 405:244931–36 [Google Scholar]
  40. Kovalenko MV, Spokoyny B, Lee J-S, Scheele M, Weber A. 40.  et al. 2010. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J. Am. Chem. Soc. 132196686–95Data in Figures 1a and 2a adapted with permission from Reference 40. Copyright 2010 American Chemical Society. [Google Scholar]
  41. Zhang Y, Xu G, Mi J, Han F, Wang Z, Ge C. 41.  2011. Hydrothermal synthesis and thermoelectric properties of nanostructured Bi0.5Sb1.5Te3 compounds. Mater. Res. Bull. 46:5760–64 [Google Scholar]
  42. Liu C-J, Liu G-J, Liu Y-L, Chen L-R, Kaiser AB. 42.  2011. Enhanced thermoelectric performance of compacted Bi0.5Sb1.5Te3 nanoplatelets with low thermal conductivity. J. Mater. Res. 26:151755–61 [Google Scholar]
  43. Ganguly S, Zhou C, Morelli D, Sakamoto J, Brock SL. 43.  2012. Synthesis and characterization of telluride aerogels: effect of gelation on thermoelectric performance of Bi2Te3 and Bi2-xSbxTe3 nanostructures. J. Phys. Chem. C 1163317431–39Data in Figures 1a and 2a adapted with permission from Reference 43. Copyright 2012 American Chemical Society. [Google Scholar]
  44. Zhang Y, Snedaker ML, Birkel CS, Mubeen S, Ji X. 44.  et al. 2012. Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors. Nano Lett. 1221075–80Data in Figure 1a adapted with permission Reference 44. Copyright 2012 American Chemical Society. [Google Scholar]
  45. Schulz S, Heimann S, Friedrich J, Engenhorst M, Schierning G, Assenmacher W. 45.  2012. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te. Chem. Mater. 24112228–34Data in Figure 1a adapted with permission from Reference 45. Copyright 2012 American Chemical Society. [Google Scholar]
  46. Pelz U, Kaspar K, Schmidt S, Dold M, Jägle M. 46.  et al. 2012. An aqueous-chemistry approach to nano-bismuth telluride and nano-antimony telluride as thermoelectric materials. J. Electron. Mater. 41:61851–57 [Google Scholar]
  47. Dyck JS, Mao B, Wang J, Dorroh S, Burda C. 47.  2012. Effect of sintering on the thermoelectric transport properties of bulk nanostructured Bi0.5Sb1.5Te3 pellets prepared by chemical synthesis. J. Electron. Mater. 41:61408–13 [Google Scholar]
  48. Liu C-J, Lai H-C, Liu Y-L, Chen L-R. 48.  2012. High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J. Mater. Chem. 22:114825 [Google Scholar]
  49. Sun S, Peng J, Jin R, Song S, Zhu P, Xing Y. 49.  2013. Template-free solvothermal synthesis and enhanced thermoelectric performance of Sb2Te3 nanosheets. J. Alloys Compd. 558:6–10 [Google Scholar]
  50. Lu Z, Tan LP, Zhao X, Layani M, Sun T. 50.  et al. 2013. Aqueous solution synthesis of (Sb, Bi)2(Te, Se)3 nanocrystals with controllable composition and morphology. J. Mater. Chem. C 1:396271 [Google Scholar]
  51. Chai Z, Wang H, Suo Q, Wu N, Wang X, Wang C. 51.  2014. Thermoelectric metal tellurides with nanotubular structures synthesized by the Kirkendall effect and their reduced thermal conductivities. Cryst. Eng. Comm. 16:173507 [Google Scholar]
  52. Testardi LR, Bierly JN, Donahoe FJ. 52.  1962. Transport properties of p-type Bi2Te3-Sb2Te3 alloys in the temperature range 80–370 k. J. Phys. Chem. Solids 23:1209–17 [Google Scholar]
  53. Ni HL, Zhu TJ, Zhao XB. 53.  2005. Hydrothermally synthesized and hot-pressed Bi2(Te,Se)3 thermoelectric alloys. Phys. B Condens. Matter 364:1–450–54 [Google Scholar]
  54. Ni HL, Zhu TJ, Zhao XB. 54.  2005. Thermoelectric properties of hydrothermally synthesized and hot pressed n-type Bi2Te3 alloys with different contents of Te. Mater. Sci. Eng. B 117:2119–22 [Google Scholar]
  55. Dirmyer MR, Martin J, Nolas GS, Sen A, Badding JV. 55.  2009. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5:8933–37 [Google Scholar]
  56. Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H. 56.  2009. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19:213476–83 [Google Scholar]
  57. Mi J-L, Lock N, Sun T, Christensen M, Søndergaard M. 57.  et al. 2010. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure. ACS Nano 452523–30Data in Figure 2a adapted with permission from Reference 57. Copyright 2010 American Chemical Society. [Google Scholar]
  58. Wang RY, Feser JP, Gu X, Yu KM, Segalman RA. 58.  et al. 2010. Universal and solution-processable precursor to bismuth chalcogenide thermoelectrics. Chem. Mater. 2261943–45Data in Figure 2a adapted with permission from Reference 58. Copyright 2010 American Chemical Society. [Google Scholar]
  59. Sun Z, Liufu S, Chen L. 59.  2010. Synthesis and characterization of nanostructured bismuth selenide thin films. Dalton Trans. 39:4510883–87 [Google Scholar]
  60. Xu H, Chen G, Jin R, Chen D, Pei J, Wang Y. 60.  2013. Electrical transport properties of microwave-synthesized Bi2Se3−xTex nanosheet. Cryst. Eng. Comm. 15:285626 [Google Scholar]
  61. Kim C, Kim DH, Han YS, Chung JS, Park S. 61.  et al. 2011. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process. Mater. Res. Bull. 46:3407–12 [Google Scholar]
  62. Zhang G, Kirk B, Jauregui LA, Yang H, Xu X. 62.  et al. 2011. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 12156–60Data in Figure 2a adapted with permission from Reference 62. Copyright 2011 American Chemical Society. [Google Scholar]
  63. Kim C, Kim DH, Han YS, Chung JS, Park S, Kim H. 63.  2011. Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations. Powder Technol. 214:3463–68 [Google Scholar]
  64. Kim C, Kim DH, Kim JS, Han YS, Chung JS, Kim H. 64.  2011. A study of the synthesis of bismuth tellurium selenide nanocompounds and procedures for improving their thermoelectric performance. J. Alloys Compd. 509:399472–78 [Google Scholar]
  65. Fu J, Song S, Zhang X, Cao F, Zhou L. 65.  et al. 2012. Bi2Te3 nanoplates and nanoflowers: synthesized by hydrothermal process and their enhanced thermoelectric properties. Cryst. Eng. Comm. 14:62159 [Google Scholar]
  66. Soni A, Yanyuan Z, Ligen Y, Khor M, Aik K, Dresselhaus MS. 66.  2012. Enhanced thermoelectric properties of solution grown Bi2Te3-x Sex nanoplatelet composites. Nano Lett. 1231203–9Data in Figure 2a adapted with permission from Reference 66. Copyright 2012 American Chemical Society. [Google Scholar]
  67. Zhang Y, Day T, Snedaker ML, Wang H, Krämer S. 67.  et al. 2012. A mesoporous anisotropic n-type Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material. Adv. Mater. 24:375065–70 [Google Scholar]
  68. Kim C, Kim D, Kim H, Chung J. 68.  2012. Significant enhancement in the thermoelectric performance of a bismuth telluride nanocompound through brief fabrication procedures. ACS Appl. Mater. Interfaces 462949–54Data in Figure 2 adapted with perimission from Reference 68. Copyright 2012 American Chemical Society. [Google Scholar]
  69. Saleemi M, Toprak MS, Li S, Johnsson M, Muhammed M. 69.  2012. Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J. Mater. Chem. 22:2725 [Google Scholar]
  70. Li D, Qin XY, Dou YC, Li XY, Sun RR. 70.  et al. 2012. Thermoelectric properties of hydrothermally synthesized Bi2Te3−xSex nanocrystals. Scr. Mater. 67:2161–64 [Google Scholar]
  71. Bai T, Li C, Liang D, Li F, Jin D. 71.  et al. 2013. Synthesis of various metal selenide nanostructures using the novel selenium precursor 1,5-bis(3-methylimidazole-2-selone)pentane. Cryst. Eng. Comm. 15:336483 [Google Scholar]
  72. Min Y, Roh J, Yang H, Park M. 72.  2013. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 25:101425–29 [Google Scholar]
  73. Song S, Fu J, Li X, Gao W, Zhang H. 73.  2013. Facile synthesis and thermoelectric properties of self-assembled Bi2Te3 one-dimensional nanorod bundles. Chem. A Eur. J. 19:82889–94 [Google Scholar]
  74. Stavila V, Robinson DB, Hekmaty MA, Nishimoto R, Medlin DL. 74.  et al. 2013. Wet-chemical synthesis and consolidation of stoichiometric bismuth telluride nanoparticles for improving the thermoelectric figure-of-merit. ACS Appl. Mater. Interfaces 5146678–86Data in Figure 2 adapted with permission from Reference 74. Copyright 2013 American Chemical Society. [Google Scholar]
  75. Xu H, Chen G, Jin R, Chen D, Wang Y. 75.  et al. 2014. Enhancement of the Seebeck coefficient in stacked Bi2Se3 nanoplates by energy filtering. Eur. J. Inorg. Chem. 2014:162625–30 [Google Scholar]
  76. Kim C, Kim DH, Lee YK, Kim JT, Han YS, Kim H. 76.  2014. Study of reaction mechanisms and synthetic manipulations of bismuth tellurium selenide nanomaterials for enhanced thermoelectric performance. J. Alloys Compd. 584:108–13 [Google Scholar]
  77. Yim W, Fitzke E, Rosi F. 77.  1966. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 k. J. Mater. Sci. 1:152–65 [Google Scholar]
  78. Ji XH, Zhao XB, Zhang YH, Lu BH, Ni HL. 78.  2005. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. J. Alloys Compd. 387:1–2282–86 [Google Scholar]
  79. Datta A, Paul J, Kar A, Patra A, Sun Z. 79.  et al. 2010. Facile chemical synthesis of nanocrystalline thermoelectric alloys based on Bi−Sb−Te−Se. Cryst. Growth Des. 1093983–89Data in Figure 2a adapted with permission from Reference 79. Copyright 2010 American Chemical Society. [Google Scholar]
  80. Zhao L-D, Dravid VP, Kanatzidis MG. 80.  2014. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7:1251–68 [Google Scholar]
  81. Ravich YI, Efimova BA, Smirnov IA. 81.  1970. Semiconducting Lead Chalcogenides New York: Plenum
  82. Pei Y, LaLonde A, Iwanaga S, Snyder GJ. 82.  2011. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4:62085–89 [Google Scholar]
  83. LaLonde AD, Pei Y, Snyder GJ. 83.  2011. Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material. Energy Environ. Sci. 4:62090 [Google Scholar]
  84. Mühlberg M, Hesse D. 84.  1983. Tem precipitation studies in te-rich as-grown PbTe single crystals. Phys. Status Solidi 76:513–24 [Google Scholar]
  85. Zhang W, Zhang L, Cheng Y, Hui Z, Zhang X. 85.  2000. Synthesis of nanocrystalline lead chalcogenides PbE (E = S, Se, or Te) from alkaline aqueous solutions. Mater. Res. Bull. 35:2009–15 [Google Scholar]
  86. Martin J, Nolas GS, Zhang W, Chen L. 86.  2007. PbTe nanocomposites synthesized from PbTe nanocrystals. Appl. Phys. Lett. 90:22222112 [Google Scholar]
  87. Paul B, Banerji P. 87.  2009. Grain structure induced thermoelectric properties in PbTe nanocomposites. Nanosci. Nanotechnol. Lett. 1:208–12 [Google Scholar]
  88. Martin J, Wang L, Chen L, Nolas GS. 88.  2009. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79:11115311 [Google Scholar]
  89. Paul B, V AK, Banerji P. 89.  2010. Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys. 108:6064322 [Google Scholar]
  90. Finefrock SW, Zhang G, Bahk J-H, Fang H, Yang H. 90.  et al. 2014. Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires. Nano Lett. 1463466–73Data in Figure 3 adapted with permission from Reference 90. Copyright 2014 American Chemical Society. [Google Scholar]
  91. Crocker A, Rogers L. 91.  1967. Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br. J. Appl. Phys. 18:563 [Google Scholar]
  92. LaLonde AD, Ikeda T, Snyder GJ. 92.  2011. Rapid consolidation of powdered materials by induction hot pressing. Rev. Sci. Instrum. 82:2025104 [Google Scholar]
  93. Cao YQ, Zhu TJ, Zhao XB. 93.  2009. Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys. J. Phys. D. Appl. Phys. 42:1015406 [Google Scholar]
  94. Popescu A, Datta A, Nolas GS, Woods LM. 94.  2011. Thermoelectric properties of Bi-doped PbTe composites. J. Appl. Phys. 109:10103709 [Google Scholar]
  95. Fang H, Luo Z, Yang H, Wu Y. 95.  2014. The effects of the size and the doping concentration on the power factor of n-type lead telluride nanocrystals for thermoelectric energy conversion. Nano Lett. 1431153–57Data in Figure 4a adapted with permission from Reference 95. Copyright 2014 American Chemical Society. [Google Scholar]
  96. Liu M-L, Chen I-W, Huang F-Q, Chen L-D. 96.  2009. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 21:373808–12 [Google Scholar]
  97. Shi X, Xi L, Fan J, Zhang W, Chen L. 97.  2010. Cu−Se bond network and thermoelectric compounds with complex diamondlike structure. Chem. Mater. 22226029–31Data in Figure 5 adapted with permission from Reference 97. Copyright 2010 American Chemical Society. [Google Scholar]
  98. Zeier WG, LaLonde A, Gibbs ZM, Heinrich CP, Panthöfer M. 98.  et al. 2012. Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1−x)GeSe4. J. Am. Chem. Soc. 134167147–54Data in Figure 5 adapted with permission from Reference 98. Copyright 2012 American Chemical Society. [Google Scholar]
  99. Ibáñez M, Zamani R, LaLonde A, Cadavid D, Li W. 99.  et al. 2012. Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J. Am. Chem. Soc. 13494060–63Data in Figure 5 adapted with permission from Reference 99. Copyright 2012 American Chemical Society. [Google Scholar]
  100. Xue D-J, Jiao F, Yan H-J, Xu W, Zhu D. 100.  et al. 2013. Synthesis of wurtzite Cu2ZnGeSe4 nanocrystals and their thermoelectric properties. Chem. Asian J. 8:102383–87 [Google Scholar]
  101. Fan F-J, Yu B, Wang Y-X, Zhu Y-L, Liu X-J. 101.  et al. 2011. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. J. Am. Chem. Soc. 1334015910–13Data in Figure 5 adapted with permission from Reference 101. Copyright 2011 American Chemical Society. [Google Scholar]
  102. Iba M, Cadavid D, Zamani R, García-Castello N, Izquierdo-Roca V. 102.  et al. 2012. Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chem. Mater. 24:3562–70 [Google Scholar]
  103. Song J-M, Liu Y, Niu H-L, Mao C-J, Cheng L-J. 103.  et al. 2013. Hot-injection synthesis and characterization of monodispersed ternary Cu2SnSe3 nanocrystals for thermoelectric applications. J. Alloys Compd. 581:646–52 [Google Scholar]
  104. Ibáñez M, Cadavid D, Anselmi-Tamburini U, Zamani R, Gorsse S. 104.  et al. 2013. Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals. J. Mater. Chem. A 1:41421 [Google Scholar]
  105. Fan F-J, Wang Y-X, Liu X-J, Wu L, Yu S-H. 105.  2012. Large-scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv. Mater. 24:466158–63 [Google Scholar]
  106. Ibaez M, Zamani R, Li W. 106.  2012. Crystallographic control at the nanoscale to enhance functionality: polytypic Cu2GeSe3 nanoparticles as thermoelectric materials. Chem. Mater. 24234615–22Data in Figure 5a adapted with permission from Reference 106. Copyright 2012 American Chemical Society. [Google Scholar]
  107. Li W, Ibáñez M, Cadavid D, Zamani RR, Rubio-Garcia J. 107.  et al. 2014. Colloidal synthesis and functional properties of quaternary Cu-based semiconductors: Cu2HgGeSe4. J. Nanoparticle Res. 16:32297 [Google Scholar]
  108. Li W, Ibáñez M, Zamani RR, García-Castelló N, Gorsse S. 108.  et al. 2013. Cu2HgSnSe4 nanoparticles: synthesis and thermoelectric properties. Cryst. Eng. Comm. 15:448966 [Google Scholar]
  109. Shavel A, Cadavid D, Ibáñez M, Carrete A, Cabot A. 109.  2012. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. J. Am. Chem. Soc. 13431438–41Data in Figure 5a adapted with permission from Reference 109. Copyright 2012 American Chemical Society. [Google Scholar]
  110. Yang H, Jauregui LA, Zhang G, Chen YP, Wu Y. 110.  2012. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett. 122540–45Data in Figure 5a adapted with permission from Reference 110. Copyright 2012 American Chemical Society. [Google Scholar]
  111. Liang D, Ma R, Jiao S, Pang G, Feng S. 111.  2012. A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 4:206265–68 [Google Scholar]
  112. Taylor PF, Wood C. 112.  1961. Thermoelectric properties of Ag2Te. J. Appl. Phys. 32:11 [Google Scholar]
  113. Conn JB, Taylor RC. 113.  1960. Thermoelectric and crystallographic properties of Ag2Se. J. Electrochem. Soc. 107:12977 [Google Scholar]
  114. Pei Y, Heinz NA, Snyder GJ. 114.  2011. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J. Mater. Chem. 21:4518256 [Google Scholar]
  115. Day T, Drymiotis F, Zhang T, Rhodes D, Shi X. 115.  et al. 2013. Evaluating the potential for high thermoelectric efficiency of silver selenide. J. Mater. Chem. C 1:457568 [Google Scholar]
  116. Ferhat M, Nagao J. 116.  2000. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 88:2813 [Google Scholar]
  117. Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y. 117.  2012. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J. Am. Chem. Soc. 13494287–93Data in Figure 6 adapted with permission from Reference 117. Copyright 2012 American Chemical Society. [Google Scholar]
  118. Capps J, Drymiotis F, Lindsey S, Tritt TM. 118.  2010. Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te. Philos. Mag. Lett. 90:9677–81 [Google Scholar]
  119. Aliev FF, Jafarov MB, Eminova VI. 119.  2009. Thermoelectric figure of merit of Ag2Se with Ag and Se excess. Semiconductors 43:8977–79 [Google Scholar]
  120. Jiang Y, Wu Y, Yang Z, Xie Y, Qian Y. 120.  2001. Room temperature growth of rod-like nanocrystalline Ag2Te in mixed solvent. J. Cryst. Growth 224:1–4 [Google Scholar]
  121. Monnoyer P, Nagy JB, Buschmann V, Fonseca A, Jeunieau L. 121.  et al. 1996. Preparation of colloidal nanocrystals of AgX and Ag2Se from microemulsions. Nanoparticles in Solids and Solutions JH Fendler, I Dekany 505–17 Dordrecht: Kluwer Acad. [Google Scholar]
  122. Cadavid D, Ibáñez M, Shavel A, Durá OJ, López de la Torre MA, Cabot A. 122.  2013. Organic ligand displacement by metal salts to enhance nanoparticle functionality: thermoelectric properties of Ag2Te. J. Mater. Chem. A 1:154864–70 [Google Scholar]
  123. Pei J, Chen G, Jia D, Yu Y, Sun J. 123.  et al. 2014. Crooked Ag2Te nanowires with rough surfaces: facile microwave-assisted solution synthesis, growth mechanism, and electrical performances. New J. Chem. 38:159 [Google Scholar]
  124. Yang H, Bahk J-H, Day T, Mohammed AMS, Min B. 124.  et al. 2014. Composition modulation of Ag2Te nanowires for tunable electrical and thermal properties. Nano Lett. 1495398–404Data in Figure 6 adapted with permission from Reference 124. Copyright 2014 American Chemical Society. [Google Scholar]
  125. Zhou W, Zhao W, Lu Z, Zhu J, Fan S. 125.  et al. 2012. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods. Nanoscale 4:133926–31 [Google Scholar]
  126. Dong G-H, Zhu Y-J. 126.  2012. Room-temperature solution synthesis of Ag2Te hollow microspheres and dendritic nanostructures, and morphology dependent thermoelectric properties. Cryst. Eng. Comm. 14:51805 [Google Scholar]
  127. Pei J, Chen G, Jia D, Jin R, Xu H, Chen D. 127.  2013. Rapid synthesis of Ag2Se dendrites with enhanced electrical performance by microwave-assisted solution method. New J. Chem. 37:2323 [Google Scholar]
  128. Jung D, Kurosaki K, Ohishi Y. 128.  2012. Effect of phase transition on the thermoelectric properties of Ag2Te. Mater. Trans. 53:71216–19 [Google Scholar]
  129. Mi W, Qiu P, Zhang T, Lv Y, Shi X, Chen L. 129.  2014. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl. Phys. Lett. 104:13133903 [Google Scholar]
  130. Venkatasubramanian R, Siivola E, Colpitts T. 130.  2001. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602 [Google Scholar]
  131. Zhao L-D, He J, Hao S, Wu C-I, Hogan TP. 131.  et al. 2012. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J. Am. Chem. Soc. 134:3916327–36 [Google Scholar]
  132. Cadavid D, Ibáñez M, Gorsse S, López AM, Cirera A. 132.  et al. 2012. Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te-PbTe. J. Nanoparticle Res. 14:121328 [Google Scholar]
  133. Zhou W, Zhu J, Li D, Hng HH, Boey FYC. 133.  et al. 2009. Binary-phased nanoparticles for enhanced thermoelectric properties. Adv. Mater. 21:313196–200 [Google Scholar]
  134. Zhang Y, Bahk J-H, Lee J, Birkel CS, Snedaker ML. 134.  et al. 2014. Hot carrier filtering in solution processed heterostructures: a paradigm for improving thermoelectric efficiency. Adv. Mater. 26:172755–61 [Google Scholar]
  135. Ibáñez M, Zamani R, Gorsse S, Fan J. 135.  2013. Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe-PbS thermoelectric properties. ACS Nano 732573–86Data in Table 1 adapted with permission from Reference 135. Copyright 2013 American Chemical Society. [Google Scholar]
  136. Fang H, Feng T, Yang H, Ruan X, Wu Y. 136.  2013. Synthesis and thermoelectric properties of compositional-modulated lead telluride-bismuth telluride nanowire heterostructures. Nano Lett. 1352058–63Data in Table 1 adapted with perimission from Reference 136. Copyright 2013 American Chemical Society. [Google Scholar]
  137. Fang H, Yang H, Wu Y. 137.  2014. Thermoelectric properties of silver telluride-bismuth telluride nanowire heterostructure synthesized by site-selective conversion. Chem. Mater. 26103322–27Data in Table 1 adapted with permission from Reference 137. Copyright 2014 American Chemical Society. [Google Scholar]
  138. Kim KT, Choi SY, Shin EH, Moon KS, Koo HY. 138.  et al. 2013. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite. Carbon 52:541–49 [Google Scholar]
  139. Dong J, Liu W, Li H, Su X, Tang X, Uher C. 139.  2013. In-situ synthesis and thermoelectric properties of PbTe/graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1:12503–11 [Google Scholar]
  140. Jin R, Chen G, Pei J, Sun J, Wang Q. 140.  2012. Controllable synthesis and thermoelectric transport properties of binary-phased PbTe/PbSe nanocrystals. Cryst. Eng. Comm. 14:134461 [Google Scholar]
  141. Scheele M, Oeschler N, Veremchuk I, Peters S-O, Littig A. 141.  et al. 2011. Thermoelectric properties of lead chalcogenide core-shell nanostructures. ACS Nano 5:118541–51 [Google Scholar]
  142. Shi Y, Zhang F, Snedaker M, Ding K. 142.  2011. Surfactant-free synthesis of heterostructure with enhanced thermoelectric figure of merit. ACS Nano 5:43158–65 [Google Scholar]
  143. Ko D, Kang Y, Murray CB. 143.  2011. Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites. Nano Lett. 11:72841–44 [Google Scholar]
  144. Hu L-P, Zhu T-J, Wang Y-G, Xie H-H, Xu Z-J, Zhao X-B. 144.  2014. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 62e88 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061114-123348
Loading
/content/journals/10.1146/annurev-chembioeng-061114-123348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error