1932

Abstract

Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061114-123357
2015-07-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/6/1/annurev-chembioeng-061114-123357.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123357&mimeType=html&fmt=ahah

Literature Cited

  1. Lewis NS. 1.  2007. Powering the planet. MRS Bull. 32:808–20 [Google Scholar]
  2. Romero M, Steinfeld A. 2.  2012. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5:9234–45 [Google Scholar]
  3. Lipinski W, Davidson JH, Haussener S, Klausner JF, Mehdizadeh AM. 3.  et al. 2013. Review of heat transfer research for solar thermochemical applications. J. Thermal Sci. Eng. Appl. 5:021005 [Google Scholar]
  4. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q. 4.  et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–73 [Google Scholar]
  5. Rongé J, Bosserez T, Martel D, Nervi C, Boarino L. 5.  et al. 2014. Monolithic cells for solar fuels. Chem. Soc. Rev. 43:7963–81 [Google Scholar]
  6. Maeda K, Domen K. 6.  2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1:182655–61 [Google Scholar]
  7. Hisatomi T, Kubota J, Domen K. 7.  2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43:7520–35 [Google Scholar]
  8. Piatkowski N, Wieckert C, Weimer AW, Steinfeld A. 8.  2011. Solar-driven gasification of carbonaceous feedstock—a review. Energy Environ. Sci. 4:73–82 [Google Scholar]
  9. Nzihou A, Flamant G, Stanmore B. 9.  2012. Synthetic fuels from biomass using concentrated solar energy—a review. Energy 42:1121–31 [Google Scholar]
  10. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G. 10.  et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:6031805–9 [Google Scholar]
  11. Chu S, Majumdar A. 11.  2012. Opportunities and challenges for a sustainable energy future. Nature 488:7411294–303 [Google Scholar]
  12. Lewis N, Nocera D. 12.  2006. Powering the planet: chemical challenges in solar energy utilization. PNAS 103:15729–35 [Google Scholar]
  13. Newman J, Hoertz PG, Bonino CA, Trainham JA. 13.  2012. Review: an economic perspective on liquid solar fuels. J. Electrochem. Soc. 159:A1722–29 [Google Scholar]
  14. Turner JA. 14.  1999. A realizable renewable energy future. Science 285:5428687–89 [Google Scholar]
  15. Chueh WC, Falter C, Abbott M, Scipio D, Furler P. 15.  et al. 2010. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:60121797–801 [Google Scholar]
  16. Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A. 16.  2012. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 26:117051–59 [Google Scholar]
  17. Khaselev O, Turner JA. 17.  1998. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:5362425–27 [Google Scholar]
  18. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. 18.  2000. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104:388920–24 [Google Scholar]
  19. Peharz G, Dimroth F, Wittstadt U. 19.  2007. Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrogen Energy 32:153248–52 [Google Scholar]
  20. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z. 20.  et al. 2013. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6:1983–2002 [Google Scholar]
  21. James BD, Baum GN, Perez J, Baum KN. 21.  2009. Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production Tech. Rep., Dir. Technol. Inc., Arlington, VA [Google Scholar]
  22. Kromer M, Roth K, Takata R, Chin P. 22.  2011. Support for cost analyses on solar-driven high temperature thermochemical water-splitting cycles Tech. Rep., TIAX LLC, Lexington, MA
  23. Villasmil W, Brkic M, Wuillemin D, Meier A, Steinfeld A. 23.  2013. Pilot scale demonstration of a 100-kWth solar thermochemical plant for the thermal dissociation of ZnO. J. Solar Energy Eng. 136:1011017 [Google Scholar]
  24. Modestino MA, Walczak KA, Berger A, Evans CM, Haussener S. 24.  et al. 2014. Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy Environ. Sci. 7:297–301 [Google Scholar]
  25. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ. 25.  et al. 2011. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:6056645–48 [Google Scholar]
  26. Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R. 26.  et al. 2012. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon 6:12824–28 [Google Scholar]
  27. Dotan H, Kfir O, Sharlin E, Blank O, Gross M. 27.  et al. 2013. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12:2158–64 [Google Scholar]
  28. Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ. 28.  2012. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5:9922–35 [Google Scholar]
  29. Haussener S, Hu S, Xiang C, Weber AZ, Lewis N. 29.  2013. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6:3605–18 [Google Scholar]
  30. Lewis N. 30.  2013. An integrated, systems approach to the development of solar fuel generators. ECS Interface 22:43–50 [Google Scholar]
  31. Nocera D. 31.  2012. The artificial leaf. Acc. Chem. Res. 45:767–76 [Google Scholar]
  32. Turner JA. 32.  2004. Sustainable hydrogen production. Science 305:5686972–74 [Google Scholar]
  33. Rocheleau RE, Miller EL, Misra A. 33.  1998. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12:13–10 [Google Scholar]
  34. Jacobsson TJ, Fjällström V, Sahlberg M, Edoff M, Edvinsson T. 34.  2013. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6:3676–83 [Google Scholar]
  35. Rau S, Vierrath S, Ohlmann J, Fallisch A, Lackner D. 35.  et al. 2014. Highly efficient solar hydrogen generation—an integrated concept joining III-V solar cells with PEM electrolysis cells. Energy Technol. 2:143–53 [Google Scholar]
  36. Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R. 36.  2013. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4:2195 [Google Scholar]
  37. Jacobsson JT, Fjällström V, Edoff M, Edvinsson T. 37.  2014. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ. Sci. 7:2056–70 [Google Scholar]
  38. van de Krol R, Graetzel M. 38.  2013. Photoelectrochemical Hydrogen Production New York: Springer
  39. Sivula K. 39.  2013. Solar-to-chemical energy conversion with photoelectrochemical tandem cells. CHIMIA Int. J. Chem. 67:3155–61 [Google Scholar]
  40. Bohren C, Huffman D. 40.  2004. Absorption and Scattering of Light by Small Particles New York: John Wiley & Sons
  41. Modest M. 41.  2003. Radiative Heat Transfer Waltham, MA: Academic
  42. Mishchenko MI. 42.  2008. Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev. Geophys. 46:2RG2003 [Google Scholar]
  43. Mishchenko MI, Tishkovets VP, Travis LD, Cairns B, Dlugach JM. 43.  et al. 2011. Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions. J. Quant. Spectrosc. Radiat. Transf. 112:4671–92 [Google Scholar]
  44. Nozik AJ, Memming R. 44.  1996. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100:3113061–78 [Google Scholar]
  45. Bard AJ, Faulkner LR. 45.  2000. Electrochemical Methods: Fundamentals and Applications New York: John Wiley & Sons, 2nd ed..
  46. Newman J, Thomas-Alyea K. 46.  2004. Electrochemical Systems New York: John Wiley & Sons
  47. Patankar S. 47.  1980. Numerical Heat Transfer and Fluid Flow New York: McGraw-Hill Inc.
  48. Ferziger JH, Peric M. 48.  2001. Computational Methods for Fluid Dynamics New York: Springer-Verlag
  49. Tembhurne S, Dumortier M, Haussener S. 49.  2014. Heat transfer modeling in integrated photoelectrochemical hydrogen generators using concentrated irradiation. Proc. 15th Int. Heat Transf. Conf., Aug. 10–15, Kyoto, Jpn. [Google Scholar]
  50. Rocheleau RE, Miller EL. 50.  1997. Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22:771–82 [Google Scholar]
  51. Winkler MT, Cox CR, Nocera DG, Buonassisi T. 51.  2013. Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits. PNAS 110:12E1076–82 [Google Scholar]
  52. Hu S, Xiang C, Haussener S, Berger AD, Lewis NS. 52.  2013. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6:2984–93 [Google Scholar]
  53. Surendranath Y, Bediako DK, Nocera DG. 53.  2012. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves. PNAS 109:15617 [Google Scholar]
  54. Shaner MR, Fountaine KT, Ardo S, Coridan RH, Atwater HA, Lewis NS. 54.  2014. Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 7:2779–90 [Google Scholar]
  55. Andrade L, Lopes T, Aguilar Ribeiro H, Mendes A. 55.  2011. Transient phenomenological modeling of photoelectrochemical cells for water splitting—application to undoped hematite electrodes. Int. J. Hydrogen Energy 36:1175–88 [Google Scholar]
  56. Berger A, Segalman RA, Newman J. 56.  2014. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy Environ. Sci. 7:1468–76 [Google Scholar]
  57. Carver C, Ulissi Z, Ong CK, Dennison S, Kelsall GH, Hellgardt K. 57.  2012. Modelling and development of photoelectrochemical reactor for H2 production. Int. J. Hydrogen Energy 37:32911–23 [Google Scholar]
  58. Singh MR, Stevens JC, Weber AZ. 58.  2014. Design of membrane-encapsulated wireless photoelectrochemical cells for hydrogen production. J. Electrochem. Soc. 161:8E3283–96 [Google Scholar]
  59. Bolton JR, Strickler SJ, Connolly JS. 59.  1985. Limiting and realizable efficiencies of solar photolysis of water. Nature 316:6028495–500 [Google Scholar]
  60. Fujishima A, Honda K. 60.  1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:535837–38 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061114-123357
Loading
/content/journals/10.1146/annurev-chembioeng-061114-123357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error