1932

Abstract

Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061312-103308
2014-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-061312-103308.html?itemId=/content/journals/10.1146/annurev-chembioeng-061312-103308&mimeType=html&fmt=ahah

Literature Cited

  1. Vishweshwar P, McMahon JA, Oliveira M, Peterson ML, Zaworotko MJ. 1.  2005. The predictably elusive form II of aspirin. J. Am. Chem. Soc. 127:16802–3 [Google Scholar]
  2. Cui X, Rohl AL, Shtukenberg A, Kahr B. 2.  2013. Twisted aspirin crystals. J. Am. Chem. Soc. 135:3395–98 [Google Scholar]
  3. IMAP 2011. Pharmaceuticals & Biotech Industry Global Report—2011 Barcelona: IMAP, Inc http://www.imap.com/imap/media/resources/IMAP_PharmaReport_8_272B8752E0FB3.pdf
  4. Rasenack N, Müller BW. 4.  2002. Ibuprofen crystals with optimized properties. Int. J. Pharm. 245:9–24 [Google Scholar]
  5. Larhrib H, Martin GP, Marriott C, Prime D. 5.  2003. The influence of carrier and drug morphology on drug delivery from dry powder formulations. Int. J. Pharm. 257:283–96 [Google Scholar]
  6. Global Ind. Anal 2012. Adipic Acid: A Global Strategic Business Report. San Jose, CA: Global Ind. Anal., Inc http://www.strategyr.com/adipic_acid_market_report.asp
  7. David R, Marchal P, Klein J-P, Villermaux J. 7.  1991. Crystallization and precipitation engineering—III. A discrete formulation of the agglomeration rate of crystals in a crystallization process. Chem. Eng. Sci. 46:205–13 [Google Scholar]
  8. Sunagawa I. 8.  2007. Crystals: Growth, Morphology, and Perfection Cambridge, UK: Cambridge Univ. Press
  9. Markov IV. 9.  2004. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy Singapore: World Sci. Publ.
  10. Pimpinelli A, Villain J. 10.  1999. Physics of Crystal Growth Cambridge, UK: Cambridge Univ. Press
  11. Jackson K. 11.  2010. Kinetic Processes Weinheim: Wiley-VCH
  12. De Yoreo JJ, Vekilov PG. 12.  2003. Principles of crystal nucleation and growth. Reviews in mineralogy & geochemistry. Biomineralization PM Dove, JJ Yoreo, S Weiner 57–93 Washington, DC: Miner. Soc. Am. [Google Scholar]
  13. Oxtoby DW. 13.  1998. Nucleation of first-order phase transitions. Acc. Chem. Res. 31:91–97 [Google Scholar]
  14. Ha J-M, Wolf JH, Hillmyer MA, Ward MD. 14.  2004. Polymorph selectivity under nanoscopic confinement. J. Am. Chem. Soc. 126:3382–83 [Google Scholar]
  15. Ha J-M, Hillmyer MA, Ward MD. 15.  2005. Thermotropic properties of organic nanocrystals embedded in ultrasmall crystallization chambers. J. Phys. Chem. B 109:1392–99 [Google Scholar]
  16. Beiner M, Rengarajan GT, Pankaj S, Enke D, Steinhart M. 16.  2007. Manipulating the crystalline state of pharmaceuticals by nanoconfinement. Nano Lett. 7:1381–85 [Google Scholar]
  17. Rengarajan GT, Enke D, Beiner M. 17.  2007. Crystallization behavior of acetaminophen in nanopores. Open Phys. Chem. J. 1:18–24 [Google Scholar]
  18. Hamilton BD, Hillmyer MA, Ward MD. 18.  2008. Glycine polymorphism in nanoscale crystallization chambers. Cryst. Growth Des. 8:3368–75 [Google Scholar]
  19. Ha J-M, Hamilton BD, Hillmyer MA, Ward MD. 19.  2009. Phase behavior and polymorphism of organic crystals confined within nanoscale chambers. Cryst. Growth Des. 9:4766–77 [Google Scholar]
  20. Rengarajan GT, Enke D, Steinhart M, Beiner M. 20.  2011. Size-dependent growth of polymorphs in nanopores and Ostwald's step rule of stages. Phys. Chem. Chem. Phys. 13:21367–74 [Google Scholar]
  21. Koh YP, Simon SL. 21.  2012. Crystallization and vitrification of a cyanurate trimer in nanopores. J. Phys. Chem. B 116:7754–61 [Google Scholar]
  22. Hamilton BD, Weissbuch I, Lahav M, Hillmyer MA, Ward MD. 22.  2009. Manipulating crystal orientation in nanoscale cylindrical pores by stereochemical inhibition. J. Am. Chem. Soc. 131:2588–96 [Google Scholar]
  23. Kim BS, Jeong YG, Shin K. 23.  2013. Influence of surface property on the crystallization of hentetracontane under nanoscopic cylindrical confinement. J. Phys. Chem. B 117:5978–88 [Google Scholar]
  24. Jiang Q, Hu C, Ward MD. 24.  2013. Stereochemical control of polymorph transitions in nanoscale reactors. J. Am. Chem. Soc. 135:2144–47 [Google Scholar]
  25. Jackson CL, McKenna GB. 25.  1996. Vitrification and crystallization of organic liquids confined to nanoscale pores. Chem. Mater. 8:2128–37 [Google Scholar]
  26. Rengarajan GT, Enke D, Steinhart M, Beiner M. 26.  2008. Stabilization of the amorphous state of pharmaceuticals in nanopores. J. Mater. Chem. 18:2537–39 [Google Scholar]
  27. Dosseh G, Xia Y, Alba-Simionesco C. 27.  2003. Cyclohexane and benzene confined in MCM-41 and SBA-15: confinement effects on freezing and melting. J. Phys. Chem. B 107:6445–53 [Google Scholar]
  28. Jackson CL, McKenna GB. 28.  1990. The melting behavior of organic materials confined in porous solids. J. Chem. Phys. 93:9002–11 [Google Scholar]
  29. Zhang Z, XX, Jiang Q. 29.  1999. Finite size effect on melting enthalpy and melting entropy of nanocrystals. Physica B 270:249–54 [Google Scholar]
  30. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YA, Shutova ES. 30.  2003. Polymorphism of glycine, part I. J. Therm. Anal. Calorim. 73:409–18 [Google Scholar]
  31. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YA, Shutova ES. 31.  2003. Polymorphism of glycine, part II. J. Therm. Anal. Calorim. 73:419–28 [Google Scholar]
  32. Marsh R. 32.  1958. A refinement of the crystal structure of glycine. Acta Crystallogr. 11:654–63 [Google Scholar]
  33. Wu H, Wang W, Huang Y, Wang C, Su Z. 33.  2008. Polymorphic behavior of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromolecules 41:7755–58 [Google Scholar]
  34. Lutkenhaus JL, McEnnis K, Serghei A, Russell TP. 34.  2010. Confinement effects on crystallization and Curie transitions of poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules 43:3844–50 [Google Scholar]
  35. Xiong S, Wang Q, Xia H. 35.  2004. Preparation of polyaniline nanotubes array based on anodic aluminum oxide template. Mater. Res. Bull. 39:1569–80 [Google Scholar]
  36. Hamilton BD, Ha J-M, Hillmyer MA, Ward MD. 36.  2012. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc. Chem. Res. 45:414–23 [Google Scholar]
  37. Weissbuch I, Torbeev VY, Leiserowitz L, Lahav M. 37.  2005. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. Int. Ed. 44:3226–29 [Google Scholar]
  38. Torbeev VY, Shavit E, Weissbuch I, Leiserowitz L, Lahav M. 38.  2005. Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions. Cryst. Growth Des. 5:2190–96 [Google Scholar]
  39. Hull D, Bacon DJ. 39.  2001. Introduction to Dislocations Oxford, UK: Butterworth Heinemann, 4th ed..
  40. Chernov AA. 40.  1984. Modern Crystallography III. Crystal Growth Berlin: Springer
  41. Klapper H. 41.  2000. Generation and propagation of dislocations during crystal growth. Mater. Chem. Phys. 66:101–9 [Google Scholar]
  42. Punin YuO, Shtukenberg AG. 42.  2008. Autodeformation Defects in Crystals St. Petersburg, Russ: St. Petersburg Univ. Press318 (in Russian)
  43. Kelly AA, Knowles KM. 43.  2012. Crystallography and Crystal Defects New York: Wiley, 2nd ed..
  44. Shtukenberg AG, Punin YuO, Haegele E, Klapper H. 44.  2001. On the origin of inhomogeneity of anomalous birefringence in mixed crystals: an example of alums. Phys. Chem. Miner. 28:665–74 [Google Scholar]
  45. Kuz'mina MA, Moshkin SV. 45.  2005. Growth dislocations in zonal isomorphously mixed crystals. Crystallogr. Rep. 50:98–101 [Google Scholar]
  46. Klapper H. 46.  2010. Generation and propagation of defects during crystal growth. Springer Handbook of Crystal Growth G Dhanaraj, K Byrappa, V Prasad, M Dudley 93–132 Berlin-Heidelberg: Springer [Google Scholar]
  47. Neuroth G, Klapper H. 47.  1998. Der Einfluß von Einschlußbildung und mechanischer Verletzung auf das Wachstum und die Perfektion von Kristallen. Chem. Ing. Tech. 70:1535–38 [Google Scholar]
  48. Bullard T, Freudenthal J, Avagyan S, Kahr B. 48.  2007. Test of Cairns-Smith's ‘crystals-as-genes’ hypothesis. Faraday Discuss. 136:231–45 [Google Scholar]
  49. Bullard T, Wustholz KL, Bott ED, Robertson M, Reid PJ, Kahr B. 49.  2009. Role of kinks in dyeing crystals: confocal luminescence microscopy from single molecules to square centimeters. Cryst. Growth Des. 9:982–90 [Google Scholar]
  50. Mchedlov-Petrossyan NO, Rubtsov MI, Lukatskaya LL. 50.  1992. Ionization and tautomerism of chloro-derivatives of fluorescein in water and aqueous acetone. Dyes Pigment. 18:179–98 [Google Scholar]
  51. Mchedlov-Petrossyan NO, Salamanova NV, Vodolazkaya NA, Gurina YA, Borodenko VI. 51.  2006. A dibasic acid with reversed order of the stepwise ionization constants: 2,7-dichlorofluorescein in the ternary solvent mixture benzene–ethanol–water. J. Phys. Org. Chem. 19:365–75 [Google Scholar]
  52. Harris DC. 52.  1999. Quantitative Chemical Analysis New York: WH Freeman, 5th ed..
  53. Vicsek T. 53.  1992. Fractal Growth Phenomena Hackensack, NJ: World Sci. Publ, 2nd ed..
  54. Sangwal K. 54.  2007. Additives and Crystallization Processes: From Fundamentals to Applications New York: Wiley
  55. Lovette MA, Browning AR, Griffin DW, Sizemore JP, Snyder RC, Doherty MF. 55.  2008. Crystal shape engineering. Ind. Eng. Chem. 47:9812–33 [Google Scholar]
  56. Dandekar P, Kuvadia ZB, Doherty MF. 56.  2013. Engineering crystal morphology. Annu. Rev. Mater. Res. 43:359–86 [Google Scholar]
  57. Davey RJ. 57.  1986. The role of the solvent in crystal growth from solution. J. Cryst. Growth 76:637–44 [Google Scholar]
  58. Abbona F, Aquilano D. 58.  2010. Morphology of crystals grown from solution. Springer Handbook of Crystal Growth G Dhanaraj, K Byrappa, V Prasad, M Dudley 53–92 Berlin-Heidelberg: Springer [Google Scholar]
  59. Addadi L, Berkovitch-Yellin Z, Weissbuch I, van Mil J, Shimon LJW. 59.  et al. 1985. Growth and dissolution of organic crystals with “tailor-made” inhibitors—implications in stereochemistry and materials science. Angew. Chem. Int. Ed. 24:466–85 [Google Scholar]
  60. Weissbuch I, Addadi L, Leiserowitz L. 60.  1991. Molecular recognition at crystal interfaces. Science 253:637–45 [Google Scholar]
  61. Berkovitch-Yellin Z, Van Mil J, Addadi L, Idelson M, Lahav M, Leiserowitz L. 61.  1985. Crystal morphology engineering by “tailor-made” inhibitors: a new probe to fine intermolecular interactions. J. Am. Chem. Soc. 107:3111–22 [Google Scholar]
  62. Jones F, Ogden MI. 62.  2010. Controlling crystal growth with modifiers. CrystEngComm 12:1016–23 [Google Scholar]
  63. Weissbuch I, Lahav M, Leiserowitz L. 63.  2003. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des. 3:125–50 [Google Scholar]
  64. Gey WA, Dalbey ER, van Dolah RW. 64.  1956. Studies of the linear crystallization of TNT systems. J. Am. Chem. Soc. 78:1803–10 [Google Scholar]
  65. Albon N, Dunning WJ. 65.  1962. Growth of sucrose crystals: determination of edge energy from the effect of added impurity on rate of step advance. Acta Cryst. 15:474–76 [Google Scholar]
  66. Simon B, Grassi A, Boistelle R. 66.  1974. Cinetique de croissance de la face (110) de la paraffine C36H74 en solution. J. Cryst. Growth 26:90–96 [Google Scholar]
  67. Black SN, Davey RJ, Halcrow M. 67.  1986. The kinetics of crystal growth in the presence of tailor-made additives. J. Cryst. Growth 79:765–74 [Google Scholar]
  68. Shekunov BYu, Grant DJW, Latham RJ, Sherwood JN. 68.  1997. In situ optical interferometric studies of the growth and dissolution behavior of paracetamol (acetaminophen) crystals. 3. Influence of growth in the presence of p-acetoxyacetanilide. J. Phys. Chem. B 101:9107–12 [Google Scholar]
  69. Ristic RI, De Yoreo JJ, Chew CM. 69.  2008. Does impurity-induced step-bunching invalidate key assumptions of the Cabrera-Vermilyea model?. Cryst. Growth Des. 8:1119–22 [Google Scholar]
  70. Rimer JD, An Z, Zhu Z, Lee MH, Goldfarb DS. 70.  et al. 2010. Crystal growth inhibitors for the prevention of l-cystine kidney stones through molecular design. Science 330:337–41 [Google Scholar]
  71. Sgualdino G, Aquilano D, Fioravanti R, Vaccari G, Pastero L. 71.  2005. Growth kinetics, adsorption and morphology of sucrose crystals from aqueous solutions in the presence of raffinose. Cryst. Res. Technol. 40:1087–93 [Google Scholar]
  72. Sgualdino G, Aquilano D, Cincotti A, Pastero L, Vaccari G. 72.  2006. Face-by-face growth of sucrose crystals from aqueous solutions in the presence of raffinose. I. Experiments and kinetic-adsorption model. J. Cryst. Growth 292:92–103 [Google Scholar]
  73. Yang X, Qian G, Duan X, Zhou X. 73.  2013. Impurity effect of l-valine on l-alanine crystal growth. Cryst. Growth Des. 13:1295–300 [Google Scholar]
  74. van Enckevort WJP, Los JH. 74.  2008. “Tailor-made” inhibitors in crystal growth: a Monte Carlo simulation study. J. Phys. Chem. C 112:6380–89 [Google Scholar]
  75. Sizemore JP, Doherty MF. 75.  2009. A new model for the effect of molecular imposters on the shape of faceted molecular crystals. Cryst. Growth Des. 9:2637–45 [Google Scholar]
  76. Kuvadia ZB, Doherty MF. 76.  2013. Effect of structurally similar additives on crystal habit of organic molecular crystals at low supersaturation. Cryst. Growth Des. 13:1412–28 [Google Scholar]
  77. Bernauer F. 77.  1929. “Gedrillte” Kristalle. Berlin: Gebrüder Borntraeger102 [Google Scholar]
  78. Shtukenberg AG, Punin YuO, Gujral A, Kahr B. 78.  2014. Growth actuated bending and twisting of crystals. Angew. Chem. 53:672–99 [Google Scholar]
  79. Shtukenberg AG, Cui X, Freudenthal J, Gunn E, Camp E, Kahr B. 79.  2012. Twisted mannitol crystals establish homologous growth mechanisms for high polymer and small molecule ring banded spherulites. J. Am. Chem. Soc. 134:6354–64 [Google Scholar]
  80. Shtukenberg AG, Gunn E, Yu L, Kahr B. 80.  2011. Glass-crystal growth mode for testosterone propionate. Cryst. Growth Des. 11:4458–62 [Google Scholar]
  81. Kahr B, Shtukenberg A, Gunn E, Carter DJ, Rohl AL. 81.  2011. Controlling mesoscale crystal helicity with additives, again. Cryst. Growth Des. 11:2070–73 [Google Scholar]
  82. Lotz B, Cheng SZD. 82.  2005. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46:577–610 [Google Scholar]
  83. Eshelby JD. 83.  1953. Screw dislocations in thin rods. J. Appl. Phys. 24:176–79 [Google Scholar]
  84. Bierman MJ, Lau YKA, Kvit AV, Schmitt AL, Jin S. 84.  2008. Dislocation-driven nanowire growth and Eshelby twist. Science 320:1060–63 [Google Scholar]
  85. Zhu J, Peng H, Marshall AF, Barnett DM, Nix WD, Cui Y. 85.  2008. Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3:477–81 [Google Scholar]
  86. Schultz JM, Kinloch DR. 86.  1969. Transverse screw dislocations: a source of twist in crystalline polymer ribbons. Polymer 10:271–78 [Google Scholar]
  87. Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ. 87.  2003. An atomic force microscopy observation of poly(vinylidene fluoride) banded spherulites. J. Macromol. Sci. B 42:753–60 [Google Scholar]
  88. Toda A, Taguchi K, Kajioka H. 88.  2008. Instability-driven branching of lamellar crystals in polyethylene spherulites. Macromolecules 41:7505–12 [Google Scholar]
  89. Schultz JM. 89.  2003. Self-induced field model for crystal twisting in spherulites. Polymer 44:433–41 [Google Scholar]
  90. Imai H, Oaki Y. 90.  2010. Emergence of helical morphologies with crystals: twisted growth under diffusion-limited conditions and chirality control with molecular recognition. CrystEngComm 12:1679–87 [Google Scholar]
  91. Knight CA. 91.  1962. Curved growth of ice on surfaces. J. Appl. Phys. 33:1808–15 [Google Scholar]
  92. Keith HD, Padden FJ. 92.  1984. Twisting orientation and the role of transient states in polymer crystallization. Polymer 25:28–42 [Google Scholar]
  93. Keith HD, Padden FJ. 93.  1996. Banding in polyethylene and other spherulites. Macromolecules 29:7776–86 [Google Scholar]
  94. Punin YO, Artamonova OI. 94.  2001. Autodeformation bending of gypsum crystals grown under the conditions of counterdiffusion. Cryst. Rep. 46:138–43 [Google Scholar]
  95. Shtukenberg AG, Freudenthal J, Kahr B. 95.  2010. Reversible twisting during helical hippuric acid crystal growth. J. Am. Chem. Soc. 132:9341–49 [Google Scholar]
  96. Wallerant F. 96.  1906. Sur l'origine des enroulements helicoidaux dans les corps cristallises. C. R. Acad. Sci. 143:1169–70 [Google Scholar]
  97. Timoshenko S, Goodier JN. 97.  1982. Theory of Elasticity Singapore: McGraw Hill
  98. Horowitz G, Hajlaoui ME. 98.  2000. Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv. Mater. 12:1046–50 [Google Scholar]
  99. Lee SS, Kim CS, Gomez ED, Purushothaman B, Toney MF. 99.  et al. 2009. Controlling nucleation and crystallization in solution-processed organic semiconductors for thin-film transistors. Adv. Mater. 21:3605–9 [Google Scholar]
  100. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL. 100.  et al. 2004. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–46 [Google Scholar]
  101. Bauer J, Spanton S, Henry R, Quick J, Dziki W. 101.  et al. 2001. Ritonavir: an extraordinary example of conformational polymorphism. Pharm. Res. 18:859–66 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061312-103308
Loading
/content/journals/10.1146/annurev-chembioeng-061312-103308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error