1932

Abstract

Ion exchange membranes are used in various membrane-based processes (e.g., electrodialysis, fuel cells). Charged solute transport is largely governed by the charged groups on the polymer backbone. In this review, fundamental relationships describing salt permeability and ionic conductivity, as well as water permeability, in charged polymers are developed within the framework of the Nernst-Planck and solution-diffusion models. The influence of fixed charge groups and polymer structure on water sorption and diffusion is discussed. Current understanding of ion partitioning in charged polymers, focusing on the use of thermodynamic models (i.e., Donnan theory) to describe such phenomena, is summarized. Ion diffusivity data from the literature are interpreted using a model developed by Mackie and Meares to assess relative and absolute effects of the polymer and fixed charge groups on ion diffusivity. Furthermore, membrane requirements for several important technologies are listed. Knowledge gaps and opportunities for fundamental research are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-033533
2016-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-033533.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-033533&mimeType=html&fmt=ahah

Literature Cited

  1. Webber ME. 1.  2008. Catch 22: water versus energy. Sci. Am. Spec. Ed. 18:434–41 [Google Scholar]
  2. Healy RW, Alley WM, Engle MA, McMahon PB, Bales JD. 2.  2015. The water-energy nexus—an earth science perspective USGS Circ. 1,407
  3. Maupin MA, Kenny JF, Hutson SS, Lovelace JK, Barber NL, Linsey KS. 3.  2014. Estimated use of water in the United States in 2010 US Geol. Surv. Circ. 1,405
  4. Gallegos TJ, Varela BA, Haines SS, Engle MA. 4.  2015. Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resour. Res. 51:5839–45 [Google Scholar]
  5. Sanders KT, Webber ME. 5.  2012. Evaluating the energy consumed for water use in the United States. Environ. Res. Lett. 7:034034 [Google Scholar]
  6. 6. US Geol. Survey 2015. The World's Water. Washington, DC: US Geol. Survey http://water.usgs.gov/edu/earthwherewater.html
  7. Baker RW. 7.  2004. Membrane Technology and Applications Chichester, NY: J. Wiley
  8. Cath TY, Childress AE, Elimelech M. 8.  2006. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281:70–87 [Google Scholar]
  9. Geise GM, Lee HS, Miller DJ, Freeman BD, McGrath JE, Paul DR. 9.  2010. Water purification by membranes: the role of polymer science. J. Polym. Sci. B Polym. Phys. 48:1685–718 [Google Scholar]
  10. Grimm J, Bessarabov D, Sanderson R. 10.  1998. Review of electro-assisted methods for water purification. Desalination 115:285–94 [Google Scholar]
  11. Hickner MA. 11.  2010. Ion-containing polymers: new energy & clean water. Mater. Today 13:34–41 [Google Scholar]
  12. Kreuer KD. 12.  2001. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185:29–39 [Google Scholar]
  13. Lee KP, Arnot TC, Mattia D. 13.  2011. A review of reverse osmosis membrane materials for desalination—development to date and future potential. J. Membr. Sci. 370:1–22 [Google Scholar]
  14. Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I. 14.  2011. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4:1147–60 [Google Scholar]
  15. McCutcheon JR, McGinnis RL, Elimelech M. 15.  2005. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination 174:1–11 [Google Scholar]
  16. Mohammadi T, Skyllas-Kazacos M. 16.  1995. Characterization of novel composite membrane for redox flow battery applications. J. Membr. Sci. 98:77–87 [Google Scholar]
  17. Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ. 17.  et al. 2007. Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 288:218–30 [Google Scholar]
  18. Turek M, Bandura B. 18.  2007. Renewable energy by reverse electrodialysis. Desalination 205:67–74 [Google Scholar]
  19. Xu TW, Huang CH. 19.  2008. Electrodialysis-based separation technologies: a critical review. AIChE J. 54:3147–59 [Google Scholar]
  20. Zhao SF, Zou L, Tang CYY, Mulcahy D. 20.  2012. Recent developments in forward osmosis: opportunities and challenges. J. Membr. Sci. 396:1–21 [Google Scholar]
  21. Scrosati B, Hassoun J, Sun YK. 21.  2011. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4:3287–95 [Google Scholar]
  22. Cusick RD, Kim Y, Logan BE. 22.  2012. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335:1474–77 [Google Scholar]
  23. Długołeçki P, Gambier A, Nijmeijer K, Wessling M. 23.  2009. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ. Sci. Technol. 43:6888–94 [Google Scholar]
  24. McGinnis RL, McCutcheon JR, Elimelech M. 24.  2007. A novel ammonia-carbon dioxide osmotic heat engine for power generation. J. Membr. Sci. 305:13–19 [Google Scholar]
  25. Nagarale RK, Gohil GS, Shahi VK. 25.  2006. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 119:97–130 [Google Scholar]
  26. Veerman J, de Jong RM, Saakes M, Metz SJ, Harmsen GJ. 26.  2009. Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. J. Membr. Sci. 343:7–15 [Google Scholar]
  27. Xu TW. 27.  2005. Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 263:1–29 [Google Scholar]
  28. Thorsen T, Holt T. 28.  2009. The potential for power production from salinity gradients by pressure retarded osmosis. J. Membr. Sci. 335:103–10 [Google Scholar]
  29. Kim YC, Elimelech M. 29.  2013. Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: analysis and experiments. J. Membr. Sci. 429:330–37 [Google Scholar]
  30. Logan BE, Elimelech M. 30.  2012. Membrane-based processes for sustainable power generation using water. Nature 488:313–19 [Google Scholar]
  31. Chung TS, Zhang S, Wang KY, Su JC, Ling MM. 31.  2012. Forward osmosis processes: yesterday, today and tomorrow. Desalination 287:78–81 [Google Scholar]
  32. Geise GM, Paul DR, Freeman BD. 32.  2014. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39:1–42 [Google Scholar]
  33. Park HB, Freeman BD, Zhang ZB, Sankir M, McGrath JE. 33.  2008. Highly chlorine-tolerant polymers for desalination. Angew. Chem. Int. Ed. 47:6019–24 [Google Scholar]
  34. Paul M, Park HB, Freeman BD, Roy A, McGrath JE, Riffle JS. 34.  2008. Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer 49:2243–52 [Google Scholar]
  35. Dorfner K. 35.  1972. Ion Exchangers: Properties and Applications Ann Arbor, MI: Ann Arbor Sci.
  36. Helfferich F. 36.  1995. Ion Exchange New York: Dover Publ.
  37. Sata T. 37.  2004. Ion Exchange Membranes London: R. Soc. Chem.
  38. Paul DR. 38.  2004. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 241:371–86 [Google Scholar]
  39. Wijmans JG, Baker RW. 39.  1995. The solution-diffusion model—a review. J. Membr. Sci. 107:1–21 [Google Scholar]
  40. Harrison WL, Hickner MA, Kim YS, McGrath JE. 40.  2005. Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: synthesis, characterization, and performance—a topical review. Fuel Cells 5:201–12 [Google Scholar]
  41. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. 41.  2004. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104:4587–611 [Google Scholar]
  42. Geise GM, Freeman BD, Paul DR. 42.  2010. Characterization of a novel sulfonated pentablock copolymer for desalination applications. Polymer 51:5815–22 [Google Scholar]
  43. Xie W, Cook J, Park HB, Freeman BD, Lee CH, McGrath JE. 43.  2011. Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer 52:2032–43 [Google Scholar]
  44. Weiss RA, Sen A, Pottick LA, Willis CL. 44.  1991. Block copolymer ionomers: 2. Viscoelastic and mechanical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer 32:2785–92 [Google Scholar]
  45. Weiss RA, Sen A, Willis CL, Pottick LA. 45.  1991. Block copolymer ionomers: 1. Synthesis and physical properties of sulfonated poly(styrene ethylene/butylene styrene). Polymer 32:1867–74 [Google Scholar]
  46. Geise GM, Willis CL, Doherty CM, Hill AJ, Bastow TJ. 46.  et al. 2013. Characterization of aluminum-neutralized sulfonated styrenic pentablock copolymer films. Ind. Eng. Chem. Res. 52:1056–68 [Google Scholar]
  47. Inui K, Noguchi T, Miyata T, Uragami T. 47.  1999. Pervaporation characteristics of methyl methacrylate-methacrylic acid copolymer membranes ionically crosslinked with metal ions for a benzene/cyclohexane mixture. J. Appl. Polym. Sci. 71:233–41 [Google Scholar]
  48. Taubert A, Wind JD, Paul DR, Koros WJ, Winey KI. 48.  2003. Novel polyimide ionomers: CO2 plasticization, morphology, and ion distribution. Polymer 44:1881–92 [Google Scholar]
  49. Geise GM, Freeman BD, Paul DR. 49.  2013. Sodium chloride diffusion in sulfonated polymers for membrane applications. J. Membr. Sci. 427:186–96 [Google Scholar]
  50. Khare AR, Peppas NA. 50.  1995. Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–67 [Google Scholar]
  51. Smith JM, Van Ness HC. 51.  1987. Introduction to Chemical Engineering Thermodynamics New York: McGraw-Hill
  52. Paul DR. 52.  1972. The role of membrane pressure in reverse osmosis. J. Appl. Polym. Sci. 16:771–82 [Google Scholar]
  53. Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE. 53.  2011. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369:130–38 [Google Scholar]
  54. Ju H, Sagle AC, Freeman BD, Mardel JI, Hill AJ. 54.  2010. Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels. J. Membr. Sci. 358:131–41 [Google Scholar]
  55. Lonsdale HK, Merten U, Riley RL. 55.  1965. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 9:1341–62 [Google Scholar]
  56. Xie W, Ju H, Geise GM, Freeman BD, Mardel JI. 56.  et al. 2011. Effect of free volume on water and salt transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Macromolecules 44:4428–38 [Google Scholar]
  57. Yasuda H, Lamaze CE, Peterlin A. 57.  1971. Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J. Polym. Sci. A-2 Polym. Phys. 9:1117–31 [Google Scholar]
  58. Yasuda H, Lamaze CE, Ikenberry LD. 58.  1968. Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Makromol. Chem. 118:19–35 [Google Scholar]
  59. Bard AJ, Faulkner LR. 59.  2001. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  60. Kamcev J, Paul DR, Freeman BD. 60.  2015. Ion activity coefficients in ion exchange polymers: applicability of Manning's counterion condensation theory. Macromolecules 48:8011–24 [Google Scholar]
  61. Crank J, Park G. 61.  1968. Diffusion in Polymers London: Academic
  62. Millet P. 62.  1990. Determination of self-diffusion coefficients from conductivity measurements in perfluorinated ionomer membranes. J. Membr. Sci. 50:325–28 [Google Scholar]
  63. Spiegler KS, Coryell CD. 63.  1953. Electromigration in a cation-exchange resin. III. Correlation of self-diffusion coefficients of ions in a cation-exchange membrane to its electrical conductance. J. Phys. Chem. 57:687–90 [Google Scholar]
  64. Lakshminarayanaiah N. 64.  1972. Transport Phenomena in Membranes London: Academic
  65. Strathmann H. 65.  2004. Ion-Exchange Membrane Separation Processes Amsterdam: Elsevier
  66. Boyd GE, Bunzl K. 66.  1967. The Donnan equilibrium in cross-linked polystyrene cation and anion exchangers. J. Am. Chem. Soc. 89:1776–80 [Google Scholar]
  67. Freeman DH, Patel VC, Buchanan TM. 67.  1965. Electrolyte uptake equilibria with low cross-linked ion-exchange resins. J. Phys. Chem. 69:1477–81 [Google Scholar]
  68. Geise GM, Falcon LP, Freeman BD, Paul DR. 68.  2012. Sodium chloride sorption in sulfonated polymers for membrane applications. J. Membr. Sci. 423:195–208 [Google Scholar]
  69. Gottlieb MH, Gregor HP. 69.  1954. Studies on ion exchange resins 11. Activity coefficients of diffusible ions in a strong base anion-exchange resin. J. Am. Chem. Soc. 76:4639–41 [Google Scholar]
  70. Gregor HP, Gottlieb MH. 70.  1953. Studies on ion exchange resins 8. Activity coefficients of diffusible ions in various cation-exchange resins. J. Am. Chem. Soc. 75:3539–43 [Google Scholar]
  71. Gustafson RL. 71.  1963. Donnan equilibria in cross-linked polymethacrylic acid-sodium chloride systems. J. Phys. Chem. 67:2549–57 [Google Scholar]
  72. Gustafson RL. 72.  1966. Donnan equilibria in polystyrenesulfonate gels. J. Phys. Chem. 70:957–61 [Google Scholar]
  73. Kraus KA, Moore GE. 73.  1953. Anion exchange studies 5. Adsorption of hydrochloric acid by a strong base anion exchanger. J. Am. Chem. Soc. 75:1457–60 [Google Scholar]
  74. Lakshminarayanaiah N. 74.  1963. Activity coefficients of small ions in ion-exchange resins. J. Polym. Sci. A Gen. Pap. 1:139–49 [Google Scholar]
  75. Mackie JS, Meares P. 75.  1955. The sorption of electrolytes by a cation-exchange resin membrane. Proc. R. Soc. Lond. A Math. Phys. Sci. 232:485–98 [Google Scholar]
  76. Nelson F, Kraus KA. 76.  1958. Anion-exchange studies 23. Activity coefficients of some electrolytes in the resin phase. J. Am. Chem. Soc. 80:4154–61 [Google Scholar]
  77. Pintauro PN, Bennion DN. 77.  1984. Mass transport of electrolytes in membranes. 2. Determination of sodium chloride equilibrium and transport parameters for Nafion. Ind. Eng. Chem. Fundam. 23:234–43 [Google Scholar]
  78. Newman JS, Thomas-Alyea KE. 78.  2004. Electrochemical Systems. Hoboken, NJ: Wiley
  79. Donnan FG. 79.  1924. The theory of membrane equilibria. Chem. Rev. 1:73–90 [Google Scholar]
  80. Donnan FG. 80.  1995. Theory of membrane equilibria and membrane-potentials in the presence of non-dialyzing electrolytes—a contribution to physical-chemical physiology (reprinted from Zeitshrift fur Elektrochemie und Angewandte Physikalische Chemie, vol 17, pg 572, 1911). J. Membr. Sci. 100:45–55 [Google Scholar]
  81. Elmoussaoui R, Pourcelly G, Maeck M, Hurwitz HD, Gavach C. 81.  1994. Co-ion leakage through bipolar membranes influence on I–V responses and water-splitting efficiency. J. Membr. Sci. 90:283–92 [Google Scholar]
  82. Wilhelm FG, Punt I, van der Vegt NFA, Wessling M, Strathmann H. 82.  2001. Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid-base electrodialysis. J. Membr. Sci. 182:13–28 [Google Scholar]
  83. Yip NY, Vermaas DA, Nijmeijer K, Elimelech M. 83.  2014. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ. Sci. Technol. 48:4925–36 [Google Scholar]
  84. Glueckauf E. 84.  1962. A new approach to ion exchange polymers. Proc. R. Soc. Lond. A Math. Phys. Sci. 268:350–70 [Google Scholar]
  85. Glueckauf E, Watts RE. 85.  1961. Non-uniformity of cross-linking in ion-exchange polymers. Nature 191:904–5 [Google Scholar]
  86. Glueckauf E, Watts RE. 86.  1962. The Donnan law and its application to ion exchanger polymers. Proc. R. Soc. Lond. A Math. Phys. Sci. 268:339–49 [Google Scholar]
  87. Beers KM, Hallinan DT, Wang X, Pople JA, Balsara NP. 87.  2011. Counterion condensation in Nafion. Macromolecules 44:8866–70 [Google Scholar]
  88. Kamcev J, Jang ES, Yan N, Paul DR, Freeman BD. 88.  2015. Effect of ambient carbon dioxide on salt permeability and sorption measurements in ion-exchange membranes. J. Membr. Sci. 479:55–66 [Google Scholar]
  89. Gordon JE. 89.  1962. Proton magnetic resonance and infrared spectra of some ion-exchange resin-solvent systems. J. Phys. Chem. 66:1150–58 [Google Scholar]
  90. Kwak JCT. 90.  1973. Mean activity coefficients for simple electrolyte in aqueous mixtures of polyelectrolyte and simple electrolyte. System sodium polystyrenesulfonate-sodium chloride. J. Phys. Chem. 77:2790–93 [Google Scholar]
  91. Nagasawa M, Izumi M, Kagawa I. 91.  1959. Colligative properties of polyelectrolyte solutions. V. Activity coefficients of counter- and by-ions. J. Polym. Sci. 37:375–83 [Google Scholar]
  92. Nagasawa M, Kagawa I. 92.  1957. Colligative properties of polyelectrolyte solutions. IV. Activity coefficient of sodium ion. J. Polym. Sci. 25:61–76 [Google Scholar]
  93. Rice SA, Nagasawa M. 93.  1961. Polyelectrolyte Solutions New York: Academic
  94. Ueda T, Kobatake Y. 94.  1973. Effective fixed charge-density governing membrane phenomena. 6. Activity-coefficients and mobilities of small ions in aqueous-solutions of poly(styrenesulfonic acid). J. Phys. Chem. 77:2995–98 [Google Scholar]
  95. Gueron M, Weisbuch G. 95.  1979. Polyelectrolyte theory. 2. Activity-coefficients in Poisson-Boltzmann and in condensation theory. Polarizability of the counterion sheath. J. Phys. Chem. 83:1991–98 [Google Scholar]
  96. Katchalsky A, Lifson S, Mazur J. 96.  1953. The electrostatic free energy of polyelectrolyte solutions. 1. Randomly kinked macromolecules. J. Polym. Sci. 11:409–23 [Google Scholar]
  97. Manning GS. 97.  1969. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 51:924–33 [Google Scholar]
  98. Mackie JS, Meares P. 98.  1955. The diffusion of electrolytes in a cation-exchange resin membrane. 1. Theoretical. Proc. R. Soc. Lond. A Math. Phys. Sci. 232:498–509 [Google Scholar]
  99. Kamo N, Toyoshima Y, Nozaki H, Kobatake Y. 99.  1971. Fixed charge density effective to membrane phenomena. 1. Mobilities and activity coefficients of small ions in charged membranes. Kolloid-Z. Z. Polym. 248:914–21 [Google Scholar]
  100. Ueda T, Ishida N, Kamo N, Kobatake Y. 100.  1972. Effective fixed charge-density governing membrane phenomena. 4. Further study of activity-coefficients and mobilities of small ions in charged membranes. J. Phys. Chem. 76:2447–52 [Google Scholar]
  101. Mackay D, Meares P. 101.  1959. The electrical conductivity and electro-osmotic permeability of a cation-exchange resin. Trans. Faraday Soc. 55:1221–38 [Google Scholar]
  102. Despic A, Hills GJ. 102.  1957. Ionic self-diffusion coefficients in ion-exchange resins. Trans. Faraday Soc. 53:1262–68 [Google Scholar]
  103. Fernandez-Prini R, Philipp M. 103.  1976. Tracer diffusion coefficients of counterions in homo- and heteroionic poly(styrenesulfonate) resins. J. Phys. Chem. 80:2041–46 [Google Scholar]
  104. Jakubovic AO, Hills GJ, Kitchener JA. 104.  1958. Coefficients of self-diffusion of ions in resins and gels. J. Chim. Phys. Physicochim. Biol. 55:263–68 [Google Scholar]
  105. Jakubovic AO, Hills GJ, Kitchener JA. 105.  1959. Ionic mobilities in ion-exchange resins. 2. Electrical conductivities of phenolsulphonic resins. Trans. Faraday Soc. 55:1570–79 [Google Scholar]
  106. Yeager HL, Steck A. 106.  1981. Cation and water diffusion in Nafion ion-exchange membranes—influence of polymer structure. J. Electrochem. Soc. 128:1880–84 [Google Scholar]
  107. Goswami A, Acharya A, Pandey AK. 107.  2001. Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. J. Phys. Chem. B 105:9196–201 [Google Scholar]
  108. Ghaffour N, Missimer TM, Amy GL. 108.  2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207 [Google Scholar]
  109. Glater J, Hong SK, Elimelech M. 109.  1994. The search for a chlorine-resistant reverse-osmosis membrane. Desalination 95:325–45 [Google Scholar]
  110. Kawaguchi T, Tamura H. 110.  1984. Chlorine-resistant membrane for reverse-osmosis. 1. Correlation between chemical structures and chlorine resistance of polyamides. J. Appl. Polym. Sci. 29:3359–67 [Google Scholar]
  111. Konagaya S, Watanabe O. 111.  2000. Influence of chemical structure of isophthaloyl dichloride and aliphatic, cycloaliphatic, and aromatic diamine compound polyamides on their chlorine resistance. J. Appl. Polym. Sci. 76:201–7 [Google Scholar]
  112. Brousse C, Chapurlat R, Quentin JP. 112.  1976. New membranes for reverse osmosis 1. Characteristics of base polymer: sulfonated polysulfones. Desalination 18:137–53 [Google Scholar]
  113. Noshay A, Robeson LM. 113.  1976. Sulfonated polysulfone. J. Appl. Polym. Sci. 20:1885–903 [Google Scholar]
  114. Allegrezza AE, Parekh BS, Parise PL, Swiniarski EJ, White JL. 114.  1987. Chlorine resistant polysulfone reverse-osmosis modules. Desalination 64:285–304 [Google Scholar]
  115. McCutcheon JR, Elimelech M. 115.  2006. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 284:237–47 [Google Scholar]
  116. Gray GT, McCutcheon JR, Elimelech M. 116.  2006. Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197:1–8 [Google Scholar]
  117. Cath TY, Adams D, Childress AE. 117.  2005. Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J. Membr. Sci. 257:111–19 [Google Scholar]
  118. Kariduraganavar MY, Nagarale RK, Kittur AA, Kulkarni SS. 118.  2006. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination 197:225–46 [Google Scholar]
  119. Hickner MA, Fujimoto CH, Cornelius CJ. 119.  2006. Transport in sulfonated poly(phenylene)s: proton conductivity, permeability, and the state of water. Polymer 47:4238–44 [Google Scholar]
  120. Cai ZJ, Liu YB, Liu SS, Li L, Zhang YM. 120.  2012. High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ. Sci. 5:5690–93 [Google Scholar]
  121. Liu YB, Cai ZJ, Tan L, Li L. 121.  2012. Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ. Sci. 5:9007–13 [Google Scholar]
  122. Heinzel A, Barragan VM. 122.  1999. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84:70–74 [Google Scholar]
  123. Gray FM. 123.  1991. Solid Polymer Electrolytes: Fundamentals and Technological Applications. New York: VCH [Google Scholar]
  124. Kimura SG. 124.  1971. Reverse osmosis performance of sulfonated poly(2,6-dimethylphenylene ether) ion exchange membranes. Ind. Eng. Chem. Prod. Res. Dev. 10:335–39 [Google Scholar]
  125. Nazri G, Pistoia G. 125.  2004. Lithium Batteries: Science and Technology Boston: Kluwer Acad. Pub.
/content/journals/10.1146/annurev-chembioeng-080615-033533
Loading
/content/journals/10.1146/annurev-chembioeng-080615-033533
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error