1932

Abstract

Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-033630
2016-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-033630.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-033630&mimeType=html&fmt=ahah

Literature Cited

  1. Ingraffea AR, Wells MR, Santoro RL, Shonkoff BC. 1.  2014. Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. PNAS 111:10955–60 [Google Scholar]
  2. Van Dyke JW. 2.  1896. Increasing the flow of oil-wells. US Patent No. 556651
  3. Thomas RL, Morgenthaler LN. 3.  1999. Introduction to matrix treatments. Reservoir Stimulation MJ Economides, KG Nolte 1–38 Hoboken, NJ: John Wiley & Sons [Google Scholar]
  4. Frenier W, Ziauddin M. 4.  2014. Chemistry for Enhancing the Production of Oil and Gas. Richardson, TX: Soc. Pet. Eng606
  5. Grebe JJ, Stoesser SM. 5.  1935. Treatment of deep wells US Patent No. 1998756 A
  6. Grebe JJ, Stoesser S. 6.  1935. Increasing crude production 20,000,000 bbl. from established fields. World Pet. J. 6:8473–82 [Google Scholar]
  7. Howard GC, Fast CR. 7.  1970. Hydraulic Fracturing 2 Monograph (Society of Petroleum Engineers of AIME), Henry L. Doherty Series New York: Soc. Pet. Eng.
  8. Gallegos TJ, Varela BA. 8.  2015. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010—data analysis and comparison to the literature US Geol. Surv. Investig. Rep. 2014-5131
  9. Ventura J. 9.  2015. Range Resources Presented at EnerCom Oil Gas Conf., Aug. 16–20, Denver, CO
  10. 10. Rice Energy 2015. 2nd quarter 2015 supplemental slides. Tech. Rep., Rice Energy
  11. Corporation COG. 11.  2015. Cabot Oil and Gas Corporation. Presented at EnerCom Oil Gas Conf., Aug. 16–20, Denver, CO
  12. 12. Chesapeake Energy 2015. 2nd quarter earnings report Tech. Rep., Chesapeake Energy
  13. Kennedy RL, Knecht WN, Georgi DT. 13.  2012. Comparisons and contrasts of shale gas and tight gas developments, North American experience and trends Presented at SPE Saudi Arabia Sect. Tech. Symp. Exhib., April 8–11, Al-Khobar, Saudi Arab.
  14. Turcotte DL, Moores EM, Rundle J. 14.  2014. Super fracking. Phys. Today 67:34–39 [Google Scholar]
  15. Montgomery C. 15.  2013. Fracturing fluid components. Effective and Sustainable Hydraulic Fracturing AP Bunger, J McLennan, R Jeffrey Rijeka, Croat: InTech [Google Scholar]
  16. Selley RC. 16.  1975. An Introduction to Sedimentology Cambridge, MA: Academic
  17. Dietrich RV, Skinner BJ. 17.  1979. Rocks and Rock Minerals Hoboken, NJ: John Wiley & Sons
  18. Tiab D, Donaldson EC. 18.  2012. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties Houston: Gulf Prof. Publ.
  19. Lee WHK, Uyeda S. 19.  1965. Review of heat flow data. Terrestrial Heat Flow WHK Lee 87–190 Washington, DC: Am. Geophys. Union [Google Scholar]
  20. Tissot BP, Welte DH. 20.  1984. Petroleum Formation and Occurrence Berlin: Springer-Verlag
  21. Dow WG. 21.  1977. Kerogen studies and geological interpretations. J. Geochem. Explor. 7:79–99 [Google Scholar]
  22. Vandenbroucke M, Largeau C. 22.  2007. Kerogen origin, evolution and structure. Org. Geochem. 38:719–833 [Google Scholar]
  23. McCarthy K, Rejas K, Niemann M, Palmowski D, Peters K, Stankiewicz A. 23.  2011. Basic petroleum geochemistry for source rock evaluation. Oilfield Rev. 23:32–43 [Google Scholar]
  24. Soeder DJ. 24.  1988. Porosity and permeability of eastern Devonian gas shale. SPE Form. Eval. 3:116–24 [Google Scholar]
  25. Neuzil CE. 25.  1994. How permeable are clays and shales?. Water Resour. Res. 30:145–50 [Google Scholar]
  26. Dewhurst DN, Yang Y, Aplin AC. 26.  1999. Permeability and fluid flow in natural mudstones. Geol. Soc. Lond. Spec. Publ. 158:23–43 [Google Scholar]
  27. Dewhurst DN, Aplin AC, Sarda J-P, Yang Y. 27.  1998. Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study. J. Geophys. Res. Solid Earth 103:651–61 [Google Scholar]
  28. Aplin AC, Matenaar IF, McCarty DK, van der Pluijm BA. 28.  2006. Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones. Clays Clay Miner. 54:500–14 [Google Scholar]
  29. Loucks RG, Reed RM, Ruppel SC, Hammes U. 29.  2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 96:1070–98 [Google Scholar]
  30. Aydin A. 30.  2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar. Pet. Geol. 17:797–814 [Google Scholar]
  31. Anders MH, Laubach SE, Scholz CH. 31.  2014. Microfractures: a review. J. Struct. Geol. 69:377–94 [Google Scholar]
  32. Hooker JN, Laubach SE, Marrett R. 32.  2014. A universal power-law scaling exponent for fracture apertures in sandstones. GSA Bull. 126:1340–62 [Google Scholar]
  33. Bernard S, Horsfield B. 33.  2014. Thermal maturation of gas shale systems. Annu. Rev. Earth Planet. Sci. 42:635–51 [Google Scholar]
  34. Nelson PH. 34.  2009. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 93:329–40 [Google Scholar]
  35. Passey QR, Bohacs KM, Esch WL, Klimentidis R, Sinha S. 35.  2010. From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale-gas reservoirs. Proc. Int. Oil Gas Conf. Exhib. China, 8–10 June, Beijing, China SPE-131350-MS Richardson, TX: Soc. Pet. Eng. [Google Scholar]
  36. Bear J. 36.  1972. Dynamics of Fluids in Porous Media Mineola, NY: Dover
  37. Scheidegger AE. 37.  1974. The Physics of Flow through Porous Media Toronto: Univ. Tor. Press
  38. Koplik J, Levine H, Zee A. 38.  1983. Viscosity renormalization in the Brinkman equation. Phys. Fluids 26:2864–70 [Google Scholar]
  39. Larson RG. 39.  1981. Derivation of generalized Darcy equations for creeping flow in porous media. Ind. Eng. Chem. Fundam. 20:132–37 [Google Scholar]
  40. Pearson JRA, Tardy PMJ. 40.  2002. Models for flow of non-Newtonian and complex fluid through porous media. J. Non-Newton. Fluid Mech. 102447–73 [Google Scholar]
  41. Morais AF, Seybold H, Herrmann HJ, Andrade JS. 41.  2009. Non-Newtonian fluid flow through three-dimensional disordered porous media. Phys. Rev. Lett. 103:194502 [Google Scholar]
  42. Klinkenberg LJ. 42.  1941. The permeability of porous media to liquids and gases. Presented at Drill. Prod. Pract., Jan. 1, New York
  43. Javadpour F. 43.  2009. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48:16–21 [Google Scholar]
  44. Darabi H, Ettehad A, Javadpour F, Sepehrnoori K. 44.  2012. Gas flow in ultra-tight shale strata. J. Fluid Mech. 710:641–58 [Google Scholar]
  45. Katz AJ, Thompson AH. 45.  1985. Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54:1325–28 [Google Scholar]
  46. Katz AJ, Thompson AH. 46.  1986. Quantitative prediction of permeability in porous rock. Phys. Rev. B 34:8179–81 [Google Scholar]
  47. Curtis JB. 47.  2002. Fractured shale-gas systems. AAPG Bull. 86:1921–38 [Google Scholar]
  48. Gale JFW, Reed RM, Holder J. 48.  2007. Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments. AAPG Bull. 91:603–22 [Google Scholar]
  49. Gale JFW, Laubach SE, Olson JE, Eichhubl P, Fall A. 49.  2014. Natural fractures in shale: a review and new observations. AAPG Bull. 98:2165–216 [Google Scholar]
  50. King GE. 50.  2010. Thirty years of gas shale fracturing: What have we learned? Presented at SPE Annu. Tech. Conf. Exhib., Sept. 19–22, Florence, Italy
  51. Berkowitz B. 51.  2002. Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25:861–84 [Google Scholar]
  52. Sahimi M. 52.  2011. Flow and Transport in Porous Media and Fractured Rock Weinheim, Ger: Wiley-VCH, 2nd ed..
  53. Zimmerman RW, Bodvarsson GS. 53.  1996. Hydraulic conductivity of rock fractures. Transp. Porous Media 23:1–30 [Google Scholar]
  54. Barenblatt GI, Zheltov IP, Kochina IN. 54.  1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24:1286–303 [Google Scholar]
  55. Warren JE, Root PJ. 55.  1963. The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3:245–55 [Google Scholar]
  56. Kuchuk F, Biryukov D. 56.  2014. Pressure-transient behavior of continuously and discretely fractured reservoirs. SPE Reserv. Eval. Eng. 17:82–97 [Google Scholar]
  57. Lockner DA. 57.  2013. Rock failure. Rock Physics & Phase Relations: A Handbook of Physical Constants TJ Ahrens 127–47 Washington, DC: Am. Geophys. Union [Google Scholar]
  58. Kohlstedt DL, Evans B, Mackwell SJ. 58.  1995. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100:17587–602 [Google Scholar]
  59. Alford J, Blyth M, Tollefsen E, Crowe J, Loreto J. 59.  et al. 2012. Sonic logging while drilling—shear answers. Oilfield Rev. 24:4–15 [Google Scholar]
  60. King MS. 60.  1969. Static and dynamic elastic moduli of rocks under pressure Presented at 11th US Symp. Rock Mech., June 16–19, Berkeley, CA
  61. Warpinski NR, Smith MB. 61.  1989. Rock mechanics and fracture geometry. Recent Advances in Hydraulic Fracturing 12 Henry L. Dougherty Series JL Gidley, SA Holditch, DE Nierode, RW Veatch Jr. 57–80 Richardson, TX: Soc. Pet. Eng. [Google Scholar]
  62. Warpinski NR, Teufel LW. 62.  1989. In-situ stresses in low-permeability, nonmarine rocks. J. Pet. Technol. 41:405–14 [Google Scholar]
  63. Senseny PE, Pfeifle TW. 63.  1984. Fracture toughness of sandstones and shales. Presented at 25th US Symp. Rock Mech., June 25–27, Evanston, IL
  64. Brown ET, Hoek E. 64.  1978. Trends in relationships between measured in situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15:211–15 [Google Scholar]
  65. Warpinski N. 65.  2011. Fracture growth in layered and discontinuous media. Proceedings of the Technical Workshops for the Hydraulic Fracturing Study: Fate and Transport Washington, DC: Environ. Prot. Agency
  66. Hubbert MK, Willis DG. 66.  1957. Mechanics of hydraulic fracturing. Pet. Trans. 210:153–68 [Google Scholar]
  67. Teufel LW, Clark JA. 67.  1984. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment. Soc. Pet. Eng. J. 24119–32
  68. Warpinski NR, Teufel LW. 68.  1987. Influence of geologic discontinuities on hydraulic fracture propagation. J. Pet. Technol. 39:209–20 [Google Scholar]
  69. Smart KJ, Ofoegbu GI, Morris AP, McGinnis RN, Ferrill DA. 69.  2014. Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter. AAPG Bull. 98:2237–61 [Google Scholar]
  70. Rassenfoss S. 70.  2015. What do fractures look like? A picture says a lot, even when it is wrong. J. Pet. Technol. 67560–68
  71. Fisher K, Warpinski N. 71.  2012. Hydraulic-fracture-height growth: real data. SPE Prod. Oper. 27:8–19 [Google Scholar]
  72. Yew CH, Weng X. 72.  2014. Mechanics of Hydraulic Fracturing Houston: Gulf Prof. Publ, 2nd ed..
  73. Smith MB, Shylapobersky JW. 73.  1999. Basics of hydraulic fracturing. Reservoir Stimulation MJ Economides, KG Nolte 5.1–5.28 New York: John Wiley & Sons [Google Scholar]
  74. Cipolla CL, Warpinski NR, Mayerhofer MJ, Lolon E, Vincent MC. 74.  2008. The relationship between fracture complexity, reservoir properties, and fracture treatment design Presented at SPE Annu. Tech. Conf. Exhib. Sept. 21–24, Denver, CO
  75. Warpinski NR, Wolhart SL, Wright CA. 75.  2001. Analysis and prediction of microseismicity induced by hydraulic fracturing Presented at SPE Annu. Tech. Conf. Exhib., Sept. 30–Oct. 3, New Orleans, LA
  76. Adachi J, Siebrits E, Peirce A, Desroches J. 76.  2007. Computer simulations of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44:739–57 [Google Scholar]
  77. Perkins TK, Kern LR. 77.  1961. Widths of hydraulic fractures. J. Pet. Technol. 13:937–49 [Google Scholar]
  78. Nordgren RP. 78.  1972. Propagation of a vertical hydraulic fracture. Soc. Pet. Eng. J. 12:306–14 [Google Scholar]
  79. Khristianovich SA, Zheltov YP. 79.  1955. Formation of vertical fractures by means of highly viscous liquids. Presented at Fourth World Pet. Congr., June 6–15, Rome, Italy
  80. Geertsma J, de Klerk F. 80.  1969. A rapid method of predicting width and extent of hydraulically induced fractures. J. Pet. Technol. 21:1571–81 [Google Scholar]
  81. Abé H, Mura T, Keer LM. 81.  1976. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks. J. Geophys. Res. 81:5335–40 [Google Scholar]
  82. England AH, Green AE. 82.  1963. Some two-dimensional punch and crack problems in classical elasticity. Math. Proc. Camb. Philos. Soc. 59:489–500 [Google Scholar]
  83. Geertsma J. 83.  1989. Two-dimensional fracture-propagation models. Recent Advances in Hydraulic Fracturing 12 Henry L. Dougherty Series JL Gidley, SA Holditch, DE Nierode, RW Veatch Jr. 81–94 Richardson, TX: Soc. Pet. Eng. [Google Scholar]
  84. Barenblatt GI. 84.  1959. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech. 23:622–36 [Google Scholar]
  85. Rice J. 85.  1968. Mathematical analysis in the mechanics of fracture. Fracture: An Advanced Treatise 2 H Liebowitz 191–311 Cambridge: Academic [Google Scholar]
  86. Howard GC, Fast CR. 86.  1957. Optimum fluid characteristics for fracture extension Presented at Drill. Prod. Pract., Jan. 1, New York
  87. Madyarova MV. 87.  2003. Fluid-driven penny-shaped fracture in permeable rock Master's Thesis, Univ. Minn., Minneapolis
  88. Carter BJ, Desroches J, Ingraffea AR, Wawrzynek PA. 88.  2000. Simulating 3D hydraulic fracturing. Modeling in Geomechanics M Zaman, G Gioda, JR Booker 525–57 Hoboken, NJ: John Wiley & Sons [Google Scholar]
  89. Spence DA, Sharp PW. 89.  1985. Self-similar solutions for elastohydrodynamic cavity flow. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 400:289–313 [Google Scholar]
  90. Spence DA, Turcotte DL. 90.  1985. Magma-driven propagation of cracks. J. Geophys. Res. 90:575–80 [Google Scholar]
  91. Spence DA, Sharp PW, Turcotte DL. 91.  1987. Buoyancy-driven crack propagation: a mechanism for magma migration. J. Fluid Mech. 174:135–53 [Google Scholar]
  92. Lister JR. 92.  1990. Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors. J. Fluid Mech. 210:263–80 [Google Scholar]
  93. Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson JRA. 93.  et al. 1994. The crack tip region in hydraulic fracturing. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 447:39–48 [Google Scholar]
  94. Garagash D, Detournay E. 94.  2000. The tip region of a fluid-driven fracture in an elastic medium. J. Appl. Mech. 67:183–92 [Google Scholar]
  95. Detournay E. 95.  2004. Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4:35–45 [Google Scholar]
  96. Garagash DI. 96.  2009. Scaling of physical processes in fluid-driven fracture: perspective from the tip. IUTAM Symposium on Scaling in Solid Mechanics, 10 Iutam Bookseries F Borodich 91–100 Dordrecht, Neth: Springer [Google Scholar]
  97. Garagash DI, Detournay E, Adachi JI. 97.  2011. Multiscale tip asymptotics in hydraulic fracture with leak-off. J. Fluid Mech. 669:260–97 [Google Scholar]
  98. Lenoach B. 98.  1995. The crack tip solution for hydraulic fracturing in a permeable solid. J. Mech. Phys. Solids 43:1025–43 [Google Scholar]
  99. Bunger AP, Detournay E, Garagash Dmitry I. 99.  2005. Toughness-dominated hydraulic fracture with leak-off. Int. J. Fract. 134:175–90 [Google Scholar]
  100. Detournay E. 100.  2016. Mechanics of hydraulic fractures. Annu. Rev. Fluid Mech. 48:311–39 [Google Scholar]
  101. Brown SR. 101.  1987. Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. 92:1337–47 [Google Scholar]
  102. Mewis J, Wagner NJ. 102.  2013. Colloidal Suspension Rheology Cambridge: Cambridge Univ. Press
  103. Guazzelli E, Morris JF. 103.  2012. A Physical Introduction to Suspension Dynamics Cambridge: Cambridge Univ. Press
  104. Khilar KC, Fogler HS. 104.  1998. Migration of Fines in Porous Media Dordrecht, Neth: Kluwer
  105. Ely JW. 105.  1989. Fracturing fluids and additives. Recent Advances in Hydraulic Fracturing JL Gidley, SA Holditch, DE Nierode, W Veatch Jr. 131–46 Richardson, TX: Soc. Pet. Eng. [Google Scholar]
  106. Montgomery C. 106.  2013. Fracturing fluids. Presented at ISRM Int. Conf. Eff. Sustain. Hydraul. Fract., May 20–22, Brisbane, Aust.
  107. Bird RB, Armstrong RC, Hassager O. 107.  1987. Dynamics of Polymeric Liquids 1 Fluid Mechanics Hoboken, NJ: Wiley Intersci.
  108. Larson RG. 108.  1998. The Structure and Rheology of Complex Fluids Oxford: Oxford Univ. Press
  109. Joseph DD. 109.  1990. Fluid Dynamics of Viscoelastic Liquids New York: Springer
  110. Ho BP, Leal LG. 110.  1976. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76:783–99 [Google Scholar]
  111. Leshansky AM, Bransky A, Korin N, Dinnar U. 111.  2007. Tunable nonlinear viscoelastic “focusing” in a microfluid device. Phys. Rev. Lett. 98:234501 [Google Scholar]
  112. Larson RG, Shaqfeh ESG, Muller SJ. 112.  1990. A purely elastic instability in Taylor-Couette flow. J. Fluid Mech. 218:573–600 [Google Scholar]
  113. McKinley GH, Pakdel P, Oztekin A. 113.  1996. Geometric and rheological scaling of purely elastic flow instabilities. J. Non-Newton. Fluid Mech. 67:19–48 [Google Scholar]
  114. Barati R, Liang JT. 114.  2014. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci. 131:40735 [Google Scholar]
  115. Gulbis J, Hodge RM. 115.  1999. Fracturing fluid chemistry and proppants. Reservoir Stimulation MJ Economides, KG Nolte 7.1–7.23 Hoboken, NJ: John Wiley & Sons [Google Scholar]
  116. Clark AH, Ross-Murphy SB. 116.  1987. Structural and mechanical properties of biopolymer gels. Biopolymers H Benoit, H-J Cantow, G Dall'Asta, K Dusek, H Fujita, et al. 57–192 Berlin: Springer [Google Scholar]
  117. Mathur NK. 117.  2012. Industrial Galactomannan Polysaccharides Boca Raton, FL: CRC Press
  118. Wientjes RHW, Duits MHG, Jongschaap RJJ, Mellema J. 118.  2000. Linear rheology of guar gum solutions. Macromolecules 33:9594–605 [Google Scholar]
  119. Kesavan S, Prud'homme RK. 119.  1992. Rheology of guar and (hydroxypropyl) guar crosslinked by borate. Macromolecules 25:2026–32 [Google Scholar]
  120. Pezron E, Ricard A, Lafuma F, Audebert R. 120.  1988. Reversible gel formation induced by ion complexation. 1. Borax–galactomannan interactions. Macromolecules 21:1121–25 [Google Scholar]
  121. Bishop M, Shahid N, Yang J, Barron AR. 121.  2004. Determination of the mode and efficacy of the cross-linking of guar by borate using MAS 11B NMR of borate cross-linked guar in combination with solution 11B NMR of model systems. Dalton Trans. 2004:2621–34 [Google Scholar]
  122. Hu YT. 122.  2014. Mechanism of shear thickening in transient guar network. J. Rheol. 58:1789–807 [Google Scholar]
  123. Kramer J, Prud'homme RK, Wiltzius P, Knoll S. 123.  1988. Comparison of galactomannan crosslinking with organotitanates and borates. Colloid Polym. Sci. 266:145–55 [Google Scholar]
  124. Parris MD, MacKay BA, Rathke JW, Klingler RJ, Gerald RE II. 124.  2008. Influence of pressure on boron cross-linked polymer gels. Macromolecules 41:8181–86 [Google Scholar]
  125. Vega-Cantu YI, Hauge RH, Norman LR, Powell RJ, Billups WE. 125.  2006. Effect of magnesium and iron on the hydration and hydrolysis of guar gum. Biomacromolecules 7:441–45 [Google Scholar]
  126. Tayal A, Pai VB, Khan SA. 126.  1999. Rheology and microstructural changes during enzymatic degradation of a guar–borax hydrogel. Macromolecules 32:5567–74 [Google Scholar]
  127. Dreiss CA. 127.  2007. Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–70 [Google Scholar]
  128. Khan SA, Schnepper CA, Armstrong RC. 128.  1988. Foam rheology: III. Measurement of shear flow properties. J. Rheol. 32:69–92 [Google Scholar]
  129. Yoshimura A, Prud'homme RK. 129.  1988. Wall slip corrections for Couette and parallel disk viscometers. J. Rheol. 32:53–67 [Google Scholar]
  130. Hurst RE. 130.  1972. Gas frac—a new stimulation technique using liquid gases. Presented at Soc. Pet. Eng. Rocky Mountain Reg. Meet., April 10–12, Denver, CO
  131. Soni TM. 131.  2014. LPG-based fracturing: an alternate fracturing technique in shale reservoirs Presented at IADC/SPE Asia Pac. Drill. Technol. Conf., Aug. 25–27, Bangkok, Thail.
  132. Palisch TT, Vincent MC, Handren PJ. 132.  2008. Slickwater fracturing: food for thought Presented at Soc. Pet. Eng. Annu. Tech. Conf. Exhib., Sept. 21–24, Denver, CO
  133. White CM, Mungal MG. 133.  2008. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40:235–56 [Google Scholar]
  134. Sharma MM, Gadde PB, Sullivan R, Sigal R, Fielder R. 134.  et al. 2005. Slick-water and hybrid fracturing treatments: lessons learned. J. Pet. Technol. 57:38–40 [Google Scholar]
  135. Bivins CH, Boney C, Fredd C, Lassek J, Sullivan P. 135.  et al. 2005. New fibers for hydraulic fracturing. Oilfield Rev. Summer:34–43 [Google Scholar]
  136. Warpinski NR. 136.  2009. Stress amplification and arch dimensions in proppant beds deposited by waterfracs Presented at SPE Hydraul. Fract. Technol. Conf., Jan. 19–21, The Woodlands, TX
  137. Larson RG. 137.  1988. Constitutive Equations for Polymer Melts and Solutions London: Butterworths
  138. Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ. 138.  et al. 2001. An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J. Rheol. 45:83–114 [Google Scholar]
  139. McKinley GH, Sridhar T. 139.  2002. Filament-stretching rheometry of complex fluids. Annu. Rev. Fluid Mech. 34:375–415 [Google Scholar]
  140. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH. 140.  2005. Capillary breakup rheometry of low-viscosity elastic fluids. Appl. Rheol. 15:12–27 [Google Scholar]
  141. Macosko CW. 141.  1994. Rheology: Principles, Measurements, and Applications Weinheim, Ger: Wiley-VCH
  142. Manneville S. 142.  2008. Recent experimental probes of shear banding. Rheol. Acta 47:301–18 [Google Scholar]
  143. Larson RG. 143.  1992. Instabilities in viscoelastic flows. Rheol. Acta 31:213–63 [Google Scholar]
  144. Eberle APR, Baird DG, Wapperom P. 144.  2008. Rheology of non-Newtonian fluids containing glass fibers: a review of experimental literature. Ind. Eng. Chem. Res. 47:3470–88 [Google Scholar]
  145. Prud'homme RK, Ellis S, Constien VG, Knoll S. 145.  1988. Reproducible rheological measurements on crosslinked fracturing fluids. Presented at SPE Annu. Tech. Conf. Exhib., Oct. 2–5, Houston, TX
  146. Walker RNJ, Hunter JL, Brake AC, Fagin PA, Steinsberger N. 146.  1998. Proppants, we still don't need no proppants—a perspective of several operators. Presented at SPE Annu. Tech. Conf. Exhib., Sept. 27–30, New Orleans, LA
  147. Montgomery CT, Smith MB. 147.  2010. Hydraulic fracturing: history of an enduring technology. J. Pet. Technol. 6226–40
  148. Stickel JJ, Powell RL. 148.  2005. Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37:129–49 [Google Scholar]
  149. Farris RJ. 149.  1968. Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans. Soc. Rheol. 12:281–301 [Google Scholar]
  150. Chang C, Powell RL. 150.  1994. Effect of particle size distribution on the rheology of concentrated bimodal suspensions. J. Rheol. 38:85–98 [Google Scholar]
  151. Panga MKR, Bedel JP, Chen Y. 151.  2014. High solids content slurries, systems and methods. US Patent No. 8,916,506
  152. Jeffery GB. 152.  1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A Papers Math. Phys. Character 102:161–79 [Google Scholar]
  153. Petrie CJS. 153.  1999. The rheology of fibre suspensions. J. Non-Newton. Fluid Mech. 87:369–402 [Google Scholar]
  154. Djalili-Moghaddam M, Toll S. 154.  2006. Fibre suspension rheology: effect of concentration, aspect ratio and fiber size. Rheol. Acta 45:315–20 [Google Scholar]
  155. Chaouche M, Koch DL. 155.  2001. Rheology of non-Brownian rigid fiber suspensions with adhesive contacts. J. Rheol. 45:369–82 [Google Scholar]
  156. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF. 156.  1995. Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 52:819–28 [Google Scholar]
  157. Barnes HA. 157.  1989. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33:329–66 [Google Scholar]
  158. Denn MM, Morris JF. 158.  2014. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5:203–28 [Google Scholar]
  159. Barnes HA. 159.  2003. A review on the rheology of filled viscoelastic systems. Rheol. Rev. 2003:1–36 [Google Scholar]
  160. Ohl N, Gleissle W. 160.  1993. The characterization of the steady-state shear and normal stress functions of highly concentrated suspensions formulated with viscoelastic liquids. J. Rheol. 37:381–406 [Google Scholar]
  161. Mall-Gleissle SE, Gleissle W, McKinley GH, Buggisch H. 161.  2002. The normal stress behavior of suspensions with viscoelastic matrix fluids. Rheol. Acta 42:61–76 [Google Scholar]
  162. Dagois-Bohy S, Hormozi S, Guazzelli E, Pouliquen O. 162.  2015. Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids. J. Fluid Mech. 776:R2 [Google Scholar]
  163. Nolte KG. 163.  1988. Fluid flow considerations in hydraulic fracturing Presented at SPE East. Reg. Meet., Nov. 1–4, Charleston, WV
  164. Van der Vlis AC, Haafkens R, Schipper BA, Visser W. 164.  1975. Criteria for proppant placement and fracture conductivity Presented at Fall Meet. Soc. Pet. Eng. AIME, Sept. 28–Oct. 1, Dallas, TX
  165. Segré G, Silberberg A. 165.  1962. Behaviour of macroscopic rigid spheres in Poiseuille flow part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14:115–35 [Google Scholar]
  166. Segré G, Silberberg A. 166.  1962. Behaviour of macroscopic rigid spheres in Poiseuille flow part 2. Experimental results and interpretation. J. Fluid Mech. 14:136–57 [Google Scholar]
  167. Ho BP, Leal LG. 167.  1974. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65:365–400 [Google Scholar]
  168. Schonberg JA, Hinch EJ. 168.  1989. Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203:517–24 [Google Scholar]
  169. Matas JP, Morris JF, Guazzelli E. 169.  2004. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515:171–95 [Google Scholar]
  170. Asmolov ES. 170.  1999. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381:63–87 [Google Scholar]
  171. Gadala-Maria F, Acrivos A. 171.  1980. Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24:799–814 [Google Scholar]
  172. Leighton D, Acrivos A. 172.  1987. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181:415–39 [Google Scholar]
  173. Koh CJ, Hookham P, Leal LG. 173.  1994. Experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266:1–32 [Google Scholar]
  174. Lyon MK, Leal LG. 174.  1998. An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363:25–56 [Google Scholar]
  175. Oh S, Song Yq, Garagash DI, Lecampion B, Desroches J. 175.  2015. Pressure-driven suspension flow near jamming. Phys. Rev. Lett. 114:088301 [Google Scholar]
  176. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR. 176.  1992. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4:30–40 [Google Scholar]
  177. Mills P, Snabre P. 177.  1995. Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J. Phys. II 5:1597–608 [Google Scholar]
  178. Lecampion B, Garagash D. 178.  2014. Confined flow of suspensions modelled by a frictional rheology. J. Fluid Mech. 759:197–235 [Google Scholar]
  179. Dontsov EV, Peirce AP. 179.  2014. Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures. J. Fluid Mech. 760:567–90 [Google Scholar]
  180. Boyer B, Guazelli E, Pouliquen O. 180.  2011. Unifying suspension and granular rheology. Phys. Rev. Lett. 107:188301 [Google Scholar]
  181. Tehrani MA. 181.  1996. An experimental study of particle migration in pipe flow of viscoelastic fluids. J. Rheol. 40:1057–77 [Google Scholar]
  182. Feng J, Joseph DD. 182.  1996. The motion of solid particles suspended in viscoelastic liquids under torsional shear. J. Fluid Mech. 324:199–222 [Google Scholar]
  183. Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D. 183.  et al. 2014. Inertio-elastic focusing of bioparticles in microchannels at ultra-high throughput. Nat. Commun. 5:1460 [Google Scholar]
  184. Iso Y, Koch DL, Cohen C. 184.  1996. Orientation in simple shear flow of semi-dilute fiber suspensions 1. Weakly elastic fluids. J. Non-Newton. Fluid Mech. 62:115–34 [Google Scholar]
  185. Iso Y, Cohen C, Koch DL. 185.  1996. Orientation in simple shear flow of semi-dilute fiber suspensions 2. Highly elastic fluids. J. Non-Newton. Fluid Mech. 62:135–53 [Google Scholar]
  186. Snijkers F, Pasquino R, Vermant J. 186.  2013. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow. Langmuir 29:5701–13 [Google Scholar]
  187. Joseph DD, Feng J. 187.  1996. A note on the forces that move particles in a second-order fluid. J. Non-Newton. Fluid Mech. 64:299–302 [Google Scholar]
  188. Daneshy A. 188.  1989. Proppant transport. Recent Advances in Hydraulic Fracturing210–22 Richardson, TX: Soc. Pet. Eng. [Google Scholar]
  189. Kern LR, Perkins TK, Wyant RE. 189.  1959. The mechanics of sand movement in fracturing. J. Pet. Technol. 11:55–57 [Google Scholar]
  190. McLennan JD, Green SJ, Bai M. 190.  2008. Proppant placement during tight gas shale stimulation: literature review and speculation. Presented at 42nd US Rock Mech. Symp., 2nd US-Canada Rock Mech. Symp., June 29–July 2, San Francisco, CA
  191. Miller KC, McCave IN, Komar PD. 191.  1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24:507–27 [Google Scholar]
  192. Patankar NA, Joseph DD, Wang J, Barree RD, Conway M, Asadi M. 192.  2002. Power law correlations for sediment transport in pressure driven channel flows. Int. J. Multiph. Flow 28:1269–92 [Google Scholar]
  193. Wang J, Joseph DD, Patankar NA, Conway M, Barree RD. 193.  2003. Bi-power law correlations for sediment transport in pressure driven channel flows. Int. J. Multiph. Flow 29:475–94 [Google Scholar]
  194. Richardson JF, Zaki WN. 194.  1954. The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 8:65–73 [Google Scholar]
  195. Richardson JF, Zaki WN. 195.  1954. Sedimentation and fluidisation: part I. Trans. Inst. Chem. Eng. 32:S82–S100 [Google Scholar]
  196. Chang C, Powell RL. 196.  2002. Hydrodynamic transport properties of concentrated suspensions. Am. Inst. Chem. Eng. J. 48:2475–80 [Google Scholar]
  197. Roodhart LP. 197.  1985. Proppant settling in non-Newtonian fracturing fluids. Presented at SPE/DOE 1985 Low Permeability Gas Reserv. Symp., March 19–22, Denver, CO
  198. Acharya AR. 198.  1988. Viscoelasticity of crosslinked fracturing fluids and proppant transport. SPE Prod. Eng. 3:483–88 [Google Scholar]
  199. Novotny EJ. 199.  1977. Proppant transport. Presented at SPE Annu. Fall Tech. Conf. Exhib., Oct. 9–12, Denver, CO
  200. McMechan DE, Shah SN. 200.  1991. Static proppant-settling characteristics of non-Newtonian fracturing fluids in a large-scale test model. SPE Prod. Eng. 6305–12
  201. Padhy S, Shaqfeh ESG, Iaccarino G, Morris JF, Tonmukayakul N. 201.  2013. Simulations of a sphere sedimenting in a viscoelastic fluid with cross shear flow. J. Non-Newton. Fluid Mech. 197:48–60 [Google Scholar]
  202. Tonmukayakul N, Bryant JE, Talbot MS, Morris JF. 202.  2008. Dynamic and steady shear properties of reversibly cross-linked guar solutions and their effects on particle settling behavior. Presented at XVth Int. Congr. Rheol., Soc. Rheol. 80th Annu. Meet., Aug. 3–8, Monterey, CA
  203. Won D, Kim C. 203.  2004. Alignment and aggregation of spherical particles in viscoelastic fluid under shear flow. J. Non-Newton. Fluid Mech. 117:141–46 [Google Scholar]
  204. Mora S, Talini L, Allain C. 204.  2005. Structuring sedimentation in a shear-thinning fluid. Phys. Rev. Lett. 95:088301 [Google Scholar]
  205. van den Brule BHAA, Gheissary G. 205.  1993. Effects of fluid elasticity on the static and dynamic settling of a spherical particle. J. Non-Newton. Fluid Mech. 49:123–32 [Google Scholar]
  206. Gheissary G, van den Brule BHAA. 206.  1996. Unexpected phenomena observed in particle settling in non-Newtonian media. J. Non-Newton. Fluid Mech. 67:1–18 [Google Scholar]
  207. Hu YT, Chung H, Maxey J. 207.  2015. What is more important for proppant transport, viscosity or elasticity? Presented at SPE Hydraul. Fract. Technol. Conf., Feb. 3–5, The Woodlands, TX
  208. Hu YT, Larsen T, Martysevich V. 208.  2015. Study of proppant suspending using multipass slot flow apparatus Presented at SPE Prod. Oper. Symp., March 1–5, Oklahoma City, OK
  209. Hu YT, Kishore T, Maxey J, Loveless D. 209.  2015. Effects of crosslinking chemistry on proppant suspension in guar networks. Presented at SPE Int. Symp. Oilfield Chem., April 13–15, The Woodlands, TX
  210. Housiadas KD, Tanner RI. 210.  2012. The drag of a freely sedimenting sphere in a sheared weakly viscoelastic fluid. J. Non-Newton. Fluid Mech.183–8452–56
  211. Tanner RI, Housiadas KD, Qi F. 211.  2014. Mechanism of drag increase on spheres in viscoelastic cross-shear flow. J. Non-Newton. Fluid Mech. 203:51–53 [Google Scholar]
  212. Padhy S, Rodriguez M, Shaqfeh ESG, Iaccarino G, Morris JF, Tonmukayakul N. 212.  2013. The effect of shear thinning and walls on the sedimentation of a sphere in an elastic fluid under orthogonal shear. J. Non-Newton. Fluid Mech. 201:120–29 [Google Scholar]
  213. Chekhonin E, Levonyan K. 213.  2012. Hydraulic fracture propagation in highly permeable formations, with applications to tip screenout. Int. J. Rock Mech. Min. Sci. 50:19–28 [Google Scholar]
  214. Dontsov EV, Peirce AP. 214.  2014. The effect of proppant size on hydraulic fracturing by a slurry. Presented at 48th US Rock Mech./Geomech. Symp., June 1–4, Minneapolis, MN
  215. Dontsov EV, Peirce AP. 215.  2015. Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models. Int. J. Solids Struct. 63:206–18 [Google Scholar]
  216. To K, Lai PK, Pak HK. 216.  2001. Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86:71 [Google Scholar]
  217. Roussel N, Nguyen TLH, Coussot P. 217.  2007. General probabilistic approach to the filtration process. Phys. Rev. Lett. 98:114502 [Google Scholar]
  218. Mari R, Seto R, Morris JF, Denn MM. 218.  2014. Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58:1693–724 [Google Scholar]
  219. Potapenko DI, Tinkham SK, Lecerf B, Fredd CN, Samuelson ML. 219.  et al. 2009. Barnett shale infrastructure stimulations using a novel diversion technique. Presented at SPE Hydraul. Fract. Technol. Conf., Jan. 19–21, The Woodlands, TX
  220. Kaageson-Loe N, Sanders MW, Growcock F, Taugh LK, Hosrud P. 220.  et al. 2009. Particulate-based loss-prevention material—the secrets of fracture sealing revealed. SPE Drill. Complet. 24:4581–89 [Google Scholar]
  221. Advani SH, Torok JS, Lee JK, Choudhry S. 221.  1987. Explicit time-dependent solutions and numerical evaluations for penny-shaped hydraulic fracture models. J. Geophys. Res. 91:B88049–55 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-033630
Loading
/content/journals/10.1146/annurev-chembioeng-080615-033630
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error