1932

Abstract

Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034413
2016-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034413.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034413&mimeType=html&fmt=ahah

Literature Cited

  1. Medford AJ, Vojvodic A, Hummelshoj JS, Voss J, Abild-Pedersen F. 1.  et al. 2015. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328:36–42 [Google Scholar]
  2. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. 2.  2011. Density functional theory in surface chemistry and catalysis. PNAS 108:937–43 [Google Scholar]
  3. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. 3.  2009. Towards the computational design of solid catalysts. Nat. Chem. 1:37–46 [Google Scholar]
  4. Xu Y. 4.  2009. Recent advances in heterogeneous catalysis enabled by first-principles methods. Catalysis 21 JJ Spivey, KM Dooley 131–53 London: R. Soc. Chem. [Google Scholar]
  5. Christensen CH, Nørskov JK. 5.  2008. A molecular view of heterogeneous catalysis. J. Chem. Phys. 128:182503 [Google Scholar]
  6. Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Nørskov JK. 6.  2008. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320:1320–22 [Google Scholar]
  7. Hansgen DA, Vlachos DG, Chen JGG. 7.  2010. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2:484–89 [Google Scholar]
  8. Vlachos DG. 8.  2012. Multiscale modeling for emergent behavior, complexity, and combinatorial explosion. AIChE J. 58:1314–25 [Google Scholar]
  9. Sutton JE, Vlachos DG. 9.  2015. Building large microkinetic models with first-principles' accuracy at reduced computational cost. Chem. Eng. Sci. 121:190–99 [Google Scholar]
  10. Neurock M. 10.  2003. Perspectives on the first principles elucidation and the design of active sites. J. Catal. 216:73–88 [Google Scholar]
  11. Hammer B, Nørskov JK. 11.  2000. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45:71–129 [Google Scholar]
  12. Greeley J, Nørskov JK, Mavrikakis M. 12.  2002. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53:319–48 [Google Scholar]
  13. Hammer B, Nørskov JK. 13.  1995. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343:211–20 [Google Scholar]
  14. Hammer B, Nørskov JK. 14.  1995. Why gold is the noblest of all metals. Nature 376:238–40 [Google Scholar]
  15. Hammer B. 15.  2006. Special sites at noble and late transition metal catalysts. Top. Catal. 37:3–16 [Google Scholar]
  16. Christensen A, Ruban AV, Stoltze P, Jacobsen KW, Skriver HL. 16.  et al. 1997. Phase diagrams for surface alloys. Phys. Rev. B 56:5822–34 [Google Scholar]
  17. Vitos L, Ruban AV, Skriver HL, Kollar J. 17.  1998. The surface energy of metals. Surf. Sci. 411:186–202 [Google Scholar]
  18. Ruban AV, Skriver HL, Nørskov JK. 18.  1999. Surface segregation energies in transition-metal alloys. Phys. Rev. B 59:15990–6000 [Google Scholar]
  19. Greeley J, Mavrikakis M. 19.  2002. A first-principles study of methanol decomposition on Pt(111). J. Am. Chem. Soc. 124:7193–201 [Google Scholar]
  20. Greeley J, Mavrikakis M. 20.  2002. Methanol decomposition on Cu(111): a DFT study. J. Catal. 208:291–300 [Google Scholar]
  21. Mattsson TR, Paddison SJ. 21.  2003. Methanol at the water-platinum interface studied by ab initio molecular dynamics. Surf. Sci. 544:L697–L702 [Google Scholar]
  22. Desai SK, Neurock M, Kourtakis K. 22.  2002. A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). J. Phys. Chem. B 106:2559–68 [Google Scholar]
  23. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK. 23.  2001. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123:8404–5 [Google Scholar]
  24. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM. 24.  et al. 1998. Design of a surface alloy catalyst for steam reforming. Science 279:1913–15 [Google Scholar]
  25. Abild-Pedersen F, Greeley J, Studt F, Moses PG, Rossmeisl J. 25.  et al. 2007. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99:016105 [Google Scholar]
  26. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB. 26.  et al. 2002. Universality in heterogeneous catalysis. J. Catal. 209:275 [Google Scholar]
  27. van Santen RA, Neurock M, Shetty SG. 27.  2010. Reactivity theory of transition-metal surfaces: a Bronsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem. Rev. 110:2005–48 [Google Scholar]
  28. Vojvodic A, Calle-Vallejo F, Guo W, Wang S, Toftelund A. 28.  et al. 2011. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. J. Chem. Phys. 134:244509 [Google Scholar]
  29. Loffreda D, Delbecq F, Vigne F, Sautet P. 29.  2006. Chemo-regioselectivity in heterogeneous catalysis: competitive routes for C=O and C=C hydrogenations from a theoretical approach. J. Am. Chem. Soc. 128:1316–23 [Google Scholar]
  30. Loffreda D, Delbecq F, Vigne F, Sautet P. 30.  2009. Fast prediction of selectivity in heterogeneous catalysis from extended Bronsted-Evans-Polanyi relations: a theoretical insight. Angew. Chem. Int. Ed. 48:8978–80 [Google Scholar]
  31. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR. 31.  et al. 2004. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108:17886–92 [Google Scholar]
  32. Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J. 32.  et al. 2012. A theoretical evaluation of possible transition metal electro-catalysts for N-2 reduction. Phys. Chem. Chem. Phys. 14:1235–45 [Google Scholar]
  33. Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS. 33.  et al. 2014. Exploring the limits: a low-pressure, low-temperature Haber-Bosch process. Chem. Phys. Lett. 598:108–12 [Google Scholar]
  34. Studt F, Abild-Pedersen F, Hansen HA, Man IC, Rossmeisl J, Bligaard T. 34.  2010. Volcano relation for the Deacon process over transition-metal oxides. ChemCatChem 2:98–102 [Google Scholar]
  35. Grabow LC, Studt F, Abild-Pedersen F, Petzold V, Kleis J. 35.  et al. 2011. Descriptor-based analysis applied to HCN synthesis from NH3 and CH4. Angew. Chem. Int. Ed. 50:4601–5 [Google Scholar]
  36. Toftelund A, Man IC, Hansen HA, Abild-Pedersen F, Bligaard T. 36.  et al. 2012. Volcano relations for oxidation of hydrogen halides over rutile oxide surfaces. ChemCatChem 4:1856–61 [Google Scholar]
  37. Xu Y, Lausche AC, Wang SG, Khan TS, Abild-Pedersen F. 37.  et al. 2013. In silico search for novel methane steam reforming catalysts. New J. Phys. 15:125021 [Google Scholar]
  38. Medford AJ, Lausche AC, Abild-Pedersen F, Temel B, Schjodt NC. 38.  et al. 2014. Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top. Catal. 57:135–42 [Google Scholar]
  39. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J. 39.  2004. The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224:206–17 [Google Scholar]
  40. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG. 40.  et al. 2005. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152:J23–J26 [Google Scholar]
  41. Wang SG, Temel B, Shen JA, Jones G, Grabow LC. 41.  et al. 2011. Universal Bronsted-Evans-Polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactions. Catal. Lett. 141:370–73 [Google Scholar]
  42. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjaer CF, Hummelshøj J. 42.  et al. 2014. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6:320–24 [Google Scholar]
  43. Greeley J, Mavrikakis M. 43.  2004. Alloy catalysts designed from first-principles. Nat. Mater. 3:810–15 [Google Scholar]
  44. Greeley J, Jaramillo T, Bonde J, Chorkendorff I, Nørskov JK. 44.  2006. Combinatorial high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5:909–13 [Google Scholar]
  45. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA. 45.  et al. 2009. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1:552–56 [Google Scholar]
  46. Bollinger MV, Jacobsen KW, Nørskov JK. 46.  2003. Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67:085410 [Google Scholar]
  47. Reuter K, Scheffler M. 47.  2003. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90:046103 [Google Scholar]
  48. Reuter K, Frenkel D, Scheffler M. 48.  2004. The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93:116105 [Google Scholar]
  49. Nørskov JK, Scheffler M, Toulhoat H. 49.  2006. Density functional theory in surface science and heterogeneous catalysis. MRS Bull. 31:669–74 [Google Scholar]
  50. Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M. 50.  2006. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B 110:21833–39 [Google Scholar]
  51. Hansen HA, Rossmeisl J, Nørskov JK. 51.  2008. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10:3722–30 [Google Scholar]
  52. Greeley J, Markovic NM. 52.  2012. The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5:9246–56 [Google Scholar]
  53. Greeley J, Nørskov JK. 53.  2007. Electrochemical dissolution of surface alloys in acids: trends from first-principles calculations. Electrochim. Acta 52:5829 [Google Scholar]
  54. Greeley J, Nørskov JK. 54.  2009. Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J. Phys. Chem. C 113:4932–39 [Google Scholar]
  55. Reuter K, Scheffler M. 55.  2002. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65:035406 [Google Scholar]
  56. Jacob T. 56.  2007. Theoretical investigations on the potential-induced formation of Pt-oxide surfaces. J. Electroanal. Chem. 607:158–66 [Google Scholar]
  57. Kitchin JR, Reuter K, Scheffler M. 57.  2008. Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys. Rev. B 77:075437 [Google Scholar]
  58. Inoglu N, Kitchin JR. 58.  2009. Atomistic thermodynamics study of the adsorption and the effects of water-gas shift reactants on Cu catalysts under reaction conditions. J. Catal. 261:188–94 [Google Scholar]
  59. Kitchin JR. 59.  2009. Correlations in coverage-dependent atomic adsorption energies on Pd(111). Phys. Rev. B 79:205412 [Google Scholar]
  60. Piccinin S, Stampfl C, Scheffler M. 60.  2009. Ag-Cu alloy surfaces in an oxidizing environment: a first-principles study. Surf. Sci. 603:1467–75 [Google Scholar]
  61. Mittendorfer F. 61.  2010. Low-dimensional surface oxides in the oxidation of Rh particles. J. Phys. Condens. Matter 22:393001 [Google Scholar]
  62. Valtiner M, Todorova M, Neugebauer J. 62.  2010. Hydrogen adsorption on polar ZnO(0001)-Zn: extending equilibrium surface phase diagrams to kinetically stabilized structures. Phys. Rev. B 82:165418 [Google Scholar]
  63. Su HY, Gu XK, Ma XF, Zhao YH, Bao XH, Li WX. 63.  2011. Structure evolution of Pt-3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: a first-principles study. Catal. Today 165:89–95 [Google Scholar]
  64. Wang HY, Schneider WF. 64.  2011. Adsorption and reactions of NOx on RuO2(110). Catal. Today 165:49–55 [Google Scholar]
  65. Warschkow O, Chuasiripattana K, Lyle MJ, Delley B, Stampfl C. 65.  2011. Cu/ZnO(0001) under oxidating and reducing conditions: a first-principles survey of surface structures. Phys. Rev. B 84:125311 [Google Scholar]
  66. Sabbe MK, Reyniers MF, Reuter K. 66.  2012. First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs. Catal. Sci. Technol. 2:2010–24 [Google Scholar]
  67. Saidi WA, Lee M, Li L, Zhou GW, McGaughey AJH. 67.  2012. Ab initio atomistic thermodynamics study of the early stages of Cu(100) oxidation. Phys. Rev. B 86:245429 [Google Scholar]
  68. Bendavid LI, Carter EA. 68.  2013. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J. Phys. Chem. B 117:15750–60 [Google Scholar]
  69. Wang TY, Jelic J, Rosenthal D, Reuter K. 69.  2013. Exploring pretreatment-morphology relationships: ab initio Wulff construction for RuO2 nanoparticles under oxidising conditions. ChemCatChem 5:3398–403 [Google Scholar]
  70. Chizallet C, Raybaud P. 70.  2014. Density functional theory simulations of complex catalytic materials in reactive environments: beyond the ideal surface at low coverage. Catal. Sci. Technol. 4:2797–813 [Google Scholar]
  71. Exner KS, Anton J, Jacob T, Over H. 71.  2014. Chlorine evolution reaction on RuO2(110): ab initio atomistic thermodynamics study—Pourbaix diagrams. Electrochim. Acta 120:460–66 [Google Scholar]
  72. Xiao JP, da Rosa AL, Zhang RQ, Teoh WY, Frauenheim T. 72.  2014. Structural evolution of Cu/ZnO active sites: from reactive environment to ultrahigh vacuum. ChemCatChem 6:2322–26 [Google Scholar]
  73. Zeng ZH, Chan MKY, Zhao ZJ, Kubal J, Fan DX, Greeley J. 73.  2015. Towards first principles-based prediction of highly accurate electrochemical Pourbaix diagrams. J. Phys. Chem. C 119:18177–87 [Google Scholar]
  74. Holby EF, Sheng W, Shao-Horn Y, Morgan D. 74.  2009. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ. Sci. 2:865–71 [Google Scholar]
  75. Alcala R, Mavrikakis M, Dumesic JD. 75.  2003. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111). J. Catal. 218:178–90 [Google Scholar]
  76. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA. 76.  et al. 2009. Modeling ethanol decomposition on transition metals: a combined application of scaling and Bronsted-Evans-Polanyi relations. J. Am. Chem. Soc. 131:5809–15 [Google Scholar]
  77. Salciccioli M, Chen Y, Vlachos DG. 77.  2010. Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J. Phys. Chem. C 114:20155–66 [Google Scholar]
  78. Kandoi S, Greeley J, Simonetti D, Shabaker J, Dumesic JA, Mavrikakis M. 78.  2011. Reaction kinetics of ethylene glycol reforming over platinum in the vapor versus aqueous phases. J. Phys. Chem. C 115:961–71 [Google Scholar]
  79. Salciccioli M, Vlachos DG. 79.  2011. Kinetic modeling of Pt catalyzed and computation-driven catalyst discovery for ethylene glycol decomposition. ACS Catal. 1:1246–56 [Google Scholar]
  80. Christiansen MA, Vlachos DG. 80.  2012. Microkinetic modeling of Pt-catalyzed ethylene glycol steam reforming. Appl. Catal. Gen. 431:18–24 [Google Scholar]
  81. Lausche AC, Falsig H, Jensen AD, Studt F. 81.  2014. Trends in the hydrodeoxygenation activity and selectivity of transition metal surfaces. Catal. Lett. 144:1968–72 [Google Scholar]
  82. Gu X, Liu B, Greeley J. 82.  2015. First-principles study of structure sensitivity of ethylene glycol conversion on platinum. ACS Catal. 5:2623–3631 [Google Scholar]
  83. Liu B, Greeley J. 83.  2011. Decomposition pathways of glycerol via C-H, O-H, and C-C bond scission on Pt(111): a density functional theory study. J. Phys. Chem. C 115:19702–9 [Google Scholar]
  84. Liu B, Greeley J. 84.  2012. Density functional theory study of selectivity considerations for C-C versus C-O bond scission in glycerol decomposition on Pt(111). Top. Catal. 55:280–89 [Google Scholar]
  85. Liu B, Greeley J. 85.  2013. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces. Phys. Chem. Chem. Phys. 15:6475–85 [Google Scholar]
  86. Liu B, Zhou M, Chan MKY, Greeley JP. 86.  2015. Understanding polyol decomposition on bimetallic Pt-Mo catalysts—a DFT study of glycerol. ACS Catal. 5:4942–50 [Google Scholar]
  87. Schnur S, Gross A. 87.  2009. Properties of metal-water interfaces studied from first principles. New J. Phys. 11:125003 [Google Scholar]
  88. Schnur S, Gross A. 88.  2011. Challenges in the first-principles description of reactions in electrocatalysis. Catal. Today 165:129–37 [Google Scholar]
  89. Rossmeisl J, Karlberg GS, Jaramillo TF, Nørskov JK. 89.  2008. Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 140:1–11 [Google Scholar]
  90. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J. 90.  2010. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 12:283–90 [Google Scholar]
  91. Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G. 91.  et al. 2010. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114:18182–97 [Google Scholar]
  92. Stephens IEL, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L. 92.  et al. 2011. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133:5485–91 [Google Scholar]
  93. Rossmeisl J, Ferrin P, Tritsaris GA, Nilekar AU, Koh S. 93.  et al. 2012. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 5:8335–42 [Google Scholar]
  94. Neurock M, Janik M, Wieckowski A. 94.  2008. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 140:363–78 [Google Scholar]
  95. Rostamikia G, Janik MJ. 95.  2010. Direct borohydride oxidation: mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ. Sci. 3:1262–74 [Google Scholar]
  96. Rostamikia G, Mendoza AJ, Hickner MA, Janik MJ. 96.  2011. First-principles based microkinetic modeling of borohydride oxidation on a Au(111) electrode. J. Power Sources 196:9228–37 [Google Scholar]
  97. Filhol JS, Neurock M. 97.  2006. Elucidation of the electrochemical activation of water over Pd by first principles. Angew. Chem. Int. Ed. 45:402–6 [Google Scholar]
  98. Taylor CD, Neurock M, Scully JR. 98.  2008. First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces. J. Electrochem. Soc. 155:C407–C14 [Google Scholar]
  99. Braunchweig B, Hibbitts D, Neurock M, Wieckowski A. 99.  2013. Electrocatalysis: a direct alcohol fuel cell and surface science perspective. Catal. Today 202:197–209 [Google Scholar]
  100. Lee YL, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. 100.  2011. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4:3966–70 [Google Scholar]
  101. Clayborne A, Chun HJ, Rankin RB, Greeley J. 101.  2015. Elucidation of pathways for NO electroreduction on Pt(111) from first principles. Angew. Chem. Int. Ed. 54:8255–58 [Google Scholar]
  102. Rossmeisl J, Skúlason E, Björketun ME, Tripkovic V, Nørskov JK. 102.  2008. Modeling the electrified solid-liquid interface. Chem. Phys. Lett. 466:68–71 [Google Scholar]
  103. Nørskov JK, Bligaard T, Kleis J. 103.  2009. Rate control and reaction engineering. Science 324:1655–56 [Google Scholar]
  104. Hummelshoj JS, Abild-Pedersen F, Studt F, Bligaard T, Nørskov JK. 104.  2012. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51:272–74 [Google Scholar]
  105. Holewinski A, Xin HL, Nikolla E, Linic S. 105.  2013. Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular descriptors and electronic structure engineering. Curr. Opin. Chem. Eng. 2:312–19 [Google Scholar]
  106. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. 106.  2013. The high-throughput highway to computational materials design. Nat. Mater. 12:191–201 [Google Scholar]
  107. Lopez N, Almora-Barrios N, Carchini G, Blonski P, Bellarosa L. 107.  et al. 2012. State-of-the-art and challenges in theoretical simulations of heterogeneous catalysis at the microscopic level. Catal. Sci. Technol. 2:2405–17 [Google Scholar]
  108. Montemore MM, Medlin JW. 108.  2014. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4:3748–61 [Google Scholar]
  109. Trasatti S. 109.  1972. Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39:163–84 [Google Scholar]
  110. Toulhoat H, Raybaud P, Kasztelan S, Kresse G, Hafner J. 110.  1999. Transition metals to sulfur binding energies relationship to catalytic activities in HDS: back to Sabatier with first principle calculations. Catal. Today 50:629–36 [Google Scholar]
  111. Lendvay G. 111.  1989. Bond orders from ab initio calculations and a test of the principle of bond order conservation. J. Phys. Chem. 93:4422–29 [Google Scholar]
  112. Shustorovich E. 112.  1986. Bond making and breaking on transition-metal surfaces—theoretical projections based on bond-order conservation. Surf. Sci. 176:L863–L72 [Google Scholar]
  113. Shustorovich E, Bell AT. 113.  1988. Analysis of CO hydrogenation pathways using the bond-order-conservation method. J. Catal. 113:341–52 [Google Scholar]
  114. Shustorovich E, Bell AT. 114.  1988. The thermochemistry of C-2 hydrocarbons on transition-metal surfaces—the bond-order-conservation approach. Surf. Sci. 205:492–512 [Google Scholar]
  115. Shustorovich E, Bell AT. 115.  1991. An analysis of Fischer-Tropsch synthesis by the bond-order-conservation-Morse-potential approach. Surf. Sci. 248:359–68 [Google Scholar]
  116. Shustorovich E, Bell AT. 116.  1991. An analysis of methanol synthesis from CO and CO2 on CU and Pd surfaces by the bond-order-conservation-Morse-potential approach. Surf. Sci. 253:386–94 [Google Scholar]
  117. Shustorovich E, Bell AT. 117.  1991. Synthesis and decomposition of ammonia on transition-metal surfaces—bond-order-conservation-Morse-potential analysis. Surf. Sci. 259:L791–L96 [Google Scholar]
  118. Shustorovich E, Bell AT. 118.  1992. Oxygen-assisted cleavage of O-H, N-H, and C-H bonds on transition-metal surfaces: bond-order-conservation-Morse-potential analysis. Surf. Sci. 268:397–405 [Google Scholar]
  119. Shustorovich E, Bell AT. 119.  1993. Decomposition and reduction of NO on transition-metal surfaces: bond order conservation Morse potential analysis. Surf. Sci. 289:127–38 [Google Scholar]
  120. Shustorovich E. 120.  1984. Activation barrier for adsorbate surface-diffusion, heat of chemisorption, and adsorbate registry: theoretical interrelations. J. Am. Chem. Soc. 106:6479–81 [Google Scholar]
  121. van Santen RA. 121.  1990. On Shustorovich's bond-order conservation method as applied to chemisorption. Recl. Trav. Chim. Pays-Bas 109:59–63 [Google Scholar]
  122. Neurock M, Hansen EW. 122.  1998. First-principles-based molecular simulation of heterogeneous catalytic surface chemistry. Comput. Chem. Eng. 22:S1045–S60 [Google Scholar]
  123. Mei DH, Hansen EW, Neurock M. 123.  2003. Ethylene hydrogenation over bimetallic Pd/Au(111) surfaces: application of quantum chemical results and dynamic Monte Carlo simulation. J. Phys. Chem. B 107:798–810 [Google Scholar]
  124. van Santen RA, Neurock M. 124.  2007. Theory of surface chemical reactivity. Russ. J. Phys. Chem. B 1:261–91 [Google Scholar]
  125. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG. 125.  2011. A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem. Eng. Sci. 66:4319–55 [Google Scholar]
  126. Nørskov JK, Lang ND. 126.  1980. Effective-medium theory of chemical-binding: application to chemisorption. Phys. Rev. B 21:2131–36 [Google Scholar]
  127. Nørskov JK. 127.  1982. Covalent effects in the effective-medium theory of chemical-binding—hydrogen heats of solution in the 3d-metals. Phys. Rev. B 26:2875–85 [Google Scholar]
  128. Vines F, Vojvodic A, Abild-Pedersen F, Illas F. 128.  2013. Bronsted-Evans-Polanyi relationship for transition metal carbide and transition metal oxide surfaces. J. Phys. Chem. C 117:4168–71 [Google Scholar]
  129. Plessow PN, Abild-Pedersen F. 129.  2015. Examining the linearity of transition state scaling relations. J. Phys. Chem. C 119:10448–53 [Google Scholar]
  130. Sutton JE, Vlachos DG. 130.  2012. A theoretical and computational analysis of linear free energy relations for the estimation of activation energies. ACS Catal. 2:1624–34 [Google Scholar]
  131. van Santen RA, Neurock M, Shetty SG. 131.  2005. Reactivity theory of transition-metal surfaces: a Bronsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem. Rev. 110:2005–48 [Google Scholar]
  132. Zaffran J, Michel C, Auneau F, Delbecq F, Sautet P. 132.  2014. Linear energy relations as predictive tools for polyalcohol catalytic reactivity. ACS Catal. 4:464–68 [Google Scholar]
  133. Zaffran J, Michel C, Delbecq F, Sautet P. 133.  2015. Trade-off between accuracy and universality in linear energy relations for alcohol dehydrogenation on transition metals. J. Phys. Chem. C 119:12988–98 [Google Scholar]
  134. Rossmeisl J, Logadottir A, Nørskov JK. 134.  2005. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319:178–84 [Google Scholar]
  135. Fernandez EM, Moses PG, Toftelund A, Hansen HA, Martinez JI. 135.  et al. 2008. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 47:4683–86 [Google Scholar]
  136. Xu ZN, Rossmeisl J, Kitchin JR. 136.  2015. A linear response DFT plus U study of trends in the oxygen evolution activity of transition metal rutile dioxides. J. Phys. Chem. C 119:4827–33 [Google Scholar]
  137. Bukowski B, Greeley J. 137.  2016. Scaling relationships for molecular adsorption and dissociation in Lewis acid zeolites. J. Phys. Chem. C 1206714–22
  138. Calle-Vallejo F, Martínez JI, García-Lastra JM, Rossmeisl J, Koper MTM. 138.  2012. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 108:116103 [Google Scholar]
  139. Jones G, Studt F, Abild-Pedersen F, Nørskov JK, Bligaard T. 139.  2011. Scaling relationships for adsorption energies of C-2 hydrocarbons on transition metal surfaces. Chem. Eng. Sci. 66:6318–23 [Google Scholar]
  140. Liu B, Cheng L, Curtiss LA, Greeley J. 140.  2014. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces. Surf. Sci. 622:51–59 [Google Scholar]
  141. Chen Y, Salciccioli M, Vlachos DG. 141.  2011. An efficient reaction pathway search method applied to the decomposition of glycerol on platinum. J. Phys. Chem. C 115:18707–20 [Google Scholar]
  142. Salciccioli M, Edie SM, Vlachos DG. 142.  2012. Adsorption of acid, ester, and ether functional groups on Pt: fast prediction of thermochemical properties of adsorbed oxygenates via DFT-based group additivity methods. J. Phys. Chem. C 116:1873–86 [Google Scholar]
  143. Vorotnikov V, Vlachos DG. 143.  2015. Group additivity and modified linear scaling relations for estimating surface thermochemistry on transition metal surfaces: application to furanics. J. Phys. Chem. C 119:10417–26 [Google Scholar]
  144. Xu ZN, Kitchin JR. 144.  2014. Probing the coverage dependence of site and adsorbate configurational correlations on (111) surfaces of late transition metals. J. Phys. Chem. C 118:25597–602 [Google Scholar]
  145. Zeng ZH, Greeley J. 145.  2014. Theoretical study of CO adsorption on Au catalysts under environmental catalytic conditions. Catal. Commun. 52:78–83 [Google Scholar]
  146. Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P. 146.  2015. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7:403–10 [Google Scholar]
  147. Montemore MM, Medlin JW. 147.  2014. A unified picture of adsorption on transition metals through different atoms. J. Am. Chem. Soc. 136:9272–75 [Google Scholar]
  148. Montemore MM, Medlin JW. 148.  2014. Predicting and comparing C-M and O-M bond strengths for adsorption on transition metal surfaces. J. Phys. Chem. C 118:2666–72 [Google Scholar]
  149. Ruberto C, Lundqvist BI. 149.  2007. Nature of adsorption on TiC(111) investigated with density-functional calculations. Phys. Rev. B 75:235438 [Google Scholar]
  150. Newns DM. 150.  1969. Self-consistent model for hydrogen chemisorption. Phys. Rev. B 178:1123–35 [Google Scholar]
  151. Calle-Vallejo F, Inoglu NG, Su HY, Martínez JI, Man IC. 151.  et al. 2013. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4:1245–49 [Google Scholar]
  152. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI. 152.  et al. 2011. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–65 [Google Scholar]
  153. Balbuena PB, Callejas-Tovar R, Hirunsit P, Martínez de la Hoz JM, Ma Y, Ramírez-Caballero GE. 153.  2012. Evolution of Pt and Pt-alloy catalytic surfaces under oxygen reduction reaction in acid medium. Top. Catal. 55:322–35 [Google Scholar]
  154. Lausche AC, Hummelshoj JS, Abild-Pedersen F, Studt F, Nørskov JK. 154.  2012. Application of a new informatics tool in heterogeneous catalysis: analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. J. Catal. 291:133–37 [Google Scholar]
  155. Greeley J, Rossmeisl J, Hellman A, Nørskov JK. 155.  2007. Theoretical trends in particle size effects for the oxygen reduction reaction. Z. Phys. Chem. 221:1209–20 [Google Scholar]
  156. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. 156.  2007. Electrolysis of water on oxide surfaces. Chem. Interfac. Electrochem. 607:83–89 [Google Scholar]
  157. Ferrin P, Nilekar AU, Greeley J, Mavrikakis M, Rossmeisl J. 157.  2008. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf. Sci. 602:3424–31 [Google Scholar]
  158. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP. 158.  et al. 2008. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J. Catal. 259:147–60 [Google Scholar]
  159. Rossmeisl J, Greeley J, Karlberg GS. 159.  2009. Electrocatalysis and catalyst screening from density functional theory calculations. Fuel Cell Catalysis: A Surface Science Approach M Koper 57–92 Hoboken, NJ: John Wiley & Sons [Google Scholar]
  160. Bjorketun ME, Bondarenko AS, Abrams BL, Chorkendorff I, Rossmeisl J. 160.  2010. Screening of electrocatalytic materials for hydrogen evolution. Phys. Chem. Chem. Phys. 12:10536–41 [Google Scholar]
  161. Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J. 161.  et al. 2006. Towards computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts. J. Catal. 239:501–6 [Google Scholar]
  162. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM. 162.  et al. 2006. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45:2897 [Google Scholar]
  163. Jacobsen CJH. 163.  2000. Novel class of ammonia synthesis catalysts. Chem. Comm. 12:1057–58 [Google Scholar]
  164. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH. 164.  2001. The Bronsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197:229–31 [Google Scholar]
  165. Boisen A, Dahl S, Nørskov JK, Christensen CH. 165.  2005. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 230:309–12 [Google Scholar]
  166. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A. 166.  et al. 2005. Ammonia synthesis from first-principles calculations. Science 307:555–58 [Google Scholar]
  167. Hellman A, Baerends EJ, Biczysko M, Bligaard T, Christensen CH. 167.  et al. 2006. Predicting catalysis: understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 110:17719–35 [Google Scholar]
  168. Hellman A, Honkala K, Remediakis IN, Logadottir A, Carlsson A. 168.  et al. 2009. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles. Surf. Sci. 603:1731–39 [Google Scholar]
  169. Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F. 169.  et al. 2014. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345:197–200 [Google Scholar]
  170. Montoya JH, Tsai C, Vojvodic A, Nørskov JK. 170.  2015. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8:2180–86 [Google Scholar]
  171. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK. 171.  2010. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3:1311–15 [Google Scholar]
  172. Peterson AA, Nørskov JK. 172.  2012. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3:251–58 [Google Scholar]
  173. Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F. 173.  2014. Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal. 4:1226–33 [Google Scholar]
  174. Li HJ, Lausche AC, Peterson AA, Hansen HA, Studt F, Bligaard T. 174.  2015. Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surf. Sci. 641:105–11 [Google Scholar]
  175. Ferrin P, Mavrikakis M. 175.  2009. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 131:14381–89 [Google Scholar]
  176. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M. 176.  2014. Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal. 4:4434–45 [Google Scholar]
  177. Rankin RB, Greeley J. 177.  2012. Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal. 2:2664–72 [Google Scholar]
  178. Mehmood F, Rankin RB, Greeley J, Curtiss LA. 178.  2012. Trends in methanol decomposition on transition metal alloy clusters from scaling and Bronsted-Evans-Polanyi relationships. Phys. Chem. Chem. Phys. 14:8644–52 [Google Scholar]
  179. Cheng J, Hu P, Ellis P, French S, Lok CM. 179.  2008. Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112:1308–11 [Google Scholar]
  180. Song T, Hu P. 180.  2007. Insight into the adsorption competition and the relationship between dissociation and association reactions in ammonia synthesis. J. Chem. Phys. 127:234706 [Google Scholar]
  181. Cheng J, Hu P. 181.  2008. Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. J. Am. Chem. Soc. 130:10868–69 [Google Scholar]
  182. Holewinski A, Idrobo JC, Linic S. 182.  2014. High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction. Nat. Chem. 6:828–34 [Google Scholar]
  183. Mukherjee J, Linic S. 183.  2007. First-principles investigations of electrochemical oxidation of hydrogen at solid oxide fuel cell operating conditions. J. Electrochem. Soc. 154:B919–B24 [Google Scholar]
  184. Toulhoat H, Raybaud P. 184.  2003. Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors. J. Catal. 216:63–72 [Google Scholar]
  185. Koper MTM. 185.  2013. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4:2710–23 [Google Scholar]
  186. Viswanathan V, Wang FYF. 186.  2012. Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles. Nanoscale 4:5110–17 [Google Scholar]
  187. Li HJ, Calle-Vallejo F, Kolb MJ, Kwon Y, Li YD, Koper MTM. 187.  2013. Why (100) terraces break and make bonds: oxidation of dimethyl ether on platinum single-crystal electrodes. J. Am. Chem. Soc. 135:14329–38 [Google Scholar]
  188. Ruditskiy A, Peng H-C, Xia Y. 188.  2016. Shape-controlled metal nanocrystals for heterogeneous catalysis. Annu. Rev. Chem. Biomol. Eng. 7:327–48 [Google Scholar]
  189. Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK. 189.  2012. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2:1654–60 [Google Scholar]
  190. Shekhar M, Wang J, Lee WS, Williams WD, Kim SM. 190.  et al. 2012. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134:4700–8 [Google Scholar]
  191. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD. 191.  2014. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–602 [Google Scholar]
  192. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M. 192.  et al. 2011. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:1256–60 [Google Scholar]
  193. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP. 193.  et al. 2012. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11:550–57 [Google Scholar]
  194. Lemire C, Meyer R, Henrich VE, Shaikhutdinov S, Freund HJ. 194.  2004. The surface structure of Fe3O4(111) films as studied by CO adsorption. Surf. Sci. 572:103–14 [Google Scholar]
  195. Qin ZH, Lewandowski M, Sun YN, Shaikhutdinov S, Freund HJ. 195.  2008. Encapsulation of Pt nanoparticles as a result of strong metal-support interaction with Fe3O4 (111). J. Phys. Chem. C 112:10209–13 [Google Scholar]
  196. Sun YN, Qin ZH, Lewandowski M, Carrasco E, Sterrer M. 196.  et al. 2009. Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 266:359–68 [Google Scholar]
  197. Xu L, Ma Y, Zhang Y, Jiang Z, Huang W. 197.  2009. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. J. Am. Chem. Soc. 131:16366–67 [Google Scholar]
  198. Fu Q, Li W-X, Yao Y, Liu H, Su H-Y. 198.  et al. 2010. Interface-confined ferrous centers for catalytic oxidation. Science 328:1141–44 [Google Scholar]
  199. Merte LR, Knudsen J, Eichhorn FM, Porsgaard S, Zeuthen H. 199.  et al. 2011. CO-induced embedding of Pt adatoms in a partially reduced FeOx film on Pt(111). J. Am. Chem. Soc. 133:10692–95 [Google Scholar]
  200. Kuhlenbeck H, Shaikhutdinov S, Freund H-J. 200.  2013. Well-ordered transition metal oxide layers in model catalysis—a series of case studies. Chem. Rev. 113:3986–4034 [Google Scholar]
  201. Pan Q, Weng X, Chen M, Giordano L, Pacchioni G. 201.  et al. 2015. Enhanced CO oxidation on the oxide/metal interface: from ultra-high vacuum to near-atmospheric pressures. ChemCatChem 7:2620–27 [Google Scholar]
  202. Zeuthen H, Kudernatsch W, Merte LR, Ono LK, Lammich L. 202.  et al. 2015. Unraveling the edge structures of platinum(111)-supported ultrathin FeO islands: the influence of oxidation state. ACS Nano 9:573–83 [Google Scholar]
  203. Tsai C, Latimer AA, Yoo JS, Studt F, Abild-Pedersen F. 203.  2015. Predicting promoter-induced bond activation on solid catalysts using elementary bond orders. J. Phys. Chem. Lett. 6:3670–74 [Google Scholar]
  204. Lee S, Molina LM, López MJ, Alonso JA, Hammer B. 204.  et al. 2009. Selective propene epoxidation on immobilized Au6−10 clusters: the effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 48:1467–71 [Google Scholar]
  205. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. 205.  2008. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37:1783–91 [Google Scholar]
  206. Canlas CP, Lu JL, Ray NA, Grosso-Giordano NA, Lee S. 206.  et al. 2012. Shape-selective sieving layers on an oxide catalyst surface. Nat. Chem. 4:1030–36 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034413
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error