1932

Abstract

To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: () One can write a continuum expression for the stress tensor in terms of kinematic tensors, or () one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034536
2016-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034536.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034536&mimeType=html&fmt=ahah

Literature Cited

  1. Saengow C, Giacomin AJ, Kolitawong C. 1.  2015. Extruding plastic pipe from eccentric dies. J. Non-Newton. Fluid Mech. 223:176–99 [Google Scholar]
  2. Tadmor Z, Bird RB. 2.  1974. Rheological analysis of stabilizing forces in wire-coating dies. Polym. Eng. Sci. 14:2124–36 [Google Scholar]
  3. Baek HM, Giacomin AJ. 3.  2013. Corotating or codeforming models for thermoforming. J. Adv. Eng. 8:241–54 [Google Scholar]
  4. Bird RB, Stewart WE, Lightfoot EN, Klingenberg DJ. 4.  2015. Introductory Transport Phenomena New York: Wiley
  5. Bird RB, Armstrong RC, Hassager O. 5.  1977. Dynamics of Polymeric Liquids 1 Fluid Mechanics New York: Wiley, 1st ed..
  6. Maxwell JC. 6.  1867. On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157:49–88 [Google Scholar]
  7. Bird RB, Armstrong RC, Hassager O. 7.  1987. Dynamics of Polymeric Liquids 1 Fluid Mechanics Hoboken, NJ: John Wiley & Sons, 2nd ed..See Footnote 1.
  8. Oldroyd JG. 8.  1950. On the formulation of rheological equations of state. Proc. R. Soc. Lond. 200:523–41 [Google Scholar]
  9. Jeffreys H. 9.  1924. The Earth: Its Origin, History and Physical Constitution London: Cambridge Univ. Press
  10. Jeffreys H. 10.  1929. The Earth: Its Origin, History and Physical Constitution London: Cambridge Univ. Press., 2nd ed..
  11. Spriggs TW. 11.  1965. A four-constant model for viscoelastic fluids. Chem. Eng. Sci. 20:931–40 [Google Scholar]
  12. Bird RB, Curtiss CF, Armstrong RC, Hassager O. 12.  1987. Dynamics of Polymeric Liquids 2 Kinetic Theory New York: Wiley, 2nd ed..
  13. Zaremba S. 13.  1903. Le principe des mouvements relatifs et les équations de la mécanique physique. Bull. Int. Acad. Sci. Crac.594–614
  14. Giacomin AJ, Bird RB. 14.  2011. Normal stress differences in large-amplitude oscillatory shear flow for the corotational “ANSR” model. Rheol. Acta 50:9741–52See Footnote 2. [Google Scholar]
  15. Giacomin AJ, Bird RB, Johnson LM, Mix AW. 15.  2011. Large-amplitude oscillatory shear flow from the corotational Maxwell model. J. Non-Newton. Fluid Mech. 166:19–201081–99 Corrigenda. J. Non-Newton. Fluid Mech. 2012. 166:1081–99 See Footnote 3. [Google Scholar]
  16. Jaumann G. 16.  1905. Grundlagen der Bewegungslehre Leipzig, Ger.: Johann Ambrosius Barth
  17. Jaumann G. 17.  1911. Sitzungsberichte Akad. Wiss. Wien, IIa 120:385–530
  18. Fromm H. 18.  1947–1948. Laminare Strömung Newtonscher und Maxwellscher Flüssigkeiten. Zeits. Angew. Math. Mech. 25/27:146–50 28:43–54 [Google Scholar]
  19. DeWitt TW. 19.  1955. A rheological equation of state which predicts non-Newtonian viscosity, normal stresses, and dynamic moduli. J. Appl. Phys. 26:889–94 [Google Scholar]
  20. Oldroyd JG. 20.  1958. Non-Newtonian effects in steady motion of some idealized elasto-viscous fluids. Proc. R. Soc. Lond. 245:278–97 [Google Scholar]
  21. Williams MC, Bird RB. 21.  1962. Three-constant Oldroyd model for viscoelastic fluids. Phys. Fluids 5:1126–27 [Google Scholar]
  22. Oakley JG, Yosick JA, Giacomin AJ. 22.  1998. Molecular origins of nonlinear viscoelasticity. Mikrochim. Acta 130:1–28 [Google Scholar]
  23. Peterlin A. 23.  1968. Non-Newtonian viscosity and the macromolecule. Adv. Macromol. Chem. 1:225–81 [Google Scholar]
  24. Fan X-J. 24.  1985. Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions. J. Non-Newton. Fluid Mech. 17:125–44 [Google Scholar]
  25. Fraenkel GK. 25.  1952. Visco-elastic effect in solutions of simple particles. J. Chem. Phys. 20:1958–64 [Google Scholar]
  26. Bird RB, Curtiss CF, Beers KJ. 26.  1997. Polymer contribution to the thermal conductivity and viscosity in a dilute solution (Fraenkel Dumbbell model). Rheol. Acta 36:3269–76 [Google Scholar]
  27. Fraenkel GK. 27.  1949. The viscosity and shear elasticity of solutions of simple deformable particles PhD Thesis, Cornell Univ., Ithaca, NY
  28. Giesekus H. 28.  1956. Das Reibungsgesetz der strukturviskose Flüssigkeit. Kolloïd-Z. 147:29–41 Erratum. 1961. Rheol. Acta 1:4404–13 [Google Scholar]
  29. Bird RB, Warner HR Jr., Evans DC. 29.  1972. Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv. Polym. Sci. 8:1–90 [Google Scholar]
  30. Bird RB, Armstrong RC. 30.  1972. Time-dependent flows of dilute solutions of rodlike macromolecules. J. Chem. Phys. 56:3680–82 [Google Scholar]
  31. Bird RB, Hassager O, Armstrong RC, Curtiss CF. 31.  1977. Dynamics of Polymeric Liquids 2 Kinetic Theory New York: Wiley, 1st ed..
  32. Rouse PE. 32.  1953. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21:1272–80 [Google Scholar]
  33. Zimm BH. 33.  1956. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24:269–78 see Williams MC. 1965. Normal stresses in polymer solutions with remarks on Zimm's treatment. J. Chem. Phys. 42:2988–89 [Google Scholar]
  34. Kramers HA. 34.  1944. Het gedrag van macromoleculen in een stroomende vloeistof. Physica 11:1–19 [Google Scholar]
  35. Hassager O. 35.  1974. Kinetic theory and rheology of bead-rod models for macromolecular solutions. I. Equilibrium and steady flow properties. J. Chem. Phys. 60:2111–24 [Google Scholar]
  36. Curtiss CF, Bird RB. 36.  1981. A kinetic theory for polymer melts. I. The equation for the single-link orientational distribution function. J. Chem. Phys. 74:2016–25 [Google Scholar]
  37. Curtiss CF, Bird RB. 37.  1981. A kinetic theory for polymer melts. II. The stress tensor and the rheological equation of state. J. Chem. Phys. 74:2026–33 [Google Scholar]
  38. Bird RB, Saab HH, Curtiss CF. 38.  1982. A kinetic theory for polymer melts. 3. Elongational flows. J. Phys. Chem. 86:71102–6 [Google Scholar]
  39. Bird RB, Saab HH, Curtiss CF. 39.  1982. A kinetic theory for polymer melts. IV. Rheological properties for shear flows. J. Chem. Phys. 77:94747–57 [Google Scholar]
  40. Saab HH, Bird RB, Curtiss CF. 40.  1982. A kinetic theory for polymer melts. V. Experimental comparisons for shear-flow rheological properties. J. Chem. Phys. 77:94758–66 [Google Scholar]
  41. Schieber JD, Curtiss CF, Bird RB. 41.  1986. Kinetic theory of polymer melts. 7. Polydispersity effects. Ind. Eng. Chem. Fundam. 25:4471–75 [Google Scholar]
  42. Schieber JD. 42.  1987. Kinetic theory of polymer melts. VIII. Rheological properties of polydisperse mixtures. J. Chem. Phys. 87:84917–27 [Google Scholar]
  43. Schieber JD. 43.  1987. Kinetic theory of polymer melts. IX. Comparisons with experimental data. J. Chem. Phys. 87:84928–36 [Google Scholar]
  44. Fan X-J, Bird RB. 44.  1984. A kinetic theory for polymer melts. VI. Calculation of additional material functions. J. Non-Newton. Fluid Mech. 15:341–73 [Google Scholar]
  45. Bird RB, Giacomin AJ, Schmalzer AM, Aumnate C. 45.  2014. Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: shear stress response. J. Chem. Phys. 140:074904See Footnote 7. [Google Scholar]
  46. Abdel-Khalik SI, Hassager O, Bird RB. 46.  1974. The Goddard expansion and the kinetic theory for solutions of rodlike macromolecules. J. Chem. Phys. 61:4312–16 [Google Scholar]
  47. Bird RB, Hassager O, Abdel-Khalik SI. 47.  1974. Co-rotational rheological models and the Goddard expansion. AIChE J. 20:1041–66 [Google Scholar]
  48. Bird RB. 48.  1972. A modification of the Oldroyd model for rigid dumbbell suspensions with Brownian motion. J. Appl. Math. Phys. 23:157–59 [Google Scholar]
  49. Winter HH, Baumgärtel M, Soskey PR. 49.  1993. A parsimonious model for viscoelastic fluids and solids. Techniques in Rheological Measurement AA Collyer 123–60 London/New York: Chapman and Hall; Dordrecht, Neth.: Kluwer Acad. Publ. [Google Scholar]
  50. Goddard JD, Miller C. 50.  1966. An inverse for the Jaumann derivative and some applications to the rheology of viscoelastic fluids. Rheol. Acta 5:177–84 [Google Scholar]
  51. Lodge AS. 51.  1964. Elastic Liquids New York: AcademicSee Footnote 4.
  52. Kim S, Fan XJ. 52.  1984. A perturbation solution for rigid dumbbell suspensions in steady shear flow. J. Rheol. 28:117–22 [Google Scholar]
  53. Stewart WE, Sørensen JP. 53.  1984. Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow. Trans. Soc. Rheol. 16:1–13 [Google Scholar]
  54. Öttinger HC. 54.  1988. A note on rigid dumbbell solutions at high shear rates. J. Rheol. 32:135–43 Errata. 1988. J. Rheol. 32:814 [Google Scholar]
  55. Cox WP, Merz EH. 55.  1958. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28:619–22 [Google Scholar]
  56. Laun HM. 56.  1986. Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30:459–501 [Google Scholar]
  57. Ferry JF. 57.  1980. Viscoelastic Properties of Polymers New York: Wiley., 3rd ed..
  58. Giacomin AJ, Dealy JM. 58.  1993. Large-amplitude oscillatory shear. Techniques in Rheological Measurement AA Collyer 99–121 London/New York: Chapman & Hall; Dordrecht, Neth.: Kluwer Acad. Publ. [Google Scholar]
  59. Giacomin AJ, Dealy JM. 59.  1998. Using large-amplitude oscillatory shear. Rheological Measurement AA Collyer, DW Clegg 327–56 Dordrecht, Neth.: Kluwer Acad. Publ. , 2nd ed..
  60. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG. 60.  et al. 2011. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36:1697–753 [Google Scholar]
  61. Giacomin AJ, Oakley JG. 61.  1993. Obtaining Fourier series graphically from large amplitude oscillatory shear loops. Rheol. Acta 32:328–32 [Google Scholar]
  62. Ewoldt RH, Hosoi AE, McKinley GH. 62.  2008. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52:1427–58 [Google Scholar]
  63. Ewoldt RH. 63.  2009. Nonlinear viscoelastic materials: bioinspired applications and new characterization measures PhD Thesis, Mech. Eng. Dep., Mass. Inst. Technol. Cambridge, MA:
  64. Ewoldt RH, McKinley GH. 64.  2010. On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheol. Acta 49:213–19 [Google Scholar]
  65. Dealy JM, Petersen JF, Tee T-T. 65.  1973. A concentric-cylinder rheometer for polymer melts. Rheol. Acta 12:550–58 [Google Scholar]
  66. Jeyaseelan RS, Giacomin AJ. 66.  1994. How affine is the entanglement network of molten low-density polyethylene in large amplitude oscillatory shear?. J. Eng. Mater. Technol. 116:114–18 [Google Scholar]
  67. Gordon RJ, Schowalter WR. 67.  1972. Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions. Trans. Soc. Rheol. 16:179–97 [Google Scholar]
  68. Oakley JG. 68.  1992. Measurement of normal thrust and evaluation of upper-convected Maxwell models in large amplitude oscillatory shear Masters Thesis, Mech. Eng. Dep., Texas A&M Univ. College Station, TX:
  69. Oakley JG, Giacomin AJ. 69.  1994. A sliding plate normal thrust rheometer for molten plastics. Polym. Eng. Sci. 34:7580–84 [Google Scholar]
  70. Tee T-T, Dealy JM. 70.  1975. Nonlinear viscoelasticity of polymer melts. Trans. Soc. Rheol. 19:595–615 [Google Scholar]
  71. Tee T-T. 71.  1974. Large amplitude oscillatory shearing of polymer melts PhD Thesis, Chem. Eng. Dep., McGill Univ. Montréal, Canada:
  72. Soong SS. 72.  1983. A parallel plate viscoelastometer for molten polymers PhD Thesis, Chem. Eng. Dep., McGill Univ. Montréal, Canada:
  73. Dealy JM, Soong SS. 73.  1984. A parallel plate melt rheometer incorporating a shear stress transducer. J. Rheol. 28:4355–65 [Google Scholar]
  74. Wilhelm M, Maring D, Spiess H-W. 74.  1998. Fourier-transform rheology. Rheol. Acta 37:4399–405 [Google Scholar]
  75. Wilhelm M. 75.  2000. Fourier-transform rheology Thesis for Ger. Habilit., Max-Planck-Inst. Polym. Mainz, Ger.:
  76. Wilhelm M. 76.  2002. Fourier-transform rheology. Macromol. Mater. Eng. 287:283–105 [Google Scholar]
  77. Ahirwal D, Filipe S, Schlatter G, Wilhelm M. 77.  2014. Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene. J. Rheol. 58:3635–58 [Google Scholar]
  78. Hyun K, Wilhelm M. 78.  2009. Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–22 [Google Scholar]
  79. Onogi S, Masuda T, Matsumoto T. 79.  1970. Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. Trans. Soc. Rheol. 14:2275–94 [Google Scholar]
  80. Matsumoto T, Segawa Y, Warashina Y, Onogi S. 80.  1973. Nonlinear behavior of viscoelastic materials. II. The method of analysis and temperature dependence of nonlinear viscoelastic functions. Trans. Soc. Rheol. 17:147–62 [Google Scholar]
  81. Davis WM, Macosko CW. 81.  1978. Nonlinear dynamic mechanical moduli for polycarbonate and PMMA. J. Rheol. 22:l53–71 [Google Scholar]
  82. Pearson DS, Rochefort WE. 82.  1982. Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci. B Polym. Phys. 20:83–98See Footnote 5. [Google Scholar]
  83. Helfand E, Pearson DS. 83.  1982. Calculation of the nonlinear stress of polymers in oscillatory shear fields. J. Polym. Sci. B Polym. Phys. 20:1249–58See Footnote 6. [Google Scholar]
  84. Reinheimer K, Wilhelm M. 84.  2013. Charakterisierung von Hellen und Dunklen Bierschäumen durch Mechanische Obertonanalyse, FT-Rheologie, Bunsen-Magazin. Z. Phys. Chem. 15:152–55 [Google Scholar]
  85. Dötsch T, Pollard M, Wilhelm M. 85.  2003. Kinetics of isothermal crystallization in isotactic polypropylene monitored with rheology and Fourier-transform rheology. J. Phys. Condens. Matter 15:S923–31 [Google Scholar]
  86. Dingenouts N, Wilhelm M. 86.  2010. New developments for the mechanical characterization of materials. Korea-Aust. Rheol. J. 22:4317–30 [Google Scholar]
  87. Giacomin AJ, Gilbert PH, Merger D, Wilhelm M. 87.  2015. Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow. Rheol. Acta 54:263–85 [Google Scholar]
  88. Lodge AS. 88.  1961. Recent network theories of the rheological properties of moderately concentrated polymer solutions. Phénomènes de Relaxation et de Fluage en Rhéologie Non-linéaire51–63 Paris: Cent. Natl. Res. Sci. [Google Scholar]
  89. Saengow C, Giacomin AJ, Kolitawong C. 89.  2015. Exact analytical solution for large-amplitude oscillatory shear flow. Macromol. Theory Simul. 24:352–92 [Google Scholar]
  90. Giacomin AJ, Saengow C, Guay M, Kolitawong C. 90.  2015. Padé approximants for large-amplitude oscillatory shear flow. Rheol. Acta 54:679693 [Google Scholar]
  91. Schmalzer AM, Bird RB, Giacomin AJ. 91.  2014. Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. PRG Rep. No. 002, QU-CHEE-PRG-TR–2014–2, Polym. Res. Group, Chem. Eng. Dep., Queen's Univ., Kingston, Canada
  92. Schmalzer AM, Bird RB, Giacomin AJ. 92.  2015. Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. J. Non-Newton. Fluid Mech. 222:56–71See Footnote 8. [Google Scholar]
  93. Schmalzer AM, Giacomin AJ. 93.  2015. Orientation in large-amplitude oscillatory shear. Macromol. Theory Simul. 24:3171, 181–207See Footnote 9. [Google Scholar]
  94. Bird RB, Armstrong RC. 94.  1972. Time-dependent flows of dilute solutions of rodlike macromolecules. J. Chem. Phys. 56:3680–82See Footnote 10. [Google Scholar]
  95. Park OO, Fuller GG. 95.  1985. Dynamics of rigid dumbbells in confined geometries: part II. Time-dependent shear flow. J. Non-Newton. Fluid. Mech. 18:111–22 [Google Scholar]
  96. Park OO. 96.  1985. Dynamics of rigid and flexible polymer chains: part 1. Transport through confined geometries. PhD Thesis, Chem. Eng., Stanford Univ., Stanford, CA
  97. Giacomin AJ, Bird RB, Aumnate C, Mertz AM, Schmalzer AM, Mix AW. 97.  2012. Viscous heating in large-amplitude oscillatory shear flow. Phys. Fluids 24:103101 [Google Scholar]
  98. Ding F, Giacomin AJ, Bird RB, Kweon C-B. 98.  1999. Viscous dissipation with fluid inertia in oscillatory shear flow. J. Non-Newton. Fluid Mech. 86:3359–74 [Google Scholar]
  99. Giacomin AJ, Bird RB, Baek HM. 99.  2013. Temperature rise in large-amplitude oscillatory shear flow from shear stress measurements. Ind. Eng. Chem. Res. 52:2008–17 [Google Scholar]
  100. Curtiss CF, Bird RB. 100.  1996. Statistical mechanics of transport phenomena: polymeric liquid mixtures. Adv. Polym. Sci. 25:1–101 [Google Scholar]
  101. Goddard JD, Miller C. 101.  1966. An inverse for the Jaumann derivative and some applications to the rheology of viscoelastic fluids. Rheol. Acta 5:177–84 [Google Scholar]
  102. De Gennes PG. 102.  1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
  103. Doi M, Edwards SF. 103.  1988. The Theory of Polymer Dynamics 73 Oxford: Oxford Univ. Press
  104. Lodge AS, Schieber JD, Bird RB. 104.  1988. The Weissenberg effect at finite rod-rotation speeds. J. Chem. Phys. 88:64001–7 [Google Scholar]
  105. Bird RB, Evans DC, Warner HR Jr. 105.  1971. Recoil in macromolecular solutions according to rigid dumbbell kinetic theory. Appl. Sci. Res. 23:1185–92 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034536
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034536
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error