1932

Abstract

Nanoimprint lithography (NIL), a molding process, can replicate features <10 nm over large areas with long-range order. We describe the early development and fundamental principles underlying the two most commonly used types of NIL, thermal and UV, and contrast them with conventional photolithography methods used in the semiconductor industry. We then describe current advances toward full commercial industrialization of UV-curable NIL (UV-NIL) technology for integrated circuit production. We conclude with brief overviews of some emerging areas of research, from photonics to biotechnology, in which the ability of NIL to fabricate structures of arbitrary geometry is providing new paths for development. As with previous innovations, the increasing availability of tools and techniques from the semiconductor industry is poised to provide a path to bring these innovations from the lab to everyday life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034635
2016-06-07
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034635.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034635&mimeType=html&fmt=ahah

Literature Cited

  1. Austin MD, Ge HX, Wu W, Li MT, Yu ZN. 1.  et al. 2004. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 84:5299–301 [Google Scholar]
  2. Chou SY, Krauss PR, Zhang W, Guo L, Zhuang L. 2.  1997. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15:2897–904 [Google Scholar]
  3. Kumar A, Whitesides GM. 3.  1993. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63:2002–4 [Google Scholar]
  4. Chou SY, Krauss PR, Renstrom PJ. 4.  1996. Imprint lithography with 25-nanometer resolution. Science 272:85–87 [Google Scholar]
  5. Chou SY, Krauss PR, Renstrom PJ. 5.  1995. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67:3114–16 [Google Scholar]
  6. Fujimori S. 6.  2009. Fine pattern fabrication by the molded mask method (nanoimprint lithography) in the 1970s. Jpn. J. Appl. Phys. 48:6S [Google Scholar]
  7. Haisma J, Verheijen M, van den Heuvel K, van den Berg J. 7.  1996. Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14:4124–28 [Google Scholar]
  8. Colburn M, Johnson S, Stewart M, Damle S, Bailey T. 8.  et al. 1999. Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676:379–89 [Google Scholar]
  9. Arnold B. 9.  2009. Shrinking possibilities: Lithography will need multiple strategies to keep up with the evolution of memory and logic. IEEE Spectrum April 1. http://spectrum.ieee.org/semiconductors/design/shrinking-possibilities
  10. 10. Semicond. Ind. Assoc 2013. International Technology Roadmap for Semiconductors. Washington, DC: Semicond. Ind. Assoc http://www.itrs2.net/2013-itrs.html
  11. 11. Optics.org 2015. EUV bet settled as source powers climb. Newsdesk, Research & Development Feb. 24. http://optics.org/news/6/2/32
  12. 12. Semicond. Ind. Assoc 2003. International Technology Roadmap for Semiconductors. Washington, DC: Semicond. Ind. Assoc.
  13. Takeishi H, Sreenivasan SV. 13.  2015. Nanoimprint system development and status for high volume semiconductor manufacturing. Proc. SPIE 9423:94230C–1C-9 [Google Scholar]
  14. Higashiki T, Nakasugi T, Yoneda I. 14.  2011. Nanoimprint lithography for semiconductor devices and future patterning innovation. Proc. SPIE 7970:797003 [Google Scholar]
  15. Yeo J, Kim H, Eynon B. 15.  2008. Full field imprinting of sub-40 nm patterns. Proc. SPIE 6921:692107 [Google Scholar]
  16. 16. Toshiba Corp 2015. Toshiba to accelerate development of nano imprint lithography Press Release, Feb. 5. https://www.toshiba.co.jp/about/press/2015_02/pr0501.htm
  17. 17. ASML TWINSCAN NXT: 1980Di https://www.asml.com/asml/show.do?lang=EN&ctx=46772&dfp_product_id=10567
  18. 18. Cymer EUV Light Sources: Keeping Moore's Law Alive. http://www.cymer.com/euv-lithography/euv-light-sources
  19. Chou SY, Krauss PR, Renstrom PJ. 19.  1996. Nanoimprint lithography. J. Vac. Sci. Technol. B 14:4129–33 [Google Scholar]
  20. Schift H. 20.  2008. Nanoimprint lithography: An old story in modern times? A review. J. Vac. Sci. Technol. B 26:458–80 [Google Scholar]
  21. Khoury M, Ferry DK. 21.  1996. Effect of molecular weight on poly(methyl methacrylate) resolution. J. Vac. Sci. Technol. B 14:75–79 [Google Scholar]
  22. Harutaka M, Hiroshi H. 22.  2011. Effect of dropping hydrofluoroether in thermal nanoimprint on polycarbonate. Jpn. J. Appl. Phys. 50:06GK05 [Google Scholar]
  23. Koichi N, Shoichi K, Masaru N. 23.  2010. Resist properties of thin poly(methyl methacrylate) and polystyrene films patterned by thermal nanoimprint lithography for Au electrodeposition. Jpn. J. Appl. Phys. 49:06GL05 [Google Scholar]
  24. D'Amour JN, Okoroanyanwu U, Frank CW. 24.  2004. Influence of substrate chemistry on the properties of ultrathin polymer films. Microelectron. Eng. 73–74:209–17 [Google Scholar]
  25. Forrest JA, Dalnoki-Veress K. 25.  2001. The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94:167–95 [Google Scholar]
  26. Schift HK, Kristensen A. 25.  2010. Nanoimprint lithography—patterning of resists using molding. Springer Handbook of Nanotechnology B Bhushan 271–312 Berlin: Springer., 3rd ed.. [Google Scholar]
  27. Reinhold I, Shafran MS, Longsine W, Traub MC, Srinivasan Y. 26.  et al. 2014. High-speed, low-volume inkjet and its role in jet and flash & imprint lithography. NIP Digit. Fabr. Conf. 2014:408–12 [Google Scholar]
  28. Sreenivasan SV. 27.  2008. Nanoscale manufacturing enabled by imprint lithography. MRS Bull. 33:854–63 [Google Scholar]
  29. Khusnatdinov N, Ye Z, Luo K, Stachowiak T, Lu X. 28.  et al. 2014. High-throughput jet and flash imprint lithography for advanced semiconductor memory. Proc. SPIE 9049:904910 [Google Scholar]
  30. Johnson S, Burns R, Kim EK, Dickey M, Schmid G. 29.  et al. 2005. Effects of etch barrier densification on step and flash imprint lithography. J. Vac. Sci. Technol. B 23:2553–56 [Google Scholar]
  31. Resnick DJ, Sreenivasan SV, Willson CG. 30.  2005. Step & flash imprint lithography. Mater. Today 8:34–42 [Google Scholar]
  32. Selinidis KS, Brooks CB, Doyle GF, Brown L, Jones C. 31.  et al. 2011. Mask replication using jet and flash imprint lithography. J. Micro/Nanolithogr. MEMS MOEMS 10:043005–18 [Google Scholar]
  33. Schmid GM, Thompson E, Stacey N, Resnick DJ, Olynick DL, Anderson EH. 32.  2007. Toward 22 nm for unit process development using step and flash imprint lithography. Proc. SPIE 6517:651717 [Google Scholar]
  34. Liebmann L, Barish A, Baum Z, Bonges H, Bukofsky S. 33.  et al. 2004. High-performance circuit design for the RET-enabled 65nm technology node. Design and Process Integration for Microelectronic Manufacturing II LW Liebmann 20–29 Bellingham: SPIE [Google Scholar]
  35. Selinidis K, Thompson E, Schmid G, Stacey N, Perez J. 34.  et al. 2008. Full field imprint masks using variable shape beam pattern generators. J. Vac. Sci. Technol. B 26:2410–15 [Google Scholar]
  36. 35. IBM Copper Interconnects: The Evolution of Microprocessors. http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/copperchip/
  37. Havemann RH, Hutchby JA. 36.  2001. High-performance interconnects: an integration overview. Proc. IEEE 89:586–601 [Google Scholar]
  38. Schmid GM, Stewart MD, Wetzel J, Palmieri F, Hao J. 37.  et al. 2006. Implementation of an imprint damascene process for interconnect fabrication. J. Vac. Sci. Technol. B 24:1283–91 [Google Scholar]
  39. Chao BH, Palmieri F, Jen W-L, McMichael DH, Willson CG. 38.  et al. 2008. Dual damascene BEOL processing using multilevel step and flash imprint lithography. Proc. SPIE 6921:69210C [Google Scholar]
  40. Irmscher M, Butschke J, Carpio R, Chao B, Jen WL. 39.  et al. 2008. High resolution nanoimprint templates for dual damascene: fabrication and imprint results. Proc. SPIE 6921:69210D [Google Scholar]
  41. Murthy S, Falcon M, Sreenivasan SV, Dance D. 40.  2005. S-FIL technology: cost of ownership case study. Proc. SPIE 5751:964 [Google Scholar]
  42. 41. IBM 20th Century Disk Storage Chronology. http://www-03.ibm.com/ibm/history/exhibits/storage/storage_chrono20.html
  43. 42. IBM RAMAC: The First Magnetic Hard Disk. http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ramac/
  44. 43. IBM Magnetic Head Development. http://www-03.ibm.com/ibm/history/exhibits/storage/storage_magnetic.html
  45. Albrecht TR, Arora H, Ayanoor-Vitikkate V, Beaujour JM, Bedau D. 44.  et al. 2015. Bit-patterned magnetic recording: theory, media fabrication, and recording performance. Magnet. IEEE Trans. 51:1–42 [Google Scholar]
  46. Ye Z, Carden S, Hellebrekers P, LaBrake D, Resnick DJ. 45.  et al. 2012. Imprint process performance for patterned media at densities greater than 1Tb/in2. Proc. SPIE 8323:83230V [Google Scholar]
  47. Ashby MF, Ferreira PJ, Schodek DL. 46.  2009. Chapter 9: design environments and systems. Nanomaterials, Nanotechnologies and Design MF Ashby, PJ Ferreira, DL Schodek 291–402 Boston: Butterworth-Heinemann [Google Scholar]
  48. Raut HK, Ganesh VA, Nair AS, Ramakrishna S. 47.  2011. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4:3779–804 [Google Scholar]
  49. Ozbay E. 48.  2006. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–93 [Google Scholar]
  50. Xi JQ, Schubert MF, Kim JK, Schubert EF, Chen MF. 49.  et al. 2007. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 1:176–79 [Google Scholar]
  51. Atwater HA, Polman A. 50.  2010. Plasmonics for improved photovoltaic devices. Nat. Mater. 9:205–13 [Google Scholar]
  52. Berginski M, Huepkes J, Reetz W, Rech B, Wuttig M. 51.  2008. Recent development on surface-textured ZnO: Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films 516:5836–41 [Google Scholar]
  53. Faye S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C. 52.  2007. Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 515:8558–61 [Google Scholar]
  54. Kowalczewski P, Liscidini M, Andreani LC. 53.  2013. Light trapping in thin-film solar cells with randomly rough and hybrid textures. Opt. Express 21:A808–A20 [Google Scholar]
  55. Battaglia C, Hsu CM, Soderstrom K, Escarre J, Haug FJ. 54.  et al. 2012. Light trapping in solar cells: Can periodic beat random?. ACS Nano 6:2790–97 [Google Scholar]
  56. Ferry VE, Verschuuren MA, van Lare MC, Schropp REI, Atwater HA, Polman A. 55.  2011. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett. 11:4239–45 [Google Scholar]
  57. Battaglia C, Escarré J, Söderström K, Erni L, Ding L. 56.  et al. 2011. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11:661–65 [Google Scholar]
  58. Wang E-C, Mokkapati S, White TP, Soderstrom T, Varlamov S, Catchpole KR. 57.  2014. Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting. Prog. Photovolt. 22:587–92 [Google Scholar]
  59. Chou SY, Ding W. 58.  2013. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt. Express 21:A60–A76 [Google Scholar]
  60. Mihi A, Beck FJ, Lasanta T, Rath AK, Konstantatos G. 59.  2014. Imprinted electrodes for enhanced light trapping in solution processed solar cells. Adv. Mater. 26:443–48 [Google Scholar]
  61. Chen JY, Yu MH, Chang CY, Chao YH, Sun KW, Hsu CS. 60.  2014. Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures. ACS Appl. Mater. Interfaces 6:6164–69 [Google Scholar]
  62. Back F, Bockmeyer M, Rudigier-Voigt E, Loebmann P. 61.  2014. Periodic nanostructures imprinted on high-temperature stable sol-gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications. Thin Solid Films 562:274–81 [Google Scholar]
  63. Liu H, Ding Y, Jiang W, Lian Q, Yin L. 62.  et al. 2009. Novel imprint lithography process used in fabrication of micro/nanostructures in organic photovoltaic devices. J. Micro/Nanolithogr. MEMS MOEMS 8:021170 [Google Scholar]
  64. Chen BC, Cheng YS, Gau C, Lee YC. 63.  2014. Enhanced performance of polymer solar cells with imprinted nanostructures on the active layer. Thin Solid Films 564:384–89 [Google Scholar]
  65. Sabnis RW. 64.  1999. Color filter technology for liquid crystal displays. Displays 20:119–29 [Google Scholar]
  66. Liu Z, Zhang R, Wang Z, Guan L, Li B, Chu J. 65.  2015. Integrated polarization-dependent sensor for autonomous navigation. J. Micro/Nanolithogr. MEMS MOEMS 14:015001 [Google Scholar]
  67. Wang L, Schift H, Gobrecht J, Ekinci Y, Kristiansen PM. 66.  et al. 2014. High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range. J. Vac. Sci. Technol. B 32:031206 [Google Scholar]
  68. Kaplan AF, Gilbert JA, Trabert R, Zurbuchen TH, Guo LJ. 67.  2014. Free-standing silicon nanogratings for extreme UV rejection. ACS Photonics 1:554–59 [Google Scholar]
  69. Yoshikawa H, Taniguchi J, Tazaki G, Zento T. 68.  2013. Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectron. Eng. 112:273–77 [Google Scholar]
  70. Ahn SH, Yang S, Miller M, Ganapathisubramanian M, Menezes M. 69.  et al. 2013. High-performance wire-grid polarizers using jet and flash (TM) imprint lithography. J. Micro/Nanolithogr. MEMS MOEMS 12:031104 [Google Scholar]
  71. Shin YJ, Pina-Hernandez C, Wu YK, Ok JG, Guo LJ. 70.  2012. Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting. Nanotechnology 23:344018 [Google Scholar]
  72. Chen L, Wang JJ, Walters F, Deng XG, Buonanno M. 71.  et al. 2007. Large flexible nanowire grid visible polarizer made by nanoimprint lithography. Appl. Phys. Lett. 90:063111 [Google Scholar]
  73. Ahn SH, Miller M, Yang S, Ganapathisubramanian M, Menezes M. 72.  et al. 2014. High volume nanoscale roll-based imprinting using jet and flash imprint lithography. Proc. SPIE 9049:90490G [Google Scholar]
  74. Watts M. 73.  2015. Molecular imprints becomes a virtual reality company. Semiconductor Engineering July 14. http://semiengineering.com/molecular-imprints-becomes-a-virtual-reality-company/
  75. Yokogawa S, Burgos SP, Atwater HA. 74.  2012. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12:4349–54 [Google Scholar]
  76. Kumar K, Duan H, Hegde RS, Koh SCW, Wei JN, Yang JKW. 75.  2012. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7:557–61 [Google Scholar]
  77. Cho EH, Kim HS, Sohn JS, Moon CY, Park NC, Park YP. 76.  2010. Nanoimprinted photonic crystal color filters for solar-powered reflective displays. Opt. Express 18:27712–22 [Google Scholar]
  78. Liu H, Yao Y, Wang Y, Wu W. 77.  2014. Full-color reflective display system based on high contrast gratings. J. Vac. Sci. Technol. B 32:06FE04 [Google Scholar]
  79. Inoue D, Miura A, Nomura T, Fujikawa H, Sato K. 78.  et al. 2011. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98:093113 [Google Scholar]
  80. Kanamori Y, Katsube H, Furuta T, Hasegawa S, Hane K. 79.  2009. Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography. Jpn. J. Appl. Phys. 48:6S [Google Scholar]
  81. Yoon YT, Lee HS, Lee SS, Kim SH, Park JD, Lee KD. 80.  2008. Color filter incorporating a subwavelength patterned grating in poly silicon. Opt. Express 16:2374–80 [Google Scholar]
  82. Cao H, Yu ZN, Wang J, Tegenfeldt JO, Austin RH. 81.  et al. 2002. Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81:174–76 [Google Scholar]
  83. Xia DY, Yan JC, Hou SF. 82.  2012. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 8:2787–801 [Google Scholar]
  84. Li K, Morton K, Veres T, Cui B. 83.  2011. Nanoimprint lithography and its application in tissue engineering and biosensing. Comprehensive Biotechnology M Moo-Young 125–39 Burlington: Academic, 2nd ed.. [Google Scholar]
  85. Willets KA, Van Duyne RP. 84.  2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97 [Google Scholar]
  86. Nie SM, Emery SR. 85.  1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6 [Google Scholar]
  87. Inci F, Tokel O, Wang SQ, Gurkan UA, Tasoglu S. 86.  et al. 2013. Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano 7:4733–45 [Google Scholar]
  88. Martinez-Perdiguero J, Retolaza A, Otaduy D, Juarros A, Merino S. 87.  2013. Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography. Sensors 13:13960–68 [Google Scholar]
  89. Yu CC, Ho KH, Chen HL, Chuang SY, Tseng SC, Su WF. 88.  2012. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects. Biosens. Bioelectron. 33:267–73 [Google Scholar]
  90. Wi JS, Sengupta S, Wilson RJ, Zhang ML, Tang M, Wang SX. 89.  2011. Raman-active two-tiered Ag nanoparticles with a concentric cavity. Small 7:3276–80 [Google Scholar]
  91. Lin DZ, Chen YP, Jhuang PJ, Chu JY, Yeh JT, Wang JK. 90.  2011. Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates. Opt. Express 19:4337–45 [Google Scholar]
  92. Im H, Lee SH, Wittenberg NJ, Johnson TW, Lindquist NC. 91.  et al. 2011. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5:6244–53 [Google Scholar]
  93. Chen J, Shi J, Decanini D, Cambril E, Chen Y, Haghiri-Gosnet AM. 92.  2009. Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography. Microelectron. Eng. 86:632–35 [Google Scholar]
  94. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 93.  2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:442–53 [Google Scholar]
  95. Bae WG, Kim HN, Kim D, Park SH, Jeong HE, Suh KY. 94.  2014. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv. Mater. 26:675–99 [Google Scholar]
  96. Guillemette MD, Cui B, Roy E, Gauvin R, Giasson CJ. 95.  et al. 2009. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integr. Biol. 1:196–204 [Google Scholar]
  97. Berrier AL, Yamada KM. 96.  2007. Cell-matrix adhesion. J. Cell. Physiol. 213:565–73 [Google Scholar]
  98. Jeon H, Simon CG, Kim G. 97.  2014. A mini-review: cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res. B Appl. Biomater. 102:1580–94 [Google Scholar]
  99. Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH. 98.  et al. 2013. Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev. 65:536–58 [Google Scholar]
  100. Hu W, Yim EKF, Reano RM, Leong KW, Pang SW. 99.  2005. Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. J. Vac. Sci. Technol. B 23:2984–89 [Google Scholar]
  101. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M. 100.  2006. Axonal outgrowth on nano-imprinted patterns. Biomaterials 27:1251–58 [Google Scholar]
  102. Li JY, Ho YC, Chung YC, Lin FC, Liao WL, Tsai WB. 101.  2013. Preparation of micron/submicron hybrid patterns via a two-stage UV-imprint technique and their dimensional effects on cell adhesion and alignment. Biofabrication 5:035003 [Google Scholar]
  103. Xie S, Luttge R. 102.  2014. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture. Microelectron. Eng. 124:30–36 [Google Scholar]
  104. Mattotti M, Alvarez Z, Ortega JA, Planell JA, Engel E, Alcantara S. 103.  2012. Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials 33:1759–70 [Google Scholar]
  105. Yoon SH, Kim YK, Han ED, Seo YH, Kim BH, Mofrad MRK. 104.  2012. Passive control of cell locomotion using micropatterns: the effect of micropattern geometry on the migratory behavior of adherent cells. Lab Chip 12:2391–402 [Google Scholar]
  106. Eliason MT, Charest JL, Simmons BA, Garcia AJ, King WP. 105.  2007. Nanoimprint fabrication of polymer cell substrates with combined microscale and nanoscale topography. J. Vac. Sci. Technol. B 25:L31–L34 [Google Scholar]
  107. Chong KSL, Lee Y-Y, Low HY. 106.  2011. Recessed area patterning via nanoimprint lithography. J. Vac. Sci. Technol. B 29:060602 [Google Scholar]
  108. Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J. 107.  2012. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6:6222–30 [Google Scholar]
  109. Choi CH, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, Kim CJ. 108.  2007. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28:1672–79 [Google Scholar]
  110. Fu JP, Wang YK, Yang MT, Desai RA, Yu XA. 109.  et al. 2010. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–36 [Google Scholar]
  111. Diez M, Mela P, Seshan V, Moller M, Lensen MC. 110.  2009. Nanomolding of PEG-based hydrogels with sub-10-nm resolution. Small 5:2756–60 [Google Scholar]
  112. 111. Pew Res. Cent 2014. Mobile Technology Fact Sheet. Washington, DC: Pew Res. Cent http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
  113. O'Toole J. 112.  2014. Mobile apps overtake PC Internet usage in U.S. CNN Money Feb. 28. http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
  114. Bonnington C. 113.  2015. In less than two years, a smartphone could be your only computer. Wired Feb. 10. http://www.wired.com/2015/02/smartphone-only-computer/
  115. Huang L. 114.  2015. TrendForce 2016 IT industry forecast—Optoelectronics and semiconductor sectors braces for a challenging 2016 as consumer electronics product shipments weaken. Business Wire Oct. 15. http://www.businesswire.com/news/home/20151015005573/en/TrendForce-2016-Industry-Forecast-%E2%80%93-Optoelectronics-Semiconductor#.ViDkfn6rSCg
/content/journals/10.1146/annurev-chembioeng-080615-034635
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034635
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error