1932

Abstract

Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid–based hybrid electrolytes. We conclude with an outlook highlighting future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034655
2016-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034655.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034655&mimeType=html&fmt=ahah

Literature Cited

  1. Tarascon JM, Armand M. 1.  2001. Issues and challenges facing rechargeable lithium batteries. Nature 414:359–67 [Google Scholar]
  2. Bruce PG, Scrosati B, Tarascon JM. 2.  2008. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47:2930–46 [Google Scholar]
  3. Goodenough JB, Kim Y. 3.  2010. Challenges for rechargeable Li batteries. Chem. Mater. 22:587–603 [Google Scholar]
  4. Goodenough JB. 4.  2013. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46:1053–61 [Google Scholar]
  5. Croce F, Appetecchi GB, Persi L, Scrosati B. 5.  1998. Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–58 [Google Scholar]
  6. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. 6.  2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4:366–77 [Google Scholar]
  7. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. 7.  2011. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4:3243–62 [Google Scholar]
  8. Agrawal RC, Pandey GP. 8.  2008. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D Appl. Phys. 41:223001 [Google Scholar]
  9. Ye YS, Rick J, Hwang BJ. 9.  2013. Ionic liquid polymer electrolytes. J. Mater. Chem. A 1:2719–43 [Google Scholar]
  10. Armand MB, Chabango JM, Duclot MJ. 10.  1979. Poly-ethers as solid electrolytes. Fast Ion Transport in Solids: Electrodes and Electrolytes P Vashitshta 131–36 Amsterdam: North Holland Publ. [Google Scholar]
  11. Lu Y, Tu Z, Archer LA. 11.  2014. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13:961–69 [Google Scholar]
  12. Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP. 12.  2014. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13:69–73 [Google Scholar]
  13. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M. 13.  et al. 2015. High rate and stable cycling of lithium metal anode. Nat. Commun. 6:6362 [Google Scholar]
  14. Hallinan DT, Balsara NP. 14.  2013. Polymer electrolytes. Annu. Rev. Mater. Res. 43:503–25 [Google Scholar]
  15. Kim H, Wu F, Lee JT, Nitta N, Lin H-T. 15.  et al. 2015. In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv. Energ. Mater. 5:1401792 [Google Scholar]
  16. Armand M. 16.  1983. Polymer solid electrolytes—an overview. Solid State Ionics 9–10745–54
  17. Armand MB. 17.  1986. Polymer electrolytes. Annu. Rev. Mater. Sci. 16:245–61 [Google Scholar]
  18. Springer TE, Zawodzinski TA, Gottesfeld S. 18.  1991. Polymer electrolyte fuel-cell model. J. Electrochem. Soc. 138:2334–42 [Google Scholar]
  19. Meyer WH. 19.  1998. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10:439–48 [Google Scholar]
  20. Christie AM, Lilley SJ, Staunton E, Andreev YG, Bruce PG. 20.  2005. Increasing the conductivity of crystalline polymer electrolytes. Nature 433:50–53 [Google Scholar]
  21. Smitha B, Sridhar S, Khan AA. 21.  2005. Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 259:10–26 [Google Scholar]
  22. Fenton DE, Parker JM, Wright PV. 22.  1973. Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14:589 [Google Scholar]
  23. Wright PV. 23.  1975. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 7:319–27 [Google Scholar]
  24. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P. 24.  1983. Microscopic investigation of ionic-conductivity in alkali-metal salts poly(ethylene oxide) adducts. Solid State Ionics 11:91–95 [Google Scholar]
  25. Stephan AM. 25.  2006. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42:21–42 [Google Scholar]
  26. Croce F, Persi L, Ronci F, Scrosati B. 26.  2000. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics 135:47–52 [Google Scholar]
  27. Ueki T, Watanabe M. 27.  2008. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–49 [Google Scholar]
  28. Lu K, Rudzinski JF, Noid WG, Milner ST, Maranas JK. 28.  2014. Scaling behavior and local structure of ion aggregates in single-ion conductors. Soft Matter 10:978–89 [Google Scholar]
  29. Lin KJ, Maranas JK. 29.  2013. Does decreasing ion-ion association improve cation mobility in single ion conductors?. Phys. Chem. Chem. Phys. 15:16143–51 [Google Scholar]
  30. Lin KJ, Li K, Maranas JK. 30.  2013. Differences between polymer/salt and single ion conductor solid polymer electrolytes. RSC Adv. 3:1564–71 [Google Scholar]
  31. Sinha K, Wang WQ, Winey KI, Maranas JK. 31.  2012. Dynamic patterning in PEO-based single ion conductors for Li ion batteries. Macromolecules 45:4354–62 [Google Scholar]
  32. Kasemagi H, Klintenberg M, Aabloo A, Thomas JO. 32.  2015. Molecular dynamics modelling of block-copolymer electrolytes with high t+ values. Electrochim. Acta 175:47–54 [Google Scholar]
  33. Brandell D, Kasemagi H, Tamm T, Aabloo A. 33.  2014. Molecular dynamics modeling the Li-PolystyreneTFSI/PEO blend. Solid State Ionics 262:769–73 [Google Scholar]
  34. Gray FM, MacCallum JR, Vincent CA, Giles JRM. 34.  1988. Novel polymer electrolytes based on ABA block copolymers. Macromolecules 21:392–97 [Google Scholar]
  35. Wong DT, Mullin SA, Battaglia VS, Balsara NP. 35.  2012. Relationship between morphology and conductivity of block-copolymer based battery separators. J. Membrane Sci. 394:175–83 [Google Scholar]
  36. Majewski PW, Gopinadhan M, Jang WS, Lutkenhaus JL, Osuji CO. 36.  2010. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J. Am. Chem. Soc. 132:17516–22 [Google Scholar]
  37. Ganesan V, Pyramitsyn V, Bertoni C, Shah M. 37.  2012. Mechanisms underlying ion transport in lamellar block copolymer membranes. ACS Macro Lett. 1:513–18 [Google Scholar]
  38. Gomez ED, Panday A, Feng EH, Chen V, Stone GM. 38.  et al. 2009. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9:1212–16 [Google Scholar]
  39. Panday A, Mullin S, Gomez ED, Wanakule N, Chen VL. 39.  et al. 2009. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42:4632–37 [Google Scholar]
  40. Cho BK, Jain A, Gruner SM, Wiesner U. 40.  2004. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305:1598–601 [Google Scholar]
  41. Teran AA, Mullin SA, Hallinan DT, Balsara NP. 41.  2012. Discontinuous changes in ionic conductivity of a block copolymer electrolyte through an order-disorder transition. ACS Macro Lett. 1:305–9 [Google Scholar]
  42. Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED. 42.  et al. 2007. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40:4578–85 [Google Scholar]
  43. Ruzette AVG, Soo PP, Sadoway DR, Mayes AM. 43.  2001. Melt-formable block copolymer electrolytes for lithium rechargeable batteries. J. Electrochem. Soc. 148:A537–A43 [Google Scholar]
  44. Hillmyer MA, Bates FS. 44.  1996. Synthesis and characterization of model polyalkane-poly(ethylene oxide) block copolymers. Macromolecules 29:6994–7002 [Google Scholar]
  45. Ratner MA, Shriver DF. 45.  1988. Ion-transport in solvent-free polymers. Chem. Rev. 88:109–24 [Google Scholar]
  46. Ganesan V, Jayaraman A. 46.  2014. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites. Soft Matter 10:13–38 [Google Scholar]
  47. Reith D, Pütz M, Müller-Plathe F. 47.  2003. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24:1624–36 [Google Scholar]
  48. Groot RD, Warren PB. 48.  1997. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–35 [Google Scholar]
  49. Müller-Plathe F. 49.  1994. Permeation of polymers—a computational approach. Acta Polym. 45:259–93 [Google Scholar]
  50. Müller-Plathe F. 50.  2002. Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3:755–69 [Google Scholar]
  51. Spyriouni T, Tzoumanekas C, Theodorou D, Müller-Plathe F, Milano G. 51.  2007. Coarse-grained and reverse-mapped united-atom simulations of long-chain atactic polystyrene melts: structure, thermodynamic properties, chain conformation, and entanglements. Macromolecules 40:3876–85 [Google Scholar]
  52. Borodin O, Smith GD. 52.  2003. Development of quantum chemistry-based force fields for poly(ethylene oxide) with many-body polarization interactions. J. Phys. Chem. B 107:6801–12 [Google Scholar]
  53. Borodin O, Smith GD, Douglas R. 53.  2003. Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytes. J. Phys. Chem. B 107:6824–37 [Google Scholar]
  54. Borodin O, Smith GD, Bandyopadhyaya R, Redfern P, Curtiss LA. 54.  2004. Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4. Model. Simul. Mater. Sci. Eng. 12:S73–S89 [Google Scholar]
  55. Borodin O, Smith GD. 55.  2006. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39:1620–29 [Google Scholar]
  56. Maitra A, Heuer A. 56.  2007. Cation transport in polymer electrolytes: a microscopic approach. Phys. Rev. Lett. 98:227802 [Google Scholar]
  57. Diddens D, Heuer A, Borodin O. 57.  2010. Understanding the lithium transport within a Rouse-based model for a PEO/LiTFSI polymer electrolyte. Macromolecules 43:2028–36 [Google Scholar]
  58. Mogurampelly S, Ganesan V. 58.  2015. Effect of nanoparticles on ion transport in polymer electrolytes. Macromolecules 48:2773–86 [Google Scholar]
  59. Hanson B, Pryamitsyn V, Ganesan V. 59.  2013. Mechanisms underlying ionic mobilities in nanocomposite polymer electrolytes. ACS Macro Lett. 2:1001–5 [Google Scholar]
  60. Kremer K, Grest GS. 60.  1990. Dynamics of entangled linear polymer melts—a molecular-dynamics simulation. J. Chem. Phys. 92:5057–86 [Google Scholar]
  61. Diddens D, Heuer A. 61.  2013. Lithium ion transport mechanism in ternary polymer electrolyte-ionic liquid mixtures: a molecular dynamics simulation study. ACS Macro Lett. 2:322–26 [Google Scholar]
  62. Ciccotti G, Jacucci G, McDonald IR. 62.  1976. Transport properties of molten alkali-halides. Phys. Rev. A 13:426–36 [Google Scholar]
  63. Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L. 63.  et al. 2015. Electrolytes for Li-ion transport—review. Solid State Ionics 276:107–26 [Google Scholar]
  64. Wang YX, Liu B, Li QY, Cartmell S, Ferrara S. 64.  et al. 2015. Lithium and lithium ion batteries for applications in microelectronic devices: a review. J. Power Sources 286:330–45 [Google Scholar]
  65. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang XW. 65.  2014. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7:3857–86 [Google Scholar]
  66. Young WS, Kuan WF, Epps TH. 66.  2014. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B Polym. Phys. 52:1–16 [Google Scholar]
  67. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. 67.  2011. Polymer electrolytes: present, past and future. Electrochim. Acta 57:4–13 [Google Scholar]
  68. Xue Z, He D, Xie X. 68.  2015. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3:19218–53 [Google Scholar]
  69. Doyle M, Fuller TF, Newman J. 69.  1994. The importance of the lithium ion transference number in lithium polymer cells. Electrochim. Acta 39:2073–81 [Google Scholar]
  70. Wang Y, Agapov AL, Fan F, Hong K, Yu X. 70.  et al. 2012. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Phys. Rev. Lett. 108:088303 [Google Scholar]
  71. Wong DH, Thelen JL, Fu Y, Devaux D, Pandya AA. 71.  et al. 2014. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. PNAS 111:3327–31 [Google Scholar]
  72. Pryamitsyn V, Ganesan V. 72.  2006. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules 39:844–56 [Google Scholar]
  73. Ganesan V. 73.  2008. Some issues in polymer nanocomposites: theoretical and modeling opportunities for polymer physics. J. Polym. Sci. B Polym. Phys. 46:2666–71 [Google Scholar]
  74. Pryamitsyn V, Hanson B, Ganesan V. 74.  2011. Coarse-grained simulations of penetrant transport in polymer nanocomposites. Macromolecules 44:9839–51 [Google Scholar]
  75. Hanson B, Pryamitsyn V, Ganesan V. 75.  2012. Computer simulations of gas diffusion in polystyrene-C-60 fullerene nanocomposites using trajectory extending kinetic Monte Carlo method. J. Phys. Chem. B 116:95–103 [Google Scholar]
  76. Borodin O, Smith GD. 76.  1998. Molecular dynamics simulations of poly(ethylene oxide)/LiI melts. 1. Structural and conformational properties. Macromolecules 31:8396–406 [Google Scholar]
  77. Borodin O, Smith GD, Jaffe RL. 77.  2001. Ab initio quantum chemistry and molecular dynamics simulations studies of LiPF6/poly(ethylene oxide) interactions. J. Comput. Chem. 22:641–54 [Google Scholar]
  78. Borodin O, Smith GD, Bandyopadhyaya R, Byutner E. 78.  2003. Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36:7873–83 [Google Scholar]
  79. Borodin O, Smith GD. 79.  2006. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes. J. Phys. Chem. B 110:6293–99 [Google Scholar]
  80. Borodin O, Smith GD. 80.  2007. Molecular dynamics simulations of comb-branched poly(epoxide ether)-based polymer electrolytes. Macromolecules 40:1252–58 [Google Scholar]
  81. Lesch V, Jeremias S, Moretti A, Passerini S, Heuer A, Borodin O. 81.  2014. A combined theoretical and experimental study of the influence of different anion ratios on lithium ion dynamics in ionic liquids. J. Phys. Chem. B 118:7367–75 [Google Scholar]
  82. Marx D, Hutter J. 82.  2000. Ab-initio molecular dynamics: theory and implementation. Modern Methods and Algorithms of Quantum Chemistry J Grotendorst 301–449 Jülich, Ger: Forschungszentrum [Google Scholar]
  83. McQuarrie DA. 83.  2008. Quantum Chemistry Herndon, VA: Univ. Sci. Books
  84. Frenkel D, Smit B. 84.  2001. Understanding Molecular Simulation: From Algorithms to Applications Cambridge: Academic
  85. Karplus M, McCammon JA. 85.  2002. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9:646–52 [Google Scholar]
  86. Vangunsteren WF, Berendsen HJC. 86.  1990. Computer simulation of molecular-dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. 29:992–1023 [Google Scholar]
  87. Ryckaert JP, Ciccotti G, Berendsen HJC. 87.  1977. Numerical integration of Cartesian equations of motion of a system with constraints: molecular-dynamics of n-alkanes. J. Comput. Phys. 23:327–41 [Google Scholar]
  88. Mayo SL, Olafson BD, Goddard WA III. 88.  1990. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94:8897–909 [Google Scholar]
  89. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM. 89.  1992. UFF, a full periodic table force field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114:10024–35 [Google Scholar]
  90. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM. 90.  et al. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179–97 [Google Scholar]
  91. Jorgensen WL, Maxwell DS, Tirado-Rives J. 91.  1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225–36 [Google Scholar]
  92. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD. 92.  et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–616 [Google Scholar]
  93. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. 93.  2007. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111:7812–24 [Google Scholar]
  94. Field MJ, Bash PA, Karplus M. 94.  1990. A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J. Comput. Chem. 11:700–33 [Google Scholar]
  95. Sethuraman V, Nguyen BH, Ganesan V. 95.  2014. Coarse-graining in simulations of multicomponent polymer systems. J. Chem. Phys. 141:244904 [Google Scholar]
  96. Steinmüller B, Müller M, Hambrecht KR, Smith GD, Bedrov D. 96.  2012. Properties of random block copolymer morphologies: molecular dynamics and single-chain-in-mean-field simulations. Macromolecules 45:1107–17 [Google Scholar]
  97. Payne VA, Forsyth M, Ratner MA, Shriver DF, Deleeuw SW. 97.  1994. Highly concentrated salt solutions: molecular dynamics simulations of structure and transport. J. Chem. Phys. 100:5201–10 [Google Scholar]
  98. Payne VA, Lonergan MC, Forsyth M, Ratner MA, Shriver DF. 98.  et al. 1995. Simulations of structure and transport in polymer electrolytes. Solid State Ionics 81:171–81 [Google Scholar]
  99. Mills GE, Catlow CRA. 99.  1994. Ionic clustering in polymer electrolytes. J. Chem. Soc. Chem. Commun. 1994:2037–39 [Google Scholar]
  100. Catlow CRA, Mills GE. 100.  1995. Computer simulation of ionically conducting polymers. Electrochim. Acta 40:2057–59 [Google Scholar]
  101. Xie L, Farrington GC. 101.  1992. Molecular mechanics and dynamics simulation of poly(ethylene oxide) electrolytes. Solid State Ionics 53:1054–58 [Google Scholar]
  102. Müller-Plathe F, van Gunsteren WF. 102.  1995. Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly(ethylene oxide). J. Chem. Phys. 103:4745–56 [Google Scholar]
  103. Neyertz S, Brown D. 103.  1996. Local structure and mobility of ions in polymer electrolytes: a molecular dynamics simulation study of the amorphous PEOxNaI system. J. Chem. Phys. 104:3797–809 [Google Scholar]
  104. Rouse PE. 104.  1953. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21:1272–80 [Google Scholar]
  105. Doi M, Edwards SF. 105.  1986. The Theory of Polymer Dynamics New York: Oxford Univ. Press
  106. Chattoraj J, Knappe M, Heuer A. 106.  2015. Dependence of ion dynamics on the polymer chain length in poly(ethylene oxide)-based polymer electrolytes. J. Phys. Chem. B 119:6786–91 [Google Scholar]
  107. Borodin O, Smith GD. 107.  2007. Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates. J. Solut. Chem. 36:803–13 [Google Scholar]
  108. Borodin O, Smith GD, Geiculescu O, Creager SE, Hallac B, DesMarteau D. 108.  2006. Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. J. Phys. Chem. B 110:24266–74 [Google Scholar]
  109. Borodin O, Smith GD. 109.  2006. LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. J. Phys. Chem. B 110:4971–77 [Google Scholar]
  110. Croce F, Curini R, Martinelli A, Persi L, Ronci F. 110.  et al. 1999. Physical and chemical properties of nanocomposite polymer electrolytes. J. Phys. Chem. B 103:10632–38 [Google Scholar]
  111. Zeng QH, Yu AB, Lu GQ. 111.  2008. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33:191–269 [Google Scholar]
  112. Fullerton-Shirey SK, Maranas JK. 112.  2010. Structure and mobility of PEO/LiClO4 solid polymer electrolytes filled with Al2O3 nanoparticles. J. Phys. Chem. C 114:9196–206 [Google Scholar]
  113. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A. 113.  1999. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79 [Google Scholar]
  114. Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H. 114.  2012. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 12:1152–56 [Google Scholar]
  115. Mogurampelly S, Ganesan V. 115.  2015. Influence of nanoparticle surface chemistry on ion transport in polymer nanocomposite electrolytes. Solid State Ion. 286:57–65 [Google Scholar]
  116. Kasemagi H, Klintenberg M, Aabloo A, Thomas JO. 116.  2001. Molecular dynamics simulation of the effect of adding an Al2O3 nanoparticle to PEO-LiCl/LiBr/LiI systems. J. Mater. Chem. 11:3191–96 [Google Scholar]
  117. Kasemagi H, Klintenberg M, Aabloo A, Thomas JO. 117.  2002. Molecular dynamics simulation of the LiBF4-PEO system containing Al2O3 nanoparticles. Solid State Ionics 147:367–75 [Google Scholar]
  118. Johansson P, Jacobsson P. 118.  2004. TiO2 nano-particles in polymer electrolytes: surface interactions. Solid State Ionics 170:73–78 [Google Scholar]
  119. Wieczorek W, Zalewska A, Raducha D, Florjanczyk Z, Stevens JR. 119.  1998. Composite polyether electrolytes with Lewis acid type additives. J. Phys. Chem. B 102:352–60 [Google Scholar]
  120. Ganapatibhotla LVNR, Maranas JK. 120.  2014. Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes. Macromolecules 47:3625–34 [Google Scholar]
  121. Wu H, Cummings OT, Wick CD. 121.  2012. Computational investigation on the effect of alumina hydration on lithium ion mobility in poly(ethylene oxide) LiClO4 electrolytes. J. Phys. Chem. B 116:14922–32 [Google Scholar]
  122. Eilmes A, Kubisiak P. 122.  2011. Molecular dynamics study on the effect of Lewis acid centers in poly(ethylene oxide)/LiClO4 polymer electrolyte. J. Phys. Chem. B 115:14938–46 [Google Scholar]
  123. Kelly IE, Owen JR, Steele BCH. 123.  1985. Poly(ethylene oxide) electrolytes for operation at near room temperature. J. Power Sources 14:13–21 [Google Scholar]
  124. Huq R, Farrington GC, Koksbang R, Tonder PE. 124.  1992. Influence of plasticizers on the electrochemical and chemical stability of a Li+ polymer electrolyte. Solid State Ionics 57:277–83 [Google Scholar]
  125. Kim YT, Smotkin ES. 125.  2002. The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries. Solid State Ionics 149:29–37 [Google Scholar]
  126. Wu H, Wick CD. 126.  2010. Computational investigation on the role of plasticizers on ion conductivity in poly(ethylene oxide) LiTFSI electrolytes. Macromolecules 43:3502–10 [Google Scholar]
  127. Plechkova NV, Seddon KR. 127.  2008. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37:123–50 [Google Scholar]
  128. Araque JC, Hettige JJ, Margulis CJ. 128.  2015. Modern room temperature ionic liquids, a simple guide to understand their structure and how it may relate to dynamics. J. Phys. Chem. B 119:12727–40 [Google Scholar]
  129. Araque JC, Yadav SK, Shadeck M, Maroncelli M, Margulis CJ. 129.  2015. How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119:7015–29 [Google Scholar]
  130. Zhao Y, Bostrom T. 130.  2015. Application of ionic liquids in solar cells and batteries: a review. Curr. Org. Chem. 19:556–66 [Google Scholar]
  131. Ohno H, Ito K. 131.  1998. Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem. Lett. 27:751–52 [Google Scholar]
  132. Yuan JY, Antonietti M. 132.  2011. Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–82 [Google Scholar]
  133. Yuan JY, Mecerreyes D, Antonietti M. 133.  2013. Poly(ionic liquid)s: an update. Prog. Polym. Sci. 38:1009–36 [Google Scholar]
  134. Nishimura N, Ohno H. 134.  2014. 15th anniversary of polymerised ionic liquids. Polymer 55:3289–97 [Google Scholar]
  135. Mecerreyes D. 135.  2011. Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36:1629–48 [Google Scholar]
  136. Yim T, Kwon MS, Mun J, Lee KT. 136.  2015. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes. Israel J. Chem. 55:586–98 [Google Scholar]
  137. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. 137.  2009. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8:621–29 [Google Scholar]
  138. Galiński M, Lewandowski A, Stępniak I. 138.  2006. Ionic liquids as electrolytes. Electrochim. Acta 51:5567–80 [Google Scholar]
  139. Lewandowski A, Świderska-Mocek A. 139.  2009. Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J. Power Sources 194:601–9 [Google Scholar]
  140. Navarra MA. 140.  2013. Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bull. 38:548–53 [Google Scholar]
  141. Castner EW, Wishart JF. 141.  2010. Spotlight on ionic liquids. J. Chem. Phys. 132:120901 [Google Scholar]
  142. Maginn EJ. 142.  2009. Molecular simulation of ionic liquids: current status and future opportunities. J. Phys. Condens. Matter 21:373101 [Google Scholar]
  143. Borodin O. 143.  2009. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113:11463–78 [Google Scholar]
  144. Wang Y, Jiang W, Yan T, Voth GA. 144.  2007. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc. Chem. Res. 40:1193–99 [Google Scholar]
  145. Canongia Lopes JN, Deschamps J, Pádua AAH. 145.  2004. Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108:2038–47 [Google Scholar]
  146. Del Pópolo MG, Voth GA. 146.  2004. On the structure and dynamics of ionic liquids. J. Phys. Chem. B 108:1744–52 [Google Scholar]
  147. Margulis CJ, Stern HA, Berne BJ. 147.  2002. Computer simulation of a “green chemistry” room-temperature ionic solvent. J. Phys. Chem. B 106:12017–21 [Google Scholar]
  148. Deshpande A, Kariyawasam L, Dutta P, Banerjee S. 148.  2013. Enhancement of lithium ion mobility in ionic liquid electrolytes in presence of additives. J. Phys. Chem. C 117:25343–51 [Google Scholar]
  149. Costa LT, Ribeiro MC. 149.  2007. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. Dynamical properties. J. Chem. Phys. 127:164901 [Google Scholar]
  150. Costa LT, Ribeiro MC. 150.  2006. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties. J. Chem. Phys. 124:184902 [Google Scholar]
  151. Chattoraj J, Diddens D, Heuer A. 151.  2014. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes. J. Chem. Phys. 140:024906 [Google Scholar]
  152. Diddens D, Heuer A. 152.  2014. Simulation study of the lithium ion transport mechanism in ternary polymer electrolytes: the critical role of the segmental mobility. J. Phys. Chem. B 118:1113–25 [Google Scholar]
  153. Borodin O, Smith GD. 153.  2006. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. J. Phys. Chem. B 110:6279–92 [Google Scholar]
  154. Borodin O, Smith GD, Henderson W. 154.  2006. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI ionic liquids. J. Phys. Chem. B 110:16879–86 [Google Scholar]
  155. Costa LT, Sun B, Jeschull F, Brandell D. 155.  2015. Polymer-ionic liquid ternary systems for Li-battery electrolytes: molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend. J. Chem. Phys. 143:024904 [Google Scholar]
  156. Raju SG, Hariharan KS, Park DH, Kang H, Kolake SM. 156.  2015. Effects of variation in chain length on ternary polymer electrolyte—ionic liquid mixture—a molecular dynamics simulation study. J. Power Sources 293:983–92 [Google Scholar]
  157. Wang YX, Balbuena PB. 157.  2004. Combined ab initio quantum mechanics and classical molecular dynamics studies of polyphosphazene polymer electrolytes: competitive solvation of Li+ and LiCF3SO3. J. Phys. Chem. B 108:15694–702 [Google Scholar]
  158. Balbuena PB, Lamas EJ, Wang YX. 158.  2005. Molecular modeling studies of polymer electrolytes for power sources. Electrochim. Acta 50:3788–95 [Google Scholar]
  159. Karo J, Aabloo A, Thomas JO. 159.  2005. A molecular dynamics study of the effect of side-chains on mobility in a polymer host. Solid State Ionics 176:3041–44 [Google Scholar]
  160. Hektor A, Klintenberg MK, Aabloo A, Thomas JO. 160.  2003. Molecular dynamics simulation of the effect of a side chain on the dynamics of the amorphous LiPF6-PEO system. J. Mater. Chem. 13:214–18 [Google Scholar]
  161. Mullin SA, Stone GM, Panday A, Balsara NP. 161.  2011. Salt diffusion coefficients in block copolymer electrolytes. J. Electrochem. Soc. 158:A619–A27 [Google Scholar]
  162. Shi J, Vincent CA. 162.  1993. The effect of molecular weight on cation mobility in polymer electrolytes. Solid State Ionics 60:11–17 [Google Scholar]
  163. Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP. 163.  2009. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecules 42:5642–51 [Google Scholar]
  164. Orilall MC, Wiesner U. 164.  2011. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem. Soc. Rev. 40:520–35 [Google Scholar]
  165. Patel SN, Javier AE, Balsara NP. 165.  2013. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes. ACS Nano 7:6056–68 [Google Scholar]
  166. Gurevitch I, Buonsanti R, Teran AA, Gludovatz B, Ritchie RO. 166.  et al. 2013. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160:A1611–A17 [Google Scholar]
  167. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. 167.  2012. Multiblock polymers: Panacea or Pandora's box?. Science 336:434–40 [Google Scholar]
  168. Park MJ, Balsara NP. 168.  2010. Anisotropic proton conduction in aligned block copolymer electrolyte membranes at equilibrium with humid air. Macromolecules 43:292–98 [Google Scholar]
  169. Choi I, Ahn H, Park MJ. 169.  2011. Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes. Macromolecules 44:7327–34 [Google Scholar]
  170. Inceoglu S, Rojas AA, Devaux D, Chen XC, Stone GM, Balsara NP. 170.  2014. Morphology-conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries. ACS Macro Lett. 3:510–14 [Google Scholar]
  171. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L. 171.  et al. 2013. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12:452–57 [Google Scholar]
  172. He Y, Boswell PG, Buhlmann P, Lodge TP. 172.  2007. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J. Phys. Chem. B 111:4645–52 [Google Scholar]
  173. Gwee L, Choi JH, Winey KI, Elabd YA. 173.  2010. Block copolymer/ionic liquid films: the effect of ionic liquid composition on morphology and ion conduction. Polymer 51:5516–24 [Google Scholar]
  174. Wright PV. 174.  2002. Developments in polymer electrolytes for lithium batteries. MRS Bull. 27:597–602 [Google Scholar]
  175. Edman L, Doeff MM. 175.  2003. Thermal analysis of a solid polymer electrolyte and a subsequent electrochemical investigation of a lithium polymer battery. Solid State Ionics 158:177–86 [Google Scholar]
  176. Wright P, Zheng Y. 176.  2000. Conductivity and structural organization of macromolecular polyether alkali metal salt complexes. Functional Organic Molecular Materials TH Richardson 233–70 Hoboken, NJ: Wiley [Google Scholar]
  177. Geiculescu OE, Hallac BB, Rajagopal RV, Creager SE, DesMarteau DD. 177.  et al. 2014. The effect of low-molecular-weight poly(ethylene glycol) (PEG) plasticizers on the transport properties of lithium fluorosulfonimide ionic melt electrolytes. J. Phys. Chem. B 118:5135–43 [Google Scholar]
  178. Sadoway DR, Huang BY, Trapa PE, Soo PP, Bannerjee P, Mayes AM. 178.  2001. Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power Sources 97–98:621–23 [Google Scholar]
  179. Webb MA, Jung Y, Pesko DM, Savoie BM, Yamamoto U. 179.  et al. 2015. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Central Sci. 1:198–205 [Google Scholar]
  180. Fullerton-Shirey SK, Maranas JK. 180.  2009. Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42:2142–56 [Google Scholar]
  181. Cheng S, Smith DM, Pan QW, Wang SJ, Li CY. 181.  2015. Anisotropic ion transport in nanostructured solid polymer electrolytes. RSC Adv. 5:48793–810 [Google Scholar]
  182. Cheng S, Smith DM, Li CY. 182.  2014. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes?. Macromolecules 47:3978–86 [Google Scholar]
  183. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG. 183.  2001. Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–23 [Google Scholar]
  184. Waheed N, Ko M, Rutledge G. 184.  2007. Atomistic simulation of polymer melt crystallization by molecular dynamics. Progress in Understanding of Polymer Crystallization G Reiter, G Strobl 457–80 Berlin: Springer [Google Scholar]
  185. Yeh IC, Andzelm JW, Rutledge GC. 185.  2015. Mechanical and structural characterization of semicrystalline polyethylene under tensile deformation by molecular dynamics simulations. Macromolecules 48:4228–39 [Google Scholar]
  186. Kim JM, Locker R, Rutledge GC. 186.  2014. Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation. Macromolecules 47:2515–28 [Google Scholar]
  187. Ko MJ, Waheed N, Lavine MS, Rutledge GC. 187.  2004. Characterization of polyethylene crystallization from an oriented melt by molecular dynamics simulation. J. Chem. Phys. 121:2823–32 [Google Scholar]
  188. Lavine MS, Waheed N, Rutledge GC. 188.  2003. Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension. Polymer 44:1771–79 [Google Scholar]
  189. Sunda AP, Mondal A, Balasubramanian S. 189.  2015. Atomistic simulations of ammonium-based protic ionic liquids: steric effects on structure, low frequency vibrational modes and electrical conductivity. Phys. Chem. Chem. Phys. 17:4625–33 [Google Scholar]
  190. Mondal A, Balasubramanian S. 190.  2014. Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. J. Phys. Chem. B 118:3409–22 [Google Scholar]
  191. Chaban V. 191.  2011. Polarizability versus mobility: atomistic force field for ionic liquids. Phys. Chem. Chem. Phys. 13:16055–62 [Google Scholar]
  192. Bhargava BL, Balasubramanian S. 192.  2007. Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J. Chem. Phys. 127:114510 [Google Scholar]
  193. Morrow TI, Maginn EJ. 193.  2002. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106:12807–13 [Google Scholar]
  194. Jadhao V, Solis FJ, Olvera de la Cruz M. 194.  2013. A variational formulation of electrostatics in a medium with spatially varying dielectric permittivity. J. Chem. Phys. 138:054119 [Google Scholar]
  195. Jadhao V, Solis FJ, Olvera de la Cruz M. 195.  2012. Simulation of charged systems in heterogeneous dielectric media via a true energy functional. Phys. Rev. Lett. 109:223905 [Google Scholar]
  196. Maggs AC, Rossetto V. 196.  2002. Local simulation algorithms for Coulomb interactions. Phys. Rev. Lett. 88:196402 [Google Scholar]
  197. Marchi M, Borgis D, Levy N, Ballone P. 197.  2001. A dielectric continuum molecular dynamics method. J. Chem. Phys. 114:4377–85 [Google Scholar]
  198. Graf P, Nitzan A, Kurnikova MG, Coalson RD. 198.  2000. A dynamic lattice Monte Carlo model of ion transport in inhomogeneous dielectric environments: method and implementation. J. Phys. Chem. B 104:12324–38 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034655
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error