1932

Abstract

Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034704
2016-06-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034704.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034704&mimeType=html&fmt=ahah

Literature Cited

  1. Krebs HA, Kornberg HL, Burton K. 1.  1957. A survey of the energy transformations in living matter. Ergeb. Physiol. 49:212–98 [Google Scholar]
  2. Lipmann F. 2.  1941. Metabolic generation and utilization of phosphate bond energy. Advances in Enzymology and Related Areas of Molecular Biology 1 FF Nord, CH Werkman 99–162 Hoboken, NJ: John Wiley & Sons [Google Scholar]
  3. Gajewski E, Steckler DK, Goldberg RN. 3.  1986. Thermodynamics of the hydrolysis of adenosine 5′-triphosphate to adenosine 5′-diphosphate. J. Biol. Chem. 261:2733–37 [Google Scholar]
  4. Goldberg RN. 4.  1975. Thermodynamics of hexokinase-catalyzed reactions. Biophys. Chem. 3:192–205 [Google Scholar]
  5. Tewari YB, Goldberg RN. 5.  1984. Thermodynamics of the conversion of aqueous glucose to fructose. J. Solut. Chem. 13:523–47 [Google Scholar]
  6. Tewari YB, Goldberg RN. 6.  1991. Thermodynamics of hydrolysis of disaccharides: lactulose, α-d-melibiose, palatinose, d-trehalose, d-turanose and 3-o-β-d-galactopyranosyl-d-arabinose. Biophys. Chem. 40:59–67 [Google Scholar]
  7. Rekharsky MV, Goldberg RN, Schwarz FP, Tewari YB, Ross PD. 7.  et al. 1995. Thermodynamic and nuclear magnetic resonance study of the interactions of α- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J. Am. Chem. Soc. 117:8830–40 [Google Scholar]
  8. Goldberg RN, Kishore N, Lennen RM. 8.  2002. Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31:231–370 [Google Scholar]
  9. Alberty RA. 9.  1968. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J. Biol. Chem. 243:1337–43 [Google Scholar]
  10. Alberty RA. 10.  1969. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J. Biol. Chem. 244:3290–302 [Google Scholar]
  11. Alberty RA, Goldberg RN. 11.  1992. Standard thermodynamic formation properties for the adenosine 5′-triphosphate series. Biochemistry 31:10610–15 [Google Scholar]
  12. Alberty RA, Smith RM, Bock RM. 12.  1951. The apparent ionization constants of the adenosinephosphates and related compounds. J. Biol. Chem. 193:425–34 [Google Scholar]
  13. Alberty RA. 13.  2002. Thermodynamics of systems of biochemical reactions. J. Theor. Biol. 215:491–501 [Google Scholar]
  14. von Stockar U. 14.  2013. The role of thermodynamics in biochemical engineering. J. Non-Equilib. Thermodyn. 38:225–40 [Google Scholar]
  15. Westerhoff HV. 15.  2001. The silicon cell, not dead but live!. Metab. Eng. 3:207–10 [Google Scholar]
  16. Webb EC. 16.  1992. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes San Diego, CA: Academic
  17. Goldberg RN, Tewari YB, Bell D, Fazio K, Anderson E. 17.  1993. Thermodynamics of enzyme-catalyzed reactions: part 1. Oxidoreductases. J. Phys. Chem. Ref. Data 22:515–79 [Google Scholar]
  18. Goldberg RN, Tewari YB. 18.  1994. Thermodynamics of enzyme-catalyzed reactions: part 2. Transferases. J. Phys. Chem. Ref. Data 23:547–617 [Google Scholar]
  19. Goldberg RN, Tewari YB. 19.  1994. Thermodynamics of enzyme-catalyzed reactions: part 3. Hydrolases. J. Phys. Chem. Ref. Data 23:1035–103 [Google Scholar]
  20. Goldberg RN, Tewari YB. 20.  1995. Thermodynamics of enzyme-catalyzed reactions: part 4. Lyases. J. Phys. Chem. Ref. Data 24:1669–98 [Google Scholar]
  21. Goldberg RN, Tewari YB. 21.  1995. Thermodynamics of enzyme-catalyzed reactions: part 5. Isomerases and ligases. J. Phys. Chem. Ref. Data 24:1765–801 [Google Scholar]
  22. von Stockar U, van der Wielen LAM. 22.  1997. Thermodynamics in biochemical engineering. J. Biotechnol. 59:25–37 [Google Scholar]
  23. Heijnen JJ, Van Dijken JP. 23.  1992. In search of a thermodynamic description of biomass yields for the chemotropic growth of microorganisms. Biotechnol. Bioeng. 39:833–58 [Google Scholar]
  24. von Stockar U, Liu JS. 24.  1999. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta 1412:191–211 [Google Scholar]
  25. Tijhuis L, Vanloosdrecht MCM, Heijnen JJ. 25.  1993. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotropic growth. Biotechnol. Bioeng. 42:509–19 [Google Scholar]
  26. Pissarra PD, Nielsen J. 26.  1997. Thermodynamics of metabolic pathways for penicillin production: analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation. Biotechnol. Prog. 13:156–65 [Google Scholar]
  27. Mavrovouniotis ML. 27.  1993. Identification of localized and distributed bottlenecks in metabolic pathways. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1:275–83 [Google Scholar]
  28. Nielsen J. 28.  1997. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochem. J. 321:133–38 [Google Scholar]
  29. Minakami S, Yoshikawa H. 29.  1966. Studies on erythrocyte glycolysis. II. Free energy changes and rate limiting steps in erythrocyte glycolysis. J. Biochem. 59:139–44 [Google Scholar]
  30. Braiuca P, Khaliullin I, Svedas V, Knapic L, Fermeglia M. 30.  et al. 2012. BESSICC, a COSMO-RS based tool for in silico solvent screening of biocatalyzed reactions. Biotechnol. Bioeng. 109:1864–68 [Google Scholar]
  31. Fermeglia M, Braiuca P, Gardossi L, Pricl S, Halling PJ. 31.  2006. In silico prediction of medium effects on esterification equilibrium using the COSMO-RS method. Biotechnol. Prog. 22:1146–52 [Google Scholar]
  32. Vojinovic V, von Stockar U. 32.  2009. Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnol. Bioeng. 103:780–95 [Google Scholar]
  33. Maskow T, von Stockar U. 33.  2005. How reliable are thermodynamic feasibility statements of biochemical pathways?. Biotechnol. Bioeng. 92:223–30 [Google Scholar]
  34. Alberty RA. 34.  2003. Thermodynamics of Biochemical Reactions Hoboken, NJ: Wiley-Intersci.
  35. Minakami S, Yoshikawa H. 35.  1965. Thermodynamic considerations on erythrocyte glycolysis. Biochem. Biophys. Res. Commun. 18:345–49 [Google Scholar]
  36. Kjelstrup S, Rubi JM, Bedeaux D. 36.  2005. Active transport: a kinetic description based on thermodynamic grounds. J. Theor. Biol. 234:7–12 [Google Scholar]
  37. Bergman C, Kashiwaya Y, Veech RL. 37.  2010. The effect of pH and free Mg2+ on ATP linked enzymes and the calculation of Gibbs free energy of ATP hydrolysis. J. Phys. Chem. B 114:16137–46 [Google Scholar]
  38. Robbins EA, Boyer PD. 38.  1957. Determination of the equilibrium of the hexokinase reaction and the free energy of hydrolysis of adenosine triphosphate. J. Biol. Chem. 224:121–35 [Google Scholar]
  39. Alberty RA. 39.  2003. Effect of temperature on the standard transformed thermodynamic properties of biochemical reactions with emphasis on the Maxwell equations. J. Phys. Chem. B 107:3631–35 [Google Scholar]
  40. Panke O, Rumberg B. 40.  1997. Energy and entropy balance of ATP synthesis. Biochim. Biophys. Acta 1322:183–94 [Google Scholar]
  41. Phillips RC, George P, Rutman RJ. 41.  1969. Thermodynamic data for hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentration, and ionic strength. J. Biol. Chem. 244:3330–42 [Google Scholar]
  42. Rosing J, Slater EC. 42.  1972. Value of G degrees for the hydrolysis of ATP. Biochim. Biophys. Acta 267:275–90 [Google Scholar]
  43. Guynn RW, Veech RL. 43.  1973. Equilibrium constants of the adenosine triphosphate hydrolysis and adenosine triphosphate-citrate lyase reactions. J. Biol. Chem. 248:6966–72 [Google Scholar]
  44. Ould-Moulaye CB, Dussap CG, Gros JB. 44.  2002. A consistent set of formation properties of nucleic acid compounds: nucleosides, nucleotides and nucleotide-phosphates in aqueous solution. Thermochim. Acta 387:1–15 [Google Scholar]
  45. Alberty RA. 45.  2001. Effect of temperature on standard transformed Gibbs energies of formation of reactants at specified pH and ionic strength and apparent equilibrium constants of biochemical reactions. J. Phys. Chem. B 105:7865–70 [Google Scholar]
  46. Benzinger TH, Huebscher RG, Minard D, Kitzinger C. 46.  1958. Human calorimetry by means of the gradient principle. J. Appl. Physiol. 12:S1–24 [Google Scholar]
  47. Hoffmann P, Voges M, Held C, Sadowski G. 47.  2013. The role of activity coefficients in bioreaction equilibria: thermodynamics of methyl ferulate hydrolysis. Biophys. Chem. 173:21–30 [Google Scholar]
  48. Hoffmann P, Held C, Maskow T, Sadowski G. 48.  2014. A thermodynamic investigation of the glucose-6-phosphate isomerization. Biophys. Chem. 195:22–31 [Google Scholar]
  49. Goldberg RN, Lang BE, Selig MJ, Decker SR. 49.  2011. A calorimetric and equilibrium investigation of the reaction {methyl ferulate(aq) + H2O(1) = methanol(aq) + ferulic acid(aq)}. J. Chem. Thermodyn. 43:235–39 [Google Scholar]
  50. Verevkin SP, Zaitsau DH, Emel'yanenko VN, Zhabina AA. 50.  2015. Thermodynamic properties of glycerol: experimental and theoretical study. Fluid Phase Equilib. 397:87–94 [Google Scholar]
  51. Verevkin SP, Emel'yanenko VN, Garist IV. 51.  2015. Benchmark thermodynamic properties of alkanediamines: experimental and theoretical study. J. Chem. Thermodyn. 87:34–42 [Google Scholar]
  52. Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E. 52.  1999. Molecular Thermodynamics of Fluid-Phase Equilibria Upper Saddle River, NJ: Prentice Hall., 3rd ed..
  53. Ponomarev VV, Migarskaya LB. 53.  1960. Heats of combustion of some amino acids. Russ. J. Phys. Chem. 34:1182–83 (Engl. Transl.) [Google Scholar]
  54. Oja V, Suuberg EM. 54.  1999. Vapor pressures and enthalpies of sublimation of d-glucose, d-xylose, cellobiose, and levoglucosan. J. Chem. Eng. Data 44:26–29 [Google Scholar]
  55. Boerio-Goates J. 55.  1991. Heat-capacity measurements and thermodynamic functions of crystalline α-d-glucose at temperatures from 10 K to 340 K. J. Chem. Thermodyn. 23:403–9 [Google Scholar]
  56. Clarke TH, Stegeman G. 56.  1939. Heats of combustion of some mono- and disaccharides. J. Am. Chem. Soc. 61:1726–30 [Google Scholar]
  57. Meyerhof O, Lohmann K. 57.  1925. Synthesis of carbohydrate in muscle. Biochem. Z. 157:459–91 [Google Scholar]
  58. Kobel M. 58.  1928. Heat of combustion and of solution of dihydroxyacetone. Biochem. Z. 203:159–63 [Google Scholar]
  59. Baer E, Flehmig HH. 59.  1969. Refutation of alleged differences in the energy contents of optical isomers. Can. J. Biochem. 47:79–83 [Google Scholar]
  60. Jinich A, Rappoport D, Dunn I, Sanchez-Lengeling B, Olivares-Amaya R. 60.  et al. 2014. Quantum chemical approach to estimating the thermodynamics of metabolic reactions. Sci. Rep. 4:7022 [Google Scholar]
  61. Chen M, Lee JK. 61.  2014. Computational studies of the gas-phase thermochemical properties of modified nucleobases. J. Org. Chem. 79:11295–300 [Google Scholar]
  62. Villadsen J, Nielsen J, Lidén G. 62.  2011. Thermodynamics of Bioreactions Boston: Springer
  63. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I. 63.  et al. 1982. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11:Suppl. 221–392 [Google Scholar]
  64. Mavrovouniotis ML. 64.  1990. Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol. Bioeng. 36:1070–82 [Google Scholar]
  65. Mavrovouniotis ML. 65.  1991. Estimation of standard Gibbs energy changes of biotransformations. J. Biol. Chem. 266:14440–45 [Google Scholar]
  66. Gross J, Sadowski G. 66.  2002. Application of the perturbed-chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 41:5510–15 [Google Scholar]
  67. Gross J, Sadowski G. 67.  2001. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40:1244–60 [Google Scholar]
  68. Fredenslund A, Gmehling J, Michelsen ML, Rasmussen P, Prausnitz JM. 68.  1977. Computerized design of multicomponent distillation columns using UNIFAC group contribution method for calculation of activity coefficients. Ind. Eng. Chem. Process Design Dev. 16:450–62 [Google Scholar]
  69. Fredenslund A, Jones RL, Prausnitz JM. 69.  1975. Group-contribution estimation of activity-coefficients in nonideal liquid-mixtures. AIChE J. 21:1086–99 [Google Scholar]
  70. Klamt A, Schuurmann G. 70.  1993. Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. I 2:799–805 [Google Scholar]
  71. Klamt A. 71.  1995. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99:2224–35 [Google Scholar]
  72. Renon H, Prausnitz JM. 72.  1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14:135–44 [Google Scholar]
  73. Zeuner B, Kontogeorgis GM, Riisager A, Meyer AS. 73.  2012. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media. New Biotechnol. 29:255–70 [Google Scholar]
  74. Strompen S, Weiss M, Ingram T, Smirnova I, Groger H. 74.  et al. 2012. Kinetic investigation of a solvent-free, chemoenzymatic reaction sequence towards enantioselective synthesis of a β-amino acid ester. Biotechnol. Bioeng. 109:1479–89 [Google Scholar]
  75. Dreyer S, Kragl U. 75.  2008. Ionic liquids for aqueous two-phase extraction and stabilization of enzymes. Biotechnol. Bioeng. 99:1416–24 [Google Scholar]
  76. Luong TQ, Winter R. 76.  2015. Combined pressure and cosolvent effects on enzyme activity. Phys. Chem. Chem. Phys. 17:23273–78 [Google Scholar]
  77. Fuchs D, Fischer J, Tumakaka F, Sadowski G. 77.  2006. Solubility of amino acids: influence of the pH value and the addition of alcoholic cosolvents on aqueous solubility. Ind. Eng. Chem. Res. 45:6578–84 [Google Scholar]
  78. Cabral JMS, Aires-Barros MR, Pinheiro H, Prazeres DMF. 78.  1997. Biotransformation in organic media by enzymes and whole cells. J. Biotechnol. 59:133–43 [Google Scholar]
  79. Carrea G, Riva S. 79.  2000. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed. 39:2226–54 [Google Scholar]
  80. Kragl U, Eckstein M, Kaftzik N. 80.  2002. Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13:565–71 [Google Scholar]
  81. Schöfer SH, Kaftzik N, Wasserscheid P, Kragl U. 81.  2001. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem. Commun. 5:425–26 [Google Scholar]
  82. Yang Z, Pan W. 82.  2005. Ionic liquids: green solvents for nonaqueous biocatalysis. Enzym. Microb. Technol. 37:19–28 [Google Scholar]
  83. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. 83.  2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124:4974–75 [Google Scholar]
  84. Emel'yanenko VN, Zaitsau DH, Shoifet E, Meurer F, Verevkin SP. 84.  et al. 2015. Benchmark thermochemistry for biologically relevant adenine and cytosine: a combined experimental and theoretical study. J. Phys. Chem. A 119:9680–91 [Google Scholar]
  85. Marrero J, Gani R. 85.  2001. Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 183:183–208 [Google Scholar]
  86. Khoshkbarchi MK, Vera JH. 86.  1996. Measurement of activity coefficients of amino acids in aqueous electrolyte solutions: experimental data for the systems H2O + NaCl + glycine and H2O + NaCl + dl-alanine at 25°C. Ind. Eng. Chem. Res. 35:2735–42 [Google Scholar]
  87. Held C, Cameretti LF, Sadowski G. 87.  2011. Measuring and modeling activity coefficients in aqueous amino-acid solutions. Ind. Eng. Chem. Res. 50:131–41 [Google Scholar]
  88. Held C, Neuhaus T, Sadowski G. 88.  2010. Compatible solutes: thermodynamic properties and biological impact of ectoines and prolines. Biophys. Chem. 152:28–39 [Google Scholar]
  89. Held C, Sadowski G. 89.  2016. Compatible solutes: thermodynamic properties relevant for effective protection against osmotic stress. Fluid Phase Equilib. 407:224–35 [Google Scholar]
  90. Held C, Carneiro A, Macedo EA, Sadowski G. 90.  2013. Modeling thermodynamic properties of aqueous single-solute and multi-solute sugar solutions with PC-SAFT. AIChE J. 59:4794–805 [Google Scholar]
  91. Ferreira LA, Breil MP, Pinho SP, Macedo EA, Mollerup JM. 91.  2009. Thermodynamic modeling of several aqueous alkanol solutions containing amino acids with the perturbed-chain statistical associated fluid theory equation of state. Ind. Eng. Chem. Res. 48:5498–505 [Google Scholar]
  92. Ruether F, Sadowski G. 92.  2009. Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. J. Pharm. Sci. 98:4205–15 [Google Scholar]
  93. Grosse Daldrup JB, Held C, Ruether F, Schembecker G, Sadowski G. 93.  2009. Measurement and modeling solubility of aqueous multisolute amino-acid solutions. Ind. Eng. Chem. Res. 49:1395–401 [Google Scholar]
  94. Prikhod'ko IV, Tumakaka F, Sadowski G. 94.  2007. Application of the PC-SAFT equation of state to modeling of solid–liquid equilibria in systems with organic components forming chemical compounds. Russ. J. Appl. Chem. 80:542–48 [Google Scholar]
  95. Macedo EA, Peres AM. 95.  2001. Thermodynamics of ternary mixtures containing sugars. SLE of d-fructose in pure and mixed solvents. Comparison between modified UNIQUAC and modified UNIFAC. Ind. Eng. Chem. Res. 40:4633–40 [Google Scholar]
  96. Held C, Reschke T, Müller R, Kunz W, Sadowski G. 96.  2014. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT. J. Chem. Thermodyn. 68:1–12 [Google Scholar]
  97. Grosse Daldrup JB, Held C, Sadowski G, Schembecker G. 97.  2011. Modeling pH and solubilities in aqueous multisolute amino-acid solutions. Ind. Eng. Chem. Res. 50:3503–9 [Google Scholar]
  98. Emel'yanenko VN, Strutynska A, Verevkin SP. 98.  2005. Enthalpies of formation and strain of chlorobenzoic acids from thermochemical measurements and from ab initio calculations. J. Phys. Chem. A 109:4375–80 [Google Scholar]
  99. Gobble C, Chickos J, Verevkin SP. 99.  2014. Vapor pressures and vaporization enthalpies of a series of dialkyl phthalates by correlation gas chromatography. J. Chem. Eng. Data 59:1353–65 [Google Scholar]
  100. Verevkin SP, Sazonova AY, Emel'yanenko VN, Zaitsau DH, Varfolomeev MA. 100.  et al. 2015. Thermochemistry of halogen-substituted methylbenzenes. J. Chem. Eng. Data 60:89–103 [Google Scholar]
  101. Panteli E, Voutsas E. 101.  2010. Solubilities of cinnamic acid esters in binary mixtures of ionic liquids and organic solvents. Fluid Phase Equilibr. 295:208–14 [Google Scholar]
  102. Ji XY, Held C, Sadowski G. 102.  2012. Modeling imidazolium-based ionic liquids with ePC-SAFT. Fluid Phase Equilibr. 335:64–73 [Google Scholar]
  103. Curras MR, Vijande J, Pineiro MM, Lugo L, Salgado J, Garcia J. 103.  2011. Behavior of the environmentally compatible absorbent 1-butyl-3-methylimidazolium tetrafluoroborate with 2,2,2-trifluoroethanol: experimental densities at high pressures and modeling of PVT and phase equilibria behavior with PC-SAFT EoS. Ind. Eng. Chem. Res. 50:4065–76 [Google Scholar]
  104. Beezer AE. 104.  1980. Biological Microcalorimetry London: Academic
  105. Baier V, Fodisch R, Ihring A, Kessler E, Lerchner J. 105.  et al. 2005. Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes. Sens. Actuators A123–24354–59
  106. Lerchner J, Wolf A, Wolf G, Baier V, Kessler E. 106.  et al. 2006. A new micro-fluid chip calorimeter for biochemical applications. Thermochim. Acta 445:144–50 [Google Scholar]
  107. Lerchner J, Maskow T, Wolf G. 107.  2008. Chip calorimetry and its use for biochemical and cell biological investigations. Chem. Eng. Process. 47:991–99 [Google Scholar]
  108. Johannessen EA, Weaver JMR, Bourova L, Svoboda P, Cobbold PH, Cooper JM. 108.  2002. Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays. Anal. Chem. 74:2190–97 [Google Scholar]
  109. Sober HA. 109.  1970. Handbook of Biochemistry: Selected Data for Molecular Biology Cleveland, OH: Chem. Rubber Co.
  110. Reschke T, Naeem S, Sadowski G. 110.  2012. Osmotic coefficients of aqueous weak electrolyte solutions: influence of dissociation on data reduction and modeling. J. Phys. Chem. B 116:7479–91 [Google Scholar]
  111. Alberty RA, Cornish-Bowden A, Goldberg RN, Hammes GG, Tipton K, Westerhoff HV. 111.  2011. Recommendations for terminology and databases for biochemical thermodynamics. Biophys. Chem. 155:89–103 [Google Scholar]
  112. Tan SP, Adidharma H, Radosz M. 112.  2008. Recent advances and applications of statistical associating fluid theory. Ind. Eng. Chem. Res. 47:8063–82 [Google Scholar]
  113. Alberty RA. 113.  1992. Equilibrium calculations on systems of biochemical reactions at specified pH and pMg. Biophys. Chem. 42:117–31 [Google Scholar]
  114. Goldberg RN, Tewari YB, Bhat TN. 114.  2004. Thermodynamics of enzyme-catalyzed reactions—a database for quantitative biochemistry. Bioinformatics 20:2874–77 [Google Scholar]
  115. Abbott AP, Harris RC, Ryder KS, D'Agostino C, Gladden LF, Mantle MD. 115.  2011. Glycerol eutectics as sustainable solvent systems. Green Chem. 13:82–90 [Google Scholar]
  116. Ganske F, Bornscheuer UT. 116.  2005. Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. J. Mol. Catal. B 36:40–42 [Google Scholar]
  117. Riechert O, Husham M, Sadowski G, Zeiner T. 117.  2015. Solvent effects on esterification equilibria. AIChE J. 61:3000–11 [Google Scholar]
  118. Tewari YB. 118.  1998. Thermodynamics of the lipase-catalyzed esterification of 1-dodecanoic acid and 1-dodecanol in organic solvents. J. Chem. Eng. Data 43:750–55 [Google Scholar]
  119. Tewari YB, Schantz MM, Vanderah DJ. 119.  1999. Thermodynamics of the lipase-catalyzed esterification of 1-dodecanoic acid with (−)-menthol in organic solvents. J. Chem. Eng. Data 44:641–47 [Google Scholar]
  120. Valivety RH, Johnston GA, Suckling CJ, Halling PJ. 120.  1991. Solvent effects on biocatalysis in organic-systems: equilibrium position and rates of lipase catalyzed esterification. Biotechnol. Bioeng. 38:1137–43 [Google Scholar]
  121. Tewari YB, Bunk DM. 121.  2001. Thermodynamics of the lipase-catalyzed esterification of glycerol and n-octanoic acid in organic solvents and in the neat reaction mixture. J. Mol. Catal. B 15:135–45 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034704
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034704
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error