1932

Abstract

Combining the power and possibilities of heterostructure engineering with the collective and emergent properties of quantum materials, quantum-matter heterostructures open a new arena of solid-state physics. Here we provide a review of interfaces and heterostructures made of quantum matter. Unique electronic states can be engineered in these structures, giving rise to unforeseeable opportunities for scientific discovery and potential applications. We discuss the present status of this nascent field of quantum-matter heterostructures and its limitations, perspectives, and challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025404
2017-03-31
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025404.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025404&mimeType=html&fmt=ahah

Literature Cited

  1. Tsu R. 1.  2005. Superlattice to Nanoelectronics Amsterdam: Elsevier
  2. Eckstein JN, Bozovic I. 2.  1995. Annu. Rev. Mater. Sci. 25:679–709
  3. Triscone JM, Fischer O. 3.  1997. Rep. Prog. Phys. 60:1673–721
  4. Hwang HY. 4.  2006. MRS Bull 31:28–35
  5. Freericks JK. 5.  2006. Transport in Multilayered Nanostructures London: Imperial Coll. Press
  6. Dagotto E. 6.  2007. Science 318:1076–77
  7. Mannhart J, Blank DHA, Hwang HY, Millis AJ, Triscone JM. 7.  2008. MRS Bull 33:1027–34
  8. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M. 8.  et al. 2008. J. Phys.: Condens. Matter 20:434220
  9. Mannhart J, Schlom DG. 9.  2010. Science 327:1607–11
  10. Opel M, Geprägs S, Menzel EP, Nielsen A, Reisinger D. 10.  et al. 2011. Phys. Status Solidi A 208:232–51
  11. Takagi H, Hwang HY. 11.  2010. Science 327:1601–2
  12. Bibes M, Villegas JE, Barthélémy A. 12.  2011. Adv. Phys. 60:5–84
  13. Gariglio S, Triscone J-M. 13.  2011. C. R. Phys. 12:591–99
  14. Rondinelli JM, Spaldin NA. 14.  2011. Adv. Mater. 23:3363–81
  15. Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone J-M. 15.  2011. Annu. Rev. Condens. Matter Phys. 2:141–65
  16. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 16.  2012. Nat. Mater. 11:103–13
  17. Chakhalian J, Millis AJ, Rondinelli J. 17.  2012. Nat. Mater. 11:92–94
  18. Coey JMD, Ariando, Pickett WE. 18.  2013. MRS Bull 38:1040–47
  19. Dawber M, Bousquet E. 19.  2013. MRS Bull 38:1048–55
  20. Gabay M, Gariglio S, Triscone JM, Santander-Syro AF. 20.  2013. Eur. Phys. J. Spec. Top. 222:1177–83
  21. Granozio FM, Koster G, Rijnders G. 21.  2013. MRS Bull 38:1017–23
  22. Stemmer S, Millis AJ. 22.  2013. MRS Bull 38:1032–39
  23. Zhou Y, Ramanathan S. 23.  2013. Crit. Rev. Solid State Mater. Sci. 38:286–317
  24. Chakhalian J, Freeland JW, Millis AJ, Panagopoulos C, Rondinelli JM. 24.  2014. Rev. Mod. Phys. 86:1189–202
  25. Ngai JH, Walker FJ, Ahn CH. 25.  2014. Annu. Rev. Mater. Res. 44:1–17
  26. Sulpizio JA, Ilani S, Irvin P, Levy J. 26.  2014. Annu. Rev. Mater. Res. 44:117–49
  27. Bhattacharya A, May SJ. 27.  2014. Annu. Rev. Mater. Res. 44:65–90
  28. Stemmer S, Allen SJ. 28.  2014. Annu. Rev. Mater. Res. 44:151–71
  29. Gariglio S, Gabay M, Mannhart J, Triscone JM. 29.  2015. Phys. C 514:189–98
  30. Hinderhofer A, Schreiber F. 30.  2012. ChemPhysChem 13:628–43
  31. Geim AK, Grigorieva IV. 31.  2013. Nature 499:419–25
  32. Lotsch BV. 32.  2015. Annu. Rev. Mater. Res. 45:85–109
  33. Born M, Wolf E. 33.  2003. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light Cambridge, UK: Cambridge Univ. Press
  34. Esaki L, Tsu R. 34.  1970. IBM J. Res. Dev. 14:61–65
  35. Ploog K, Döhler GH. 35.  1983. Adv. Phys. 32:285–359
  36. Chang LL, Esaki L. 36.  1992. Phys. Today 45:36–43
  37. Ivchenko EL, Pikus GE. 37.  1997. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena M Cardona, Springer Ser. Solid-State Sci. 110 Berlin/Heidelberg: Springer-Verlag, 2nd ed..
  38. Henini M. 38.  2013. Molecular Beam Epitaxy: From Research to Mass Production Amsterdam: Elsevier
  39. Hyun JK, Zhang S, Lauhon LJ. 39.  2013. Annu. Rev. Mater. Res. 43:451–79
  40. Manfra MJ. 40.  2014. Annu. Rev. Condens. Matter Phys. 5:347–73
  41. Alferov ZI. 41.  1998. Semiconductors 32:1–14
  42. Klitzing Kv, Dorda G, Pepper M. 42.  1980. Phys. Rev. Lett. 45:494–97
  43. Tsui DC, Stormer HL, Gossard AC. 43.  1982. Phys. Rev. Lett. 48:1559–62
  44. Beenakker CWJ, van Houten H. 44.  1991. Solid State Phys 44:1–228
  45. Alferov Z. 45.  2013. Proc. IEEE 101:2176–82
  46. Sze SM. 46.  1990. High-Speed Semiconductor Devices New York: Wiley-Intersci.
  47. Falco CM, Schuller IK. 47.  1985. Synthetic Modulated Structures LL Chang, BC Giessen Orlando, FL: Academic
  48. Shen J, Kirschner J. 48.  2002. Surf. Sci. 500:300–22
  49. Bratkovsky AM. 49.  2008. Rep. Prog. Phys. 71:026502
  50. Grünberg P. 50.  2008. Ann. Phys. 17:7–16
  51. Bader SD, Parkin SSP. 51.  2010. Annu. Rev. Condens. Matter Phys. 1:71–88
  52. Hino M, Sunohara H, Yoshimura Y, Maruyama R, Tasaki S. 52.  et al. 2004. Nucl. Instr. Meth. Phys. Res. A 529:54–58
  53. Conibeer G. 53.  2007. Mater. Today 10:42–50
  54. Miles RW, Zoppi G, Forbes I. 54.  2007. Mater. Today 10:20–27
  55. McLaughlin DVP, Pearce JM. 55.  2013. Metallurg. Mater. Trans. A 44:1947–54
  56. Herring C. 56.  2010. Fundamentals of Semiconductors: Physics and Materials Properties P Yu, M Cardona 560–62 Heidelberg: Springer
  57. Kroemer H. 57.  2001. Rev. Mod. Phys. 73:783–93
  58. Pfeiffer L, West KW. 58.  2003. Phys. E 20:57–64
  59. Umansky V, Heiblum M, Levinson Y, Smet J, Nübler J, Dolev M. 59.  2009. J. Crystal Growth 311:1658–61
  60. Mccray WP. 60.  2007. Nat. Nanotechnol. 2:259–61
  61. Esaki L. 61.  2010. Fundamentals of Semiconductors: Physics and Materials Properties P Yu, M Cardona 578–82 Heidelberg: Springer
  62. Scott P. 62.  1966. The Jewel in the Crown Sherborne, UK: Heinemann, 1st ed..
  63. Osada M, Ebina Y, Funakubo H, Yokoyama S, Kiguchi T. 63.  et al. 2006. Adv. Mater. 18:1023–27
  64. Ziegler C, Werner S, Bugnet M, Wörsching M, Duppel V. 64.  et al. 2013. Chem. Mater. 25:4892–900
  65. Tokura Y. 65.  2003. Phys. Today 56:50–55
  66. Khomskii DI. 66.  2014. Transition Metal Compounds Cambridge, UK: Cambridge Univ. Press
  67. Char K, Antognazza L, Geballe TH. 67.  1993. Appl. Phys. Lett. 63:2420–22
  68. Zasadzinski J. 68.  2008. Superconductivity 2, Novel Superconductors K-H Bennemann, JB Ketterson 833–68 Heidelberg: Springer
  69. Mannhart J, Bednorz JG, Müller KA, Schlom DG. 69.  1991. Z. Phys. B: Condens. Matter 83:307–11
  70. Ahn CH, Triscone JM, Mannhart J. 70.  2003. Nature 424:1015–18
  71. Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M. 71.  et al. 1994. Science 266:1540–42
  72. Koster G, Kropman BL, Rijnders GJHM, Blank DHA, Rogalla H. 72.  1998. Appl. Phys. Lett. 37:2920–22
  73. Chern MY, Gupta A, Hussey BW. 73.  1992. Appl. Phys. Lett. 60:3045–47
  74. Karl H, Stritzker B. 74.  1992. Phys. Rev. Lett. 69:2939–42
  75. Kanai M, Kawai T, Kawai S. 75.  1992. Jpn. J. Appl. Phys. 31:L331–33
  76. Frey T, Chi CC, Tsuei CC, Shaw T, Bozso F. 76.  1994. Phys. Rev. B 49:3483–91
  77. Rijnders GJHM, Koster G, Blank DHA, Rogalla H. 77.  1997. Appl. Phys. Lett. 70:1888–90
  78. Berkley DD, Johnson BR, Anand N, Beauchamp KM, Conroy LE. 78.  et al. 1988. Appl. Phys. Lett. 53:1973–75
  79. Eckstein JN, Bozovic I, Klausmeier-Brown ME, Virshup GF, Ralls KS. 79.  1992. MRS Bull 17:27–33
  80. Schlom DG, Harris JS. 80.  1995. Molecular Beam Epitaxy: Applications to Key Materials Farrow 505–90 Park Ridge, NJ: Noyes
  81. Norton DP. 81.  2004. Mater. Sci. Eng. R 43:139–247
  82. King LLH, Hsieh KY, Lichtenwalner DJ, Kingon AI. 82.  1991. Appl. Phys. Lett. 59:3045–47
  83. Jalan B, Engel-Herbert R, Wright NJ, Stemmer S. 83.  2009. J. Vac. Sci. Technol. A 27:461–64
  84. Thomas PJ, Fenton JC, Yang G, Gough CE. 84.  2000. Phys. C341–3481547–50
  85. Mannhart J, Boschker H, Kopp T, Valenti R. 85.  2016. Rep. Prog. Phys. 79:084508
  86. Kivelson SA. 86.  2002. Phys. B 318:61–67
  87. Koerting V, Yuan Q, Hirschfeld PJ, Kopp T, Mannhart J. 87.  2005. Phys. Rev. B 71:104510
  88. Gozar A, Logvenov G, Kourkoutis LF, Bollinger AT, Giannuzzi LA. 88.  et al. 2008. Nature 455:782–85
  89. Wang Q-Y, Li Z, Zhang W-H, Zhang Z-C, Zhang J-S. 89.  et al. 2012. Chin. Phys. Lett. 29:037402
  90. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L. 90.  et al. 2004. Science 303:661–63
  91. Valencia S, Crassous A, Bocher L, Garcia V, Moya X. 91.  et al. 2011. Nat. Mater. 10:753–58
  92. Bibes M. 92.  2012. Nat. Mater. 11:354–57
  93. Yu P, Chu YH, Ramesh R. 93.  2012. Philos. Trans. R. Soc. A 370:4856–71
  94. MacManus-Driscoll JL, Suwardi A, Wang H. 94.  2015. MRS Bull 40:933–42
  95. Mannhart J. 95.  2005. Thin Films and Heterostructures for Oxide Electrons SB Ogale 251–78 Heidelberg: Springer
  96. Chaloupka J, Khaliullin G. 96.  2008. Phys. Rev. Lett. 100:016404
  97. Hansmann P, Yang X, Toschi A, Khaliullin G, Andersen OK, Held K. 97.  2009. Phys. Rev. Lett. 103:016401
  98. Wu M, Benckiser E, Haverkort MW, Frano A, Lu Y. 98.  et al. 2013. Phys. Rev. B 88:125124
  99. Disa AS, Kumah DP, Malashevich A, Chen H, Arena DA. 99.  et al. 2015. Phys. Rev. Lett. 114:026801
  100. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S. 100.  et al. 2012. Nature 487:459–61
  101. Kopp T, Mannhart J. 101.  2009. J. Appl. Phys. 106:064504
  102. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. 102.  2016. Nat. Nanotechnol. 11:218–30
  103. Nandakumar NK. 103.  2012. Band engineering of metal oxide heterostructures for catalysis applications. PhD Thesis, University of Illinois
  104. Uddin T. 104.  2013. Metal oxide heterostructures for efficient photocatalysis. PhD Thesis, Technical University of Darmstadt
  105. Obradors X, Puig T. 105.  2014. Supercond. Sci. Technol. 27:044003
  106. Breitschaft M, Tinkl V, Pavlenko N, Paetel S, Richter C. 106.  et al. 2010. Phys. Rev. B 81:153414
  107. Dagotto E, Tokura Y. 107.  2008. MRS Bull 33:1037–45
  108. Berner G, Sing M, Fujiwara H, Yasui A, Saitoh Y. 108.  et al. 2013. Phys. Rev. Lett. 110:247601
  109. Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R. 109.  et al. 2013. Nature 502:528–31
  110. Chen YZ, Trier F, Wijnands T, Green RJ, Gauquelin N. 110.  et al. 2015. Nat. Mater. 14:801–6
  111. Chen YZ, Bovet N, Trier F, Christensen DV, Qu FM. 111.  et al. 2013. Nat. Commun. 4:1371
  112. Falson J, Kozuka Y, Smet JH, Arima T, Tsukazaki A, Kawasaki M. 112.  2015. Appl. Phys. Lett. 107:082102
  113. Bolotin KI, Ghahari F, Shulman MD, Stormer HL, Kim P. 113.  2009. Nature 462:196–99
  114. Peres NMR. 114.  2010. Rev. Mod. Phys. 82:2673–700
  115. Hilgenkamp H, Schneider CW, Schulz RR, Goetz B, Schmehl A. 115.  et al. 1999. Phys. C326–3277–11
  116. Altieri S, Tjeng LH, Sawatzky GA. 116.  2001. Thin Solid Films 400:9–15
  117. Mundy JA, Brooks CM, Holtz ME, Moyer JA, Das H. 117.  et al. 2016. Nature 537:523–27
  118. Huijben M, Rijnders G, Blank DHA, Bals S, Van Aert S. 118.  et al. 2006. Nat. Mater. 5:556–60
  119. Ziese M, Vrejoiu I. 119.  2013. Phys. Status Solidi 7:243–57
  120. Yadav AK, Nelson CT, Hsu SL, Hong Z, Clarkson JD. 120.  et al. 2016. Nature 530:198–201
  121. Bozovic I, Eckstein JN, Virshup GF, Chaiken A, Wall M. 121.  et al. 1994. J. Supercond. 7:187–95
  122. Hughes CR, Harada T, Asaba T, Ashoori R, Boris AV. 122.  et al. 2016. arXiv:1609.08901
  123. Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P. 123.  et al. 2015. Nano Lett 15:7355–61
  124. Sawa A. 124.  Private communication.
  125. Matsuno J, Ihara K, Yamamura S, Wadati H, Ishii K. 125.  et al. 2015. Phys. Rev. Lett.114:247209
  126. Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH. 126.  2005. Nature 433:395–99
  127. Kourkoutis LF, Song JH, Hwang HY, Muller DA. 127.  2010. PNAS 107:11682–85
  128. Haigh SJ, Gholinia A, Jalil R, Romani S, Britnell L. 128.  et al. 2012. Nat. Mater. 11:764–67
  129. Lee S, Tarantini C, Gao P, Jiang J, Weiss JD. 129.  et al. 2013. Nat. Mater. 12:392–96
  130. Prasciolu M, Leontowich AFG, Beyerlein KR, Bajt S. 130.  2014. Appl. Opt. 53:2126–35
  131. Momand J, Wang R, Boschker JE, Verheijen MA, Calarco R, Kooi BJ. 131.  2015. Nanoscale 7:19136–43
  132. Braun W, Trampert A, Daweritz L, Ploog KH. 132.  1997. Phys. Rev. B 55:1689–95
  133. Tchernycheva M, Nevou L, Doyennette L, Julien FH, Warde E. 133.  et al. 2006. Phys. Rev. B 73:125347
  134. Ohtomo A, Muller DA, Grazul JL, Hwang HY. 134.  2002. Nature 419:378–80
  135. Jany R, Richter C, Woltmann C, Pfanzelt G, Förg B. 135.  et al. 2014. Adv. Mater. Interfaces 1:1300031
  136. Jackeli G, Khaliullin G. 136.  2009. Phys. Rev. Lett. 102:017205
  137. Rondinelli JM, May SJ, Freeland JW. 137.  2012. MRS Bull 37:261–70
  138. Chaloupka J, Khaliullin G. 138.  2016. Phys. Rev. Lett. 116:017203
  139. Wang Q-Y, Li Z, Zhang W-H, Zhang Z-C, Zhang J-S. 139.  et al. 2012. Chin. Phys. Lett. 29:037402
  140. Tan S, Zhang Y, Xia M, Ye Z, Chen F. 140.  et al. 2013. Nat. Mater. 12:634–40
  141. He S, He J, Zhang W, Zhao L, Liu D. 141.  et al. 2013. Nat. Mater. 12:605–10
  142. Zhang W-H, Sun Y, Zhang J-S, Li F-S, Guo M-H. 142.  et al. 2014. Chin. Phys. Lett. 31:017401
  143. Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A. 143.  2016. Nat. Phys. 12:42–46
  144. Ge J-F, Liu Z-L, Liu C, Gao C-L, Qian D. 144.  et al. 2015. Nat. Mater. 14:285–89
  145. Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T. 145.  2015. Nat. Mater. 14:775–79
  146. Medvedev S, McQueen TM, Troyan IA, Palasyuk T, Eremets MI. 146.  et al. 2009. Nat. Mater. 8:630–33
  147. Coh S, Lee D-H, Louie SG, Cohen ML. 147.  2016. Phys. Rev. B 93:245138
  148. Coh S, Cohen ML, Louie SG. 148.  2015. New J. Phys. 17:073027
  149. Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT. 149.  et al. 2014. Nature 515:245–48
  150. Xiang Y-Y, Wang F, Wang D, Wang Q-H, Lee D-H. 150.  2012. Phys. Rev. B 86:134508
  151. Stornaiuolo D, Gariglio S, Couto NJG, Fete A, Caviglia AD. 151.  et al. 2012. Appl. Phys. Lett. 101:222601
  152. Goswami S, Mulazimoglu E, Vandersypen LM, Caviglia AD. 152.  2015. Nano. Lett. 15:2627–32
  153. Woltmann C, Harada T, Boschker H, Srot V, van Aken PA. 153.  et al. 2015. Phys. Rev. Appl. 4:064003
  154. Cen C, Thiel S, Hammerl G, Schneider CW, Andersen KE. 154.  et al. 2008. Nat. Mater. 7:298–302
  155. Ron A, Dagan Y. 155.  2014. Phys. Rev. Lett. 112:136801
  156. Cheng G, Tomczyk M, Lu S, Veazey JP, Huang M. 156.  et al. 2015. Nature 521:196–99
  157. Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S. 157.  2011. Nat. Commun. 2:596
  158. Scheurer MS, Schmalian J. 158.  2015. Nat. Commun. 6:6005
  159. Yoshida T, Sigrist M, Yanase Y. 159.  2015. Phys. Rev. Lett. 115:027001
  160. Maier J. 160.  1999. J. Eur. Ceram. Soc. 19:675–81
  161. Sawa A. 161.  2008. Mater. Today 11:28–36
  162. Kalinin SV, Spaldin NA. 162.  2013. Science 341:858–59
  163. Leon C, Santamaria J, Boukamp BA. 163.  2013. MRS Bull 38:1056–63
  164. Metlenko V, Ramadan AH, Gunkel F, Du H, Schraknepper H. 164.  et al. 2014. Nanoscale 6:12864–76
  165. Koma A. 165.  1992. Thin Solid Films 216:72–76
  166. Boschker JE, Galves LA, Flissikowski T, Lopes JM, Riechert H, Calarco R. 166.  2015. Sci. Rep. 5:18079
  167. Metzner W, Vollhardt D. 167.  1989. Phys. Rev. Lett. 62:324–27
  168. Georges A, Kotliar G, Krauth W, Roenberg MJ. 168.  1996. Rev. Mod. Phys. 68:13–125
  169. Kotliar G, Vollhardt D. 169.  2004. Phys. Today 57:53–59
  170. Metzner W, Salmhofer M, Honerkamp C, Meden V, Schönhammer K. 170.  2012. Rev. Mod. Phys. 84:299–352
  171. Booth GH, Gruneis A, Kresse G, Alavi A. 171.  2013. Nature 493:365–70
  172. Hohenberg P, Kohn W. 172.  1964. Phys. Rev. 136:864–71
  173. Kohn W, Sham LJ. 173.  1965. Phys. Rev. 140:A1133–38
  174. Jones RO, Gunnarsson O. 174.  1989. Rev. Mod. Phys. 61:689–746
  175. Rabe KM. 175.  2010. Annu. Rev. Condens. Matter Phys. 1:211–35
  176. Abbamonte P, Venema L, Rusydi A, Sawatzky GA, Logvenov G, Bozovic I. 176.  2002. Science 297:581–84
  177. Jia CL, Lentzen M, Urban K. 177.  2003. Science 299:870–73
  178. Fiebig M, Pavlov VV, Pisarev RV. 178.  2005. J. Opt. Soc. Am. B 22:96–118
  179. Muller DA, Fitting Kourkoutis L, Murfitt M, Song JH, Hwang HY. 179.  et al. 2008. Science 319:1073–76
  180. Claessen R, Sing M, Paul M, Berner G, Wetscherek A. 180.  et al. 2009. New J. Phys. 11:125007
  181. Verbeeck J, Tian H, Schattschneider P. 181.  2010. Nature 467:301–4
  182. Fong DD, Lucas CA, Richard M-I, Toney MF. 182.  2010. MRS Bull 35:504–13
  183. Tuller HL, Bishop SR. 183.  2011. Annu. Rev. Mater. Res. 41:369–98
  184. Benckiser E, Haverkort MW, Bruck S, Goering E, Macke S. 184.  et al. 2011. Nat. Mater. 10:189–93
  185. Bryant B, Renner C, Tokunaga Y, Tokura Y, Aeppli G. 185.  2011. Nat. Commun. 2:212
  186. Monkman EJ, Adamo C, Mundy JA, Shai DE, Harter JW. 186.  et al. 2012. Nat. Mater. 11:855–59
  187. Macke S, Radi A, Hamann-Borrero JE, Verna A, Bluschke M. 187.  et al. 2014. Adv. Mater. 26:6554–59
  188. Hesselberth MBS, van der Molen SJ, Aarts J. 188.  2014. Appl. Phys. Lett. 104:051609
  189. Hitosugi T, Shimizu R, Ohsawa T, Iwaya K. 189.  2014. Chem. Rec. 14:935–43
  190. Schlom DG, Chen L-Q, Fennie CJ, Gopalan V, Muller DA. 190.  et al. 2014. MRS Bull 39:118–30
  191. Xie Y, Bell C, Hikita Y, Hwang HY. 191.  2011. Adv. Mater. 23:1744–47
  192. Arras R, Ruiz VG, Pickett WE, Pentcheva R. 192.  2012. Phys. Rev. B 85:125404
  193. Xie Y, Bell C, Hikita Y, Harashima S, Hwang HY. 193.  2013. Adv. Mater. 25:4735–38
  194. Kan D, Terashima T, Kanda R, Masuno A, Tanaka K. 194.  et al. 2005. Nat. Mater. 4:816–19
  195. Dulub O, Batzill M, Solovev S, Loginova E, Alchagirov A. 195.  et al. 2007. Science 317:1052–56
  196. Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D. 196.  2007. Phys. Rev. B 75:121404
  197. Meevasana W, King PD, He RH, Mo SK, Hashimoto M. 197.  et al. 2011. Nat. Mater. 10:114–18
  198. Walker SM, Bruno FY, Wang Z. Torre A, Ricco S. 198. , de la et al. 2015. Adv. Mater. 27:3894–99
  199. Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B. 199.  et al. 2014. PNAS 111:3933–37
  200. Littlewood P. 200.  2011. Nat. Mater. 10:726–27
  201. Poccia N, Fratini M, Ricci A, Campi G, Barba L. 201.  et al. 2011. Nat. Mater. 10:733–36
  202. Yao L, Majumdar S, Akaslompolo L, Inkinen S, Qin QH, van Dijken S. 202.  2014. Adv. Mater. 26:2789–93
  203. Zhong Z, Xu PX, Kelly PJ. 203.  2010. Phys. Rev. B 82:165127
  204. Zhang L, Zhou X-F, Wang H-T, Xu J-J, Li J. 204.  et al. 2010. Phys. Rev. B 82:125412
  205. Li Y, Phattalung SN, Limpijumnong S, Kim J, Yu J. 205.  2011. Phys. Rev. B 84:245307
  206. Bristowe NC, Littlewood PB, Artacho E. 206.  2011. Phys. Rev. B 83:205405
  207. Pavlenko N, Kopp T, Tsymbal EY, Sawatzky GA, Mannhart J. 207.  2012. Phys. Rev. B 85:020407
  208. Yu L, Zunger A. 208.  2014. Nat. Commun. 5:5118
  209. Krishnaswamy K, Dreyer CE, Janotti A. de Walle CG. 209. , Van 2015. Phys. Rev. B 92:085420
/content/journals/10.1146/annurev-conmatphys-031016-025404
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025404
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error