1932

Abstract

Neurofilaments are the building blocks of the major cytoskeletal network found in the axons of vertebrate neurons. The filaments consist of three distinct molecular-weight subunits—neurofilament-low, neurofilament-medium, and neurofilament-high—which coassemble into 10-nm flexible rods with protruding intrinsically disordered C-terminal sidearms that mediate interfilament interactions and hydrogel formation. Molecular neuroscience research includes areas focused on elucidating the functions of each subunit in network formation, during which disruptions are a hallmark of motor-neuron diseases. Here, modern concepts and methods from soft condensed matter physics are combined to address the role of subunits as it relates to interfilament forces and phase behavior in neurofilament networks. Significantly, the phase behavior studies reveal that although neurofilament-medium subunits promote nematic liquid crystal hydrogel phase stability with parallel filament orientation, neurofilament-high subunits stabilize the hydrogel in the nematic phase close to the isotropic gel phase with random, crossed-filament orientation. This indicates a regulatory role for neurofilament-high subunits in filament orientational plasticity required for organelle (e.g., membrane-bound vesicle or mitochondrion) transport along microtubules embedded in neurofilament hydrogels. Future studies—for example, on neurofilament subunits mixed with tubulin and microtubule-associated proteins—should lead to a deeper understanding of forces and heterogeneous structures in neuronal cytoskeletons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014623
2015-03-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014623.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014623&mimeType=html&fmt=ahah

Literature Cited

  1. Pollard TD, Earnshaw WC, Lippincott-Schwartz J. 2007. Cell Biology. New York: Elsevier, 2nd ed..
  2. Bray D. 2001. Cell Movements: From Molecules to Motility. New York: Garland, 2nd ed..
  3. Peters SL, Palay H, Webster DEF. 1991. The Fine Structure of the Nervous System: Neurons and their Supporting Cells. New York: Oxford, 3rd ed.
  4. Burgoyne RD. 1991. The Neuronal Cytoskeleton. New York: Wiley & Sons
  5. Hirokawa N. 1991. See Ref. 4, pp. 5–74
  6. Kandel ER, Schwartz JH, Jessell TM. 2000. Principles of Neural Science. New York: McGraw Hill, 4th ed..
  7. Janmey PA, Leterrier JF, Herrmann H. 2003. Curr. Opin. Colloid Interface Sci. 8:40–47
  8. Fuchs E, Cleveland DW. 1998. Science 279:514–19
  9. Shaw G. 1998. Neurofilaments. New York: Springer
  10. Leterrier JF, Kas J, Hartwig J, Vegners R, Janmey PA. 1996. J. Biol. Chem. 271:15687–94
  11. Janmey PA, Slochower DR, Wang Y-H, Wen Q, Cebers A. 2014. Soft Matter 10:1439–49
  12. Coulombe PA, Wong P. 2004. Nat. Cell Biol. 6:699–706
  13. Lin YC, Yao NY, Broedersz CP, Herrmann H, MacKintosh FC, Weitz DA. 2010. Phys. Rev. Lett. 104:058101
  14. Nelson P. 2013. Biological Physics. Oxford, UK: Oxford Univ. Press, 2nd ed..
  15. Hirokawa N. 1996. Trends Cell Biol. 6:135–41
  16. Hirokawa N. 1982. J. Cell Biol. 94:129–42
  17. Hirokawa N, Hisanaga S-I, Shiomura Y. 1988. J. Neurosci. 8:2769–79
  18. Hirokawa N, Glicksman MA, Willard MB. 1984. J. Cell Biol. 98:1523–36
  19. Cohlberg JA, Hajarian H, Tran T, Alipourjeddi P, Noveen A. 1995. J. Biol. Chem. 270:9334–39
  20. Ching G, Liem R. 1993. J. Cell Biol. 122:1323–35
  21. Kosik KS, Finch EA. 1987. J. Neurosci. 7:3142–53
  22. Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y. 1996. J. Cell Biol. 132:667–79
  23. Caceres A, Kosik KS. 1990. Nature 343:461–63
  24. Esmaeli-Azad B, McCarty JH, Feinstein SC. 1994. J. Cell Sci. 107:869–79
  25. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. 2001. J. Cell Sci. 114:1179–87
  26. Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N. 2002. J. Cell Biol. 158:541–49
  27. Dehmelt L, Halpain S. 2004. Genome Biol. 6:1–10
  28. Xu Z, Marszalek JR, Lee MK, Wong PC, Folmer J et al. 1996. J. Cell Biol. 133:1061–69
  29. Carden M, Trojanowski J, Schlaepfer W, Lee V. 1987. J. Neurosci. 7:3489–504
  30. Shaw G, Weber K. 1982. Nature 298:277–79
  31. Drake P, Lasek R. 1984. J. Neurosci. 4:1173–86
  32. Tsuda M, Tashiro T, Komiya Y. 2000. J. Neurochem. 74:860–68
  33. Jones JB, Safinya CR. 2008. Biophys. J. 95:823–25
  34. Deek J, Chung PJ, Kayser J, Bausch AR, Safinya CR. 2013. Nat. Commun. 4:2224
  35. Beck R, Deek J, Jones JB, Safinya CR. 2010. Nat. Mater. 9:40–46
  36. Beck R, Deek J, Choi MC, Ikawa T, Watanabe O et al. 2010. Langmuir 26:18595–99
  37. Rubenstein M, Colby R. 2003. Polymer Physics. Oxford, UK: Oxford Univ. Press
  38. Dunker KA, Kriwacki RW. 2011. Sci. Am. 304:68–73
  39. Dyson HJ, Wright PE. 2004. Nat. Rev. Mol. Cell Biol. 6:197–208
  40. Bangham AD, Horne RW. 1964. J. Mol. Biol. 8:660–68
  41. Lipowsky R, Sackmann E. 1995. Handbook of Biological Physics Vol. 1 Amsterdam: Elsevier
  42. Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR. 2009. Langmuir 25:2979–85
  43. Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR. 2009. Biochim. Biophys. Acta 1788:1869–76
  44. Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR. 2009. Methods Enzymol. 465:111–28
  45. Safinya CR, Ewert KK. 2012. Nature 489:372–74
  46. Tang JX, Janmey PA. 1996. J. Biol. Chem. 271:8556–63
  47. Safinya CR. 2006. The New Physics for the Twenty First Century. Fraser G. 405–43 Cambridge: Cambridge Univ. Press
  48. Wong GCL, Lin A, Tang JX, Li Y, Janmey PA, Safinya CR. 2003. Phys. Rev. Lett. 91:018103
  49. Pelletier O, Pokidysheva E, Hirst LS, Bouxsein N, Li Y, Safinya CR. 2003. Phys. Rev. Lett. 91:148102
  50. Hirst LS, Parker ER, Abu-Samah Z, Li Y, Pynn R et al. 2005. Langmuir 21:3910–14
  51. Hirst LS, Safinya CR. 2004. Phys. Rev. Lett. 93:018101
  52. Hirst LS, Pynn R, Bruinsma RF, Safinya CR. 2005. J. Chem. Phys. 123:104902
  53. Ikawa T, Hoshino F, Watanabe O, Li Y, Pincus PA, Safinya CR. 2007. Phys. Rev. Lett. 98:018101
  54. Angelini TE, Liang H, Wriggers W, Wong GCL. 2003. Proc. Natl. Acad. Sci. USA 100:8634–37
  55. Wong GCL. 2006. Curr. Opin. Colloid Interface Sci. 11:310–15
  56. Wong GCL, Pollack L. 2010. Annu. Rev. Phys. Chem. 61:171–89
  57. Needleman DJ, Ojeda-Lopez MA, Raviv U, Miller HP, Wilson L, Safinya CR. 2004. Proc. Natl. Acad. Sci. USA 101:16099–103
  58. Needleman DJ, Ojeda-Lopez MA, Raviv U, Ewert K, Jones JB et al. 2004. Phys. Rev. Lett. 93:198104
  59. Needleman DJ, Ojeda-Lopez MA, Raviv U, Ewert K, Miller HP et al. 2005. Biophys. J. 89:3410–23
  60. Safinya CR, Li Y. 2010. Science 327:529–30
  61. Ojeda-Lopez MA, Needleman DJ, Song C, Ginsburg A, Kohl P et al. 2014. Nat. Mater. 13:195–203
  62. Hesse HC, Beck R, Ding C, Jones JB, Deek J et al. 2008. Langmuir 24:8397–401
  63. Miller CCJ, Ackerley S, Brownlees J, Grierson AJ, Jacobsen NJO, Thornhill P. 2002. Cell. Mol. Life Sci. 59:323–30
  64. Xu ZS, Cork LC, Griffin JW, Cleveland DW. 1993. Cell 73:23–33
  65. Wong PC, Marszalek J, Crawford TO, Xu ZS, Hsieh ST et al. 1995. J. Cell Biol. 130:1413–22
  66. Hirano A, Donnenfeld H, Sasaki S, Nakano I. 1984. J. Neuropathol. Exp. Neurol. 43:461–70
  67. Schmidt ML, Martin JA, Lee VMY, Trojanowski JQ. 1996. Acta Neuropathol. 91:475–81
  68. Julien JP, Cote F, Collard JF. 1995. Neurobiol. Aging 16:487–90
  69. Nixon RA, Lewis SE, Marotta CA. 1987. J. Neurosci. 7:1145–58
  70. Jones SM, Robley C, Williams J. 1982. J. Biol. Chem. 257:9902–5
  71. Trimpin S, Mixon AE, Stapels MD, Kim MY, Spencer PS, Deinzer ML. 2004. Biochemistry 43:2091–105
  72. Chen J, Nakata T, Zhang Z, Hirokawa N. 2000. J. Cell Sci. 113:3861–69
  73. Gou J, Gotow T, Janmey P, Leterrier JP. 1998. Med. Biol. Eng. Comput. 36:371–87
  74. Stevens MJ, Hoh JH. 2011. J. Phys. Chem. B 115:7541–49
  75. De Gennes PG, Prost J. 1993. The Physics of Liquid Crystals. Oxford, UK: Oxford Univ. Press, 2nd ed..
  76. Parsegian VA, Rand RP, Fuller NL, Rau DC. 1986. Methods Enzymol. 127:400–16
  77. Rau DC, Parsegian VA. 1992. Biophys. J. 61:246–59
  78. Manning GS. 1969. J. Chem. Phys. 51:924–33
  79. DeHaseth PL, Lohman TM, Record MT Jr. 1977. Biochemistry 16:4783–90
  80. Gelbart WM, Bruinsma RF, Pincus PA, Parsegian VA. 2000. Phys. Today 53:38–45
  81. Koltover I, Salditt T, Safinya CR. 1999. Biophys. J. 77:915–24
  82. Rädler JO, Koltover I, Salditt T, Safinya CR. 1997. Science 275:810–14
  83. Parsegian VA. 1972. J. Chem. Phys. 56:4393–96
  84. Onsager L. 1949. Ann. N. Y. Acad. Sci. 51:627–59
  85. Khokhlov AR, Semenov AN. 1981. Phys. A 108:546–56
  86. Shea TB, Jung C, Pant HC. 2003. Trends Neurosci. 26:397–400
  87. Shea TB, Flanagan LA. 2001. Trends Neurosci. 34:644–48
  88. Yuan A, Sasaki T, Rao MV, Kumar A, Kanumuri V et al. 2009. J. Neurosci. 29:11316–29
/content/journals/10.1146/annurev-conmatphys-031214-014623
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014623
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error