1932

Abstract

Topological insulators in three dimensions are nonmagnetic insulators that possess metallic surface states (SSs) as a consequence of the nontrivial topology of electronic wavefunctions in the bulk of the material. They are the first known examples of topological order in bulk solids. We review the basic phenomena and experimental history, starting with the observation of topological insulator behavior in BiSb by angle and spin-resolved photoemission spectroscopy (spin-ARPES) and continuing through measurements on other materials and by other probes. A self-contained introduction to the single-particle theory is then given, followed by the many-particle definition of a topological insulator as a material with quantized magnetoelectric polarizability. The last section reviews recent work on strongly correlated topological insulators and new effects that arise from the proximity effect between a topological insulator and a superconductor. Although this article is not intended to be a comprehensive review of what is already a rather large field, we hope that it serves as a useful introduction, summary of recent progress, and guideline to future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-062910-140432
2011-03-10
2024-04-19
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-conmatphys-062910-140432
Loading
/content/journals/10.1146/annurev-conmatphys-062910-140432
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error