1932

Abstract

This review surveys the current state of the art in the development of unmanned aerial vehicles, focusing on algorithms for quadrotors. Tremendous progress has been made across both industry and academia, and full vehicle autonomy is now well within reach. We begin by presenting recent successes in control, estimation, and trajectory planning that have enabled agile, high-speed flight using low-cost onboard sensors. We then examine new research trends in learning and multirobot systems and conclude with a discussion of open challenges and directions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105149
2018-05-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-105149.html?itemId=/content/journals/10.1146/annurev-control-060117-105149&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Rajappa S, Ryll M, Bülthoff HH, Franchi A 2015. Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. 2015 IEEE International Conference on Robotics and Automation (ICRA)4006–13 New York: IEEE
    [Google Scholar]
  2. 2.  Ryll M, Bülthoff HH, Giordano PR 2013. First flight tests for a quadrotor UAV with tilting propellers. 2013 IEEE International Conference on Robotics and Automation (ICRA)295–302 New York: IEEE
    [Google Scholar]
  3. 3.  Brescianini D, D'Andrea R 2016. Design, modeling and control of an omni-directional aerial vehicle. 2016 IEEE International Conference on Robotics and Automation (ICRA)3261–66 New York: IEEE
    [Google Scholar]
  4. 4.  Piccoli M, Yim M 2015. Passive stability of vehicles without angular momentum including quadrotors and ornithopters. 2015 IEEE International Conference on Robotics and Automation (ICRA)1716–21 New York: IEEE
    [Google Scholar]
  5. 5.  Chen Y, Gravish N, Desbiens AL, Malka R, Wood RJ 2016. Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing. J. Fluid Mech. 791:1–33
    [Google Scholar]
  6. 6.  Chen Y, Ma K, Wood RJ 2016. Influence of wing morphological and inertial parameters on flapping flight performance. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2329–36 New York: IEEE
    [Google Scholar]
  7. 7.  Rosen MH, le Pivain G, Sahai R, Jafferis NT, Wood RJ 2016. Development of a 3.2g untethered flapping-wing platform for flight energetics and control experiments. 2016 IEEE International Conference on Robotics and Automation (ICRA)3227–33 New York: IEEE
    [Google Scholar]
  8. 8.  Chirarattananon P, Ma KY, Wood RJ 2016. Perching with a robotic insect using adaptive tracking control and iterative learning control. Int. J. Robot. Res. 35:1185–206
    [Google Scholar]
  9. 9.  Hoff J, Ramezani A, Chun SJ, Hutchinson S 2016. Synergistic design of a bio-inspired micro aerial vehicle with articulated wings. Robotics: Science and Systems XII D Hsu, N Amato, S Berman, S Jacobs, chap. 9 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  10. 10.  Ramezani A, Chung SJ, Hutchinson S 2017. A biomimetic robotic platform to study flight specializations of bats. Sci. Robot. 2:eaal2505
    [Google Scholar]
  11. 11.  Keennon M, Klingebiel K, Won H, Andriukov A 2012. Development of the nano hummingbird: a tailless flapping wing micro air vehicle. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition chap. 2012-0588 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  12. 12.  Gerdes J, Holness A, Perez-Rosado A, Roberts L, Greisinger A et al. 2014. Robo Raven: a flapping-wing air vehicle with highly compliant and independently controlled wings. Soft Robot 1:275–88
    [Google Scholar]
  13. 13.  de Croon GCHE, Groen MA, Wagter CD, Remes B, Ruijsink R, van Oudheusden BW 2012. Design, aerodynamics and autonomy of the DelFly. Bioinspir. Biomimet. 7:025003
    [Google Scholar]
  14. 14.  Moore J, Cory R, Tedrake R 2014. Robust post-stall perching with a simple fixed-wing glider using LQR-trees. Bioinspir. Biomimet. 9:025013
    [Google Scholar]
  15. 15.  Majumdar A, Tedrake R 2017. Funnel libraries for real-time robust feedback motion planning. Int. J. Robot. Res. 36:947–82
    [Google Scholar]
  16. 16.  Barry AJ, Tedrake R 2015. Pushbroom stereo for high-speed navigation in cluttered environments. 2015 IEEE International Conference on Robotics and Automation (ICRA)3046–52 New York: IEEE
    [Google Scholar]
  17. 17.  Whitzer M, Keller J, Bhattacharya S, Kumar V, Sands T et al. 2016. In-flight formation control for a team of fixed-wing aerial vehicles. 2016 International Conference on Unmanned Aircraft Systems (ICUAS)372–80 New York: IEEE
    [Google Scholar]
  18. 18. CB Insights. 2017. Still soaring: deals to drone startups on track for 6th annual high Res. Brief, CB Insights New York: https://www.cbinsights.com/research/drones-startup-funding
  19. 19.  Kumar V, Michael N 2012. Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31:1279–91
    [Google Scholar]
  20. 20.  Murray RM, Rathinam M, Sluis W 1995. Differential flatness of mechanical control systems: a catalog of prototype systems. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition (IMECE) New York: ASME Preprint version available at http://www.cds.caltech.edu/∼murray/preprints/mrs95-imece.pdf
    [Google Scholar]
  21. 21.  Mellinger D, Kumar V 2011. Minimum snap trajectory generation and control for quadrotors. 2011 IEEE International Conference on Robotics and Automation (ICRA)2520–25 New York: IEEE
    [Google Scholar]
  22. 22.  Michael N, Mellinger D, Lindsey Q, Kumar V 2010. The GRASP multiple micro-UAV testbed. IEEE Robot. Autom. Mag. 17:56–65
    [Google Scholar]
  23. 23.  Lee T, Leok M, McClamroch NH 2012. Nonlinear robust tracking control of a quadrotor UAV on SE(3). 2012 American Control Conference (ACC)4649–54 New York: IEEE
    [Google Scholar]
  24. 24.  Watterson M, Kumar V 2018. Control of quadrotors using the HOPF fibration on SO(3). Proceedings of the 2017 International Symposium on Robotics Research Forthcoming
    [Google Scholar]
  25. 25.  Yu Y, Yang S, Wang M, Li C, Li Z 2015. High performance full attitude control of a quadrotor on SO(3). 2015 IEEE International Conference on Robotics and Automation (ICRA)1698–703 New York: IEEE
    [Google Scholar]
  26. 26.  Brescianini D, Hehn M, D'Andrea R 2013. Nonlinear quadrocopter attitude control Tech. Rep ETH Zürich, Zürich, Switz.:
  27. 27.  Faessler M, Falanga D, Scaramuzza D 2017. Thrust mixing, saturation, and body-rate control for accurate aggressive quadrotor flight. IEEE Robot. Autom. Lett. 2:476–82
    [Google Scholar]
  28. 28.  Monteiro JC, Lizarralde F, Hsu L 2016. Optimal control allocation of quadrotor UAVs subject to actuator constraints. 2016 American Control Conference (ACC)500–5 New York: IEEE
    [Google Scholar]
  29. 29.  Kamel M, Alexis K, Achtelik M, Siegwart R 2015. Fast nonlinear model predictive control for multicopter attitude tracking on SO(3). 2015 IEEE Conference on Control Applications (CCA)1160–66 New York: IEEE
    [Google Scholar]
  30. 30.  Bangura M, Mahony R 2014. Real-time model predictive control for quadrotors. IFAC Proc. Vol. 47:11773–80
    [Google Scholar]
  31. 31.  Bangura M, Mahony R 2017. Thrust control for multirotor aerial vehicles. IEEE Trans. Robot. 33:390–405
    [Google Scholar]
  32. 32.  Powers C, Mellinger D, Kushleyev A, Kothmann B, Kumar V 2013. Influence of aerodynamics and proximity effects in quadrotor flight. In Experimental Robotics: The 13th International Symposium on Experimental Robotics JP Desai, G Dudek, O Khatib, V Kumar 289–302 Heidelberg, Ger.: Springer
    [Google Scholar]
  33. 33.  Schiano F, Alonso-Mora J, Rudin K, Beardsley P, Siegwar R, Siciliano B 2014. Towards estimation and correction of wind effects on a quadrotor UAV. IMAV 2014: International Micro Air Vehicle Conference and Competition 2014134–41 Delft, Neth.: Delft Univ. Technol.
    [Google Scholar]
  34. 34.  Ware J, Roy N 2016. An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer. 2016 IEEE International Conference on Robotics and Automation (ICRA)1507–14 New York: IEEE
    [Google Scholar]
  35. 35.  Yao JW, Desaraju VR, Michael N 2017. Experience-based models of surface proximal aerial robot flight performance in wind. In Experimental Robotics: The 15th International Symposium on Experimental Robotics D Kulić, Y Nakamura, O Khatib, G Venture 563–73 Cham, Switz.: Springer
    [Google Scholar]
  36. 36.  Bartholomew J, Calway A, Mayol-Cuevas W 2014. Learning to predict obstacle aerodynamics from depth images for micro air vehicles. 2014 IEEE International Conference on Robotics and Automation (ICRA)4967–73 New York: IEEE
    [Google Scholar]
  37. 37.  Mueller MW, D'Andrea R 2016. Relaxed hover solutions for multicopters: application to algorithmic redundancy and novel vehicles. Int. J. Robot. Res. 35:873–89
    [Google Scholar]
  38. 38.  Thomas J, Loianno G, Pope M, Hawkes EW, Estrada MA et al. 2015. Planning and control of aggressive maneuvers for perching on inclined and vertical surfaces. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) pap. DETC2015-47710 New York: ASME
    [Google Scholar]
  39. 39.  Scaramuzza D, Fraundorfer F 2011. Visual odometry: part I – the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18:80–92
    [Google Scholar]
  40. 40.  Scaramuzza D, Fraundorfer F 2012. Visual odometry: part II – matching, robustness, and applications. IEEE Robot. Autom. Mag. 19:78–90
    [Google Scholar]
  41. 41.  Corke P, Lobo J, Dias J 2007. An introduction to inertial and visual sensing. Int. J. Robot. Res. 26:519–35
    [Google Scholar]
  42. 42.  Gui J, Gu D, Wang S, Hu H 2015. A review of visual inertial odometry from filtering and optimisation perspectives. Adv. Robot. 29:1289–301
    [Google Scholar]
  43. 43.  Li AQ, Coskun A, Doherty SM, Ghasemlou S, Jagtap AS et al. 2017. Experimental comparison of open source vision based state estimation algorithms. Experimental Robotics: The 15th International Symposium on Experimental Robotics, D Kulić, Y Nakamura, O Khatib, G Venture 775–85 Cham, Switz.: Springer
    [Google Scholar]
  44. 44.  Hartley RI, Zisserman A 2004. Multiple View Geometry in Computer Vision Cambridge, UK: Cambridge Univ. Press, 2nd ed..
  45. 45.  Thrun S, Burgard W, Fox D 2005. Probabilistic Robotics. Cambridge, MA: MIT Press
  46. 46.  Martinelli A 2013. Visual-inertial structure from motion: observability and resolvability. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4235–42 New York: IEEE
    [Google Scholar]
  47. 47.  Troiani C, Martinelli A, Laugier C, Scaramuzza D 2015. Low computational-complexity algorithms for vision-aided inertial navigation of micro aerial vehicles. Robot. Auton. Syst. 69:80–97
    [Google Scholar]
  48. 48.  Bloesch M, Omari S, Hutter M, Siegwart R 2015. Robust visual inertial odometry using a direct EKF-based approach. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)298–304 New York: IEEE
    [Google Scholar]
  49. 49.  Mohta K, Watterson M, Mulgaonkar Y, Liu S, Qu C et al. 2018. Fast, autonomous flight in GPS-denied and cluttered environments. J. Field Robot. 35:101–20
    [Google Scholar]
  50. 50.  Faessler M, Fontana F, Forster C, Mueggler E, Pizzoli M, Scaramuzza D 2016. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. J. Field Robot. 33:431–50
    [Google Scholar]
  51. 51.  Achtelik M, Achtelik M, Weiss S, Siegwart R 2011. Onboard IMU and monocular vision based control for MAVs in unknown in- and outdoor environments. 2011 IEEE International Conference on Robotics and Automation (ICRA)3056–63 New York: IEEE
    [Google Scholar]
  52. 52.  Shen S, Mulgaonkar Y, Michael N, Kumar V 2016. Initialization-free monocular visual-inertial state estimation with application to autonomous MAVs. Experimental Robotics: The 14th International Symposium on Experimental Robotics MA Hsieh, O Khatib, V Kumar 211–27 Cham, Switz.: Springer
    [Google Scholar]
  53. 53.  Lin Y, Gao F, Qin T, Gao W, Liu T et al. 2018. Autonomous aerial navigation using monocular visual-inertial fusion. J. Field Robot. 35:23–51
    [Google Scholar]
  54. 54.  Shen S, Michael N, Kumar V 2015. Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs. 2015 IEEE International Conference on Robotics and Automation (ICRA)5303–10 New York: IEEE
    [Google Scholar]
  55. 55.  Li M, Mourikis AI 2013. High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 32:690–711
    [Google Scholar]
  56. 56.  Goodarzi FA, Lee T 2016. Extended Kalman filter on SE(3) for geometric control of a quadrotor UAV. 2016 International Conference on Unmanned Aircraft Systems (ICUAS) . pp. 1371–80 New York: IEEE
    [Google Scholar]
  57. 57.  Wan EA, Merwe RVD 2000. The unscented Kalman filter for nonlinear estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium153–58 New York: IEEE
    [Google Scholar]
  58. 58.  Hauberg S, Lauze F, Pedersen KS 2013. Unscented Kalman filtering on Riemannian manifolds. J. Math. Imaging Vis. 46:103–20
    [Google Scholar]
  59. 59.  Brossard M, Bonnabel S, Condomines JP 2017. Unscented Kalman filtering on Lie groups. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2485–91 New York: IEEE
    [Google Scholar]
  60. 60.  Loianno G, Watterson M, Kumar V 2016. Visual inertial odometry for quadrotors on SE(3). 2016 IEEE International Conference on Robotics and Automation (ICRA)1544–51 New York: IEEE
    [Google Scholar]
  61. 61.  Faessler M, Fontana F, Forster C, Scaramuzza D 2015. Automatic re-initialization and failure recovery for aggressive flight with a monocular vision-based quadrotor. 2015 IEEE International Conference on Robotics and Automation (ICRA)1722–29 New York: IEEE
    [Google Scholar]
  62. 62.  Liu T, Shen S 2017. Spline-based initialization of monocular visual-inertial state estimators at high altitude. IEEE Robot. Autom. Lett. 2:2224–31
    [Google Scholar]
  63. 63.  Yang Z, Shen S 2017. Monocular visual-inertial state estimation with online initialization and camera-IMU extrinsic calibration. IEEE Trans. Autom. Sci. Eng. 14:39–51
    [Google Scholar]
  64. 64.  Lupton T, Sukkarieh S 2012. Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Trans. Robot. 28:61–76
    [Google Scholar]
  65. 65.  Forster C, Carlone L, Dellaert F, Scaramuzza D 2017. On-manifold preintegration for real-time visual-inertial odometry. IEEE Trans. Robot. 33:1–21
    [Google Scholar]
  66. 66.  Ling Y, Liu T, Shen S 2016. Aggressive quadrotor flight using dense visual-inertial fusion. 2016 IEEE International Conference on Robotics and Automation (ICRA)1499–506 New York: IEEE
    [Google Scholar]
  67. 67.  Shen S, Mulgaonkar Y, Michael N, Kumar V 2013. Vision-based state estimation for autonomous rotorcraft MAVs in complex environments. 2013 IEEE International Conference on Robotics and Automation (ICRA)1758–64 New York: IEEE
    [Google Scholar]
  68. 68.  Barry AJ, Florence PR, Tedrake R 2017. High-speed autonomous obstacle avoidance with pushbroom stereo. J. Field Robot. 35:52–68
    [Google Scholar]
  69. 69.  Oleynikova H, Honegger D, Pollefeys M 2015. Reactive avoidance using embedded stereo vision for MAV flight. 2015 IEEE International Conference on Robotics and Automation (ICRA)50–56 New York: IEEE
    [Google Scholar]
  70. 70.  Yang Z, Liu T, Shen S 2016. Self-calibrating multi-camera visual-inertial fusion for autonomous MAVs. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4984–91 New York: IEEE
    [Google Scholar]
  71. 71.  Kelly J, Sukhatme GS 2011. Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot. Res. 30:56–79
    [Google Scholar]
  72. 72.  Kaiser J, Martinelli A, Fontana F, Scaramuzza D 2017. Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation. IEEE Robot. Autom. Lett. 2:18–25
    [Google Scholar]
  73. 73.  Hausman K, Preiss J, Sukhatme GS, Weiss S 2017. Observability-aware trajectory optimization for self-calibration with application to UAVs. IEEE Robot. Autom. Lett. 2:1770–77
    [Google Scholar]
  74. 74.  Preiss J, Hausman K, Sukhatme G, Weiss S 2017. Trajectory optimization for self-calibration and navigation. Robotics: Science and Systems XIII N Amato, S Srinivasa, N Ayanian, S Kuindersma, chap. 13 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  75. 75.  Falanga D, Mueggler E, Faessler M, Scaramuzza D 2017. Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision. 2017 IEEE International Conference on Robotics and Automation (ICRA)5774–81 New York: IEEE
    [Google Scholar]
  76. 76.  Liberzon D 2012. Calculus of Variations and Optimal Control Theory: A Concise Introduction Princeton, NJ: Princeton Univ. Press
  77. 77.  Hehn M, Ritz R, D'Andrea R 2012. Performance benchmarking of quadrotor systems using time-optimal control. Auton. Robots 33:69–88
    [Google Scholar]
  78. 78.  Hehn M, D'Andrea R 2015. Real-time trajectory generation for quadrocopters. IEEE Trans. Robot. 31:877–92
    [Google Scholar]
  79. 79.  Mueller MW, Hehn M, D'Andrea R 2015. A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans. Robot. 31:1294–310
    [Google Scholar]
  80. 80.  Mellinger D, Kushleyev A, Kumar V 2012. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. 2012 IEEE International Conference on Robotics and Automation (ICRA)477–83 New York: IEEE
    [Google Scholar]
  81. 81.  Richter C, Bry A, Roy N 2016. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. Robotics Research: The 16th International Symposium ISRR M Inaba, P Corke 649–66 Cham, Switz.: Springer
    [Google Scholar]
  82. 82.  Flores ME 2008. Real-time trajectory generation for constrained nonlinear dynamical systems using non-uniform rational B-spline basis functions. PhD Thesis, Div. Eng. Appl. Sci., Calif. Inst. Technol Pasadena:
  83. 83.  Landry B, Deits R, Florence PR, Tedrake R 2016. Aggressive quadrotor flight through cluttered environments using mixed integer programming. In 2016 IEEE International Conference on Robotics and Automation (ICRA)1469–75 New York: IEEE
    [Google Scholar]
  84. 84.  Liu S, Watterson M, Tang S, Kumar V 2016. High speed navigation for quadrotors with limited onboard sensing. 2016 IEEE International Conference on Robotics and Automation (ICRA)1484–91 New York: IEEE
    [Google Scholar]
  85. 85.  Liu S, Watterson M, Mohta K, Sun K, Bhattacharya S et al. 2017. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments. IEEE Robot. Autom. Lett. 2:1688–95
    [Google Scholar]
  86. 86.  Chen J, Liu T, Shen S 2016. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments. 2016 IEEE International Conference on Robotics and Automation (ICRA)1476–83 New York: IEEE
    [Google Scholar]
  87. 87.  Gao F, Shen S 2016. Online quadrotor trajectory generation and autonomous navigation on point clouds. 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)139–46 New York: IEEE
    [Google Scholar]
  88. 88.  Chen J, Su K, Shen S 2015. Real-time safe trajectory generation for quadrotor flight in cluttered environments. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)1678–85 New York: IEEE
    [Google Scholar]
  89. 89.  Watterson M, Kumar V 2015. Safe receding horizon control for aggressive MAV flight with limited range sensing. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)3235–40 New York: IEEE
    [Google Scholar]
  90. 90.  Schmid K, Lutz P, Tomić T, Mair E, Hirschmüller H 2014. Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robot. 31:537–70
    [Google Scholar]
  91. 91.  Loianno G, Brunner C, McGrath G, Kumar V 2017. Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU. IEEE Robot. Autom. Lett. 2:404–11
    [Google Scholar]
  92. 92.  Mohta K, Kumar V, Daniilidis K 2014. Vision-based control of a quadrotor for perching on lines. 2014 IEEE International Conference on Robotics and Automation (ICRA)3130–36 New York: IEEE
    [Google Scholar]
  93. 93.  Thomas J, Loianno G, Daniilidis K, Kumar V 2016. Visual servoing of quadrotors for perching by hanging from cylindrical objects. IEEE Robot. Autom. Lett. 1:57–64
    [Google Scholar]
  94. 94.  Su K, Shen S 2017. Catching a flying ball with a vision-based quadrotor. Experimental Robotics: The 15th International Symposium on Experimental Robotics D Kulić, Y Nakamura, O Khatib, G Venture 550–62 Cham, Switz.: Springer
    [Google Scholar]
  95. 95.  Thomas J, Loianno G, Polin J, Sreenath K, Kumar V 2014. Toward autonomous avian-inspired grasping for micro aerial vehicles. Bioinspir. Biomimet. 9:025010
    [Google Scholar]
  96. 96.  Sreenath K, Lee T, Kumar V 2013. Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. 52nd IEEE Conference on Decision and Control (CDC)2269–74 New York: IEEE
    [Google Scholar]
  97. 97.  Tang S, Kumar V 2015. Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload. 2015 IEEE International Conference on Robotics and Automation (ICRA)2215–22 New York: IEEE
    [Google Scholar]
  98. 98.  Foehn P, Falanga D, Kuppuswamy N, Tedrake R, Scaramuzza D 2017. Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. Robotics: Science and Systems XIII N Amato, S Srinivasa, N Ayanian, S Kuindersma, chap. 30 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  99. 99.  Berkenkamp F, Schöllig AP, Krause A 2015. Safe controller optimization for quadrotors with Gaussian processes. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)491–96 New York: IEEE
    [Google Scholar]
  100. 100.  Schöllig A, Mueller F, D'Andrea R 2012. Optimization-based iterative learning for precise quadrocopter trajectory tracking. Auton. Robots 33:103–27
    [Google Scholar]
  101. 101.  Mueller FL, Schöllig AP, D'Andrea R 2012. Iterative learning of feed-forward corrections for high-performance tracking. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)3276–81 New York: IEEE
    [Google Scholar]
  102. 102.  Hehn M, D'Andrea R 2013. A frequency domain iterative feed-forward learning scheme for high performance periodic quadrocopter maneuvers. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2445–51 New York: IEEE
    [Google Scholar]
  103. 103.  Hamer M, Waibel M, D'Andrea R 2013. Knowledge transfer for high-performance quadrocopter maneuvers. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1714–19 New York: IEEE
    [Google Scholar]
  104. 104.  Schöllig AP, Alonso-Mora J, D'Andrea R 2012. Limited benefit of joint estimation in multi-agent iterative learning. Asian J. Control 14:613–23
    [Google Scholar]
  105. 105.  Schöllig A, D'Andrea R 2011. Sensitivity of joint estimation in multi-agent iterative learning control. IFAC Proc. Vol. 44:1204–12
    [Google Scholar]
  106. 106.  Li Q, Qian J, Zhu Z, Bao X, Helwa MK, Schoellig AP 2017. Deep neural networks for improved, impromptu trajectory tracking of quadrotors. 2017 IEEE International Conference on Robotics and Automation (ICRA)5183–89 New York: IEEE
    [Google Scholar]
  107. 107.  Hwangbo J, Sa I, Siegwart R, Hutter M 2017. Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2:2096–103
    [Google Scholar]
  108. 108.  Ross S, Melik-Barkhudarov N, Shankar KS, Wendel A, Dey D et al. 2013. Learning monocular reactive UAV control in cluttered natural environments. 2013 IEEE International Conference on Robotics and Automation (ICRA)1765–72 New York: IEEE
    [Google Scholar]
  109. 109.  Sadeghi F, Levine S 2017. CAD2RL: real single-image flight without a single real image. Robotics: Science and Systems XIII N Amato, S Srinivasa, N Ayanian, S Kuindersma, chap. 34 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  110. 110.  Daftry S, Bagnell JA, Hebert M 2017. Learning transferable policies for monocular reactive MAV control. Experimental Robotics: The 15th International Symposium on Experimental Robotics D Kulić, Y Nakamura, O Khatib, G Venture 3–11 Cham, Switz.: Springer
    [Google Scholar]
  111. 111.  Kahn G, Zhang T, Levine S, Abbeel P 2017. PLATO: policy learning using adaptive trajectory optimization. 2017 IEEE International Conference on Robotics and Automation (ICRA)3342–49 New York: IEEE
    [Google Scholar]
  112. 112.  Kushleyev A, Mellinger D, Powers C, Kumar V 2013. Towards a swarm of agile micro quadrotors. Auton. Robots 35:287–300
    [Google Scholar]
  113. 113.  Lupashin S, Hehn M, Mueller MW, Schoellig AP, Sherback M, D'Andrea R 2014. A platform for aerial robotics research and demonstration: the flying machine arena. Mechatronics 24:41–54
    [Google Scholar]
  114. 114.  Preiss JA, Hoenig W, Sukhatme GS, Ayanian N 2017. Crazyswarm: a large nano-quadcopter swarm. 2017 IEEE International Conference on Robotics and Automation (ICRA)3299–304 New York: IEEE
    [Google Scholar]
  115. 115.  Kaplan K 2016. 500 drones light night sky to set record. iQ, Nov. 4. https://iq.intel.com/500-drones-light-show-sets-record
  116. 116.  Alonso-Mora J, Montijano E, Schwager M, Rus D 2016. Distributed multi-robot formation control among obstacles: a geometric and optimization approach with consensus. IEEE International Conference on Robotics and Automation (ICRA)5356–63 New York: IEEE
    [Google Scholar]
  117. 117.  Mohta K, Turpin M, Kushleyev A, Mellinger D, Michael N, Kumar V 2016. Quadcloud: a rapid response force with quadrotor teams. Experimental Robotics: The 14th International Symposium on Experimental Robotics MA Hsieh, O Khatib, V Kumar 577–90 Cham, Switz.: Springer
    [Google Scholar]
  118. 118.  Scaramuzza D, Achtelik MC, Doitsidis L, Friedrich F, Kosmatopoulos E et al. 2014. Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot. Autom. Mag. 21:26–40
    [Google Scholar]
  119. 119.  Turpin M, Michael N, Kumar V 2014. CAPT: concurrent assignment and planning of trajectories for multiple robots. Int. J. Robot. Res. 33:98–112
    [Google Scholar]
  120. 120.  Turpin M, Mohta K, Michael N, Kumar V 2014. Goal assignment and trajectory planning for large teams of interchangeable robots. Auton. Robots 37:401–15
    [Google Scholar]
  121. 121.  Alonso-Mora J, Naegeli T, Siegwart R, Beardsley P 2015. Collision avoidance for aerial vehicles in multi-agent scenarios. Auton. Robots 39:101–21
    [Google Scholar]
  122. 122.  Tang S, Kumar V 2016. Safe and complete trajectory generation for robot teams with higher-order dynamics. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1894–901 New York: IEEE
    [Google Scholar]
  123. 123.  Tang S, Thomas J, Kumar V 2017. Safe navigation of quadrotor teams to labeled goals in limited workspaces. Experimental Robotics: The 15th International Symposium on Experimental Robotics D Kulić, Y Nakamura, O Khatib, G Venture 586–98 Cham, Switz.: Springer
    [Google Scholar]
  124. 124.  Tang S, Sreenath K, Kumar V 2018. Multi-robot trajectory generation for an aerial payload delivery system. Proceedings of the 2017 International Symposium on Robotics Research Forthcoming
    [Google Scholar]
  125. 125.  Zhou D, Wang Z, Schwager M 2017. Fast, on-line collision avoidance for dynamic vehicles using buffered Voronoi cells. IEEE Robot. Autom. Lett. 2:1047–54
    [Google Scholar]
  126. 126.  Oung R, D'Andrea R 2014. The distributed flight array: design, implementation, and analysis of a modular vertical take-off and landing vehicle. Int. J. Robot. Res. 33:375–400
    [Google Scholar]
  127. 127.  Ritz R, D'Andrea R 2013. Carrying a flexible payload with multiple flying vehicles. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)3465–71 New York: IEEE
    [Google Scholar]
  128. 128.  Sreenath K, Kumar V 2013. Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. Robotics: Science and Systems IX P Newman, D Fox, D Hsu, chap. 11 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  129. 129.  Loianno G, Cross G, Qu C, Mulgaonkar Y, Hesch JA, Kumar V 2015. Flying smartphones: automated flight enabled by consumer electronics. IEEE Robot. Autom. Mag. 22:24–32
    [Google Scholar]
  130. 130.  Loianno G, Mulgaonkar Y, Brunner C, Ahuja D, Ramanandan A et al. 2016. A swarm of flying smartphones. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1681–88 New York: IEEE
    [Google Scholar]
  131. 131.  Mulgaonkar Y, Whitzer M, Morgan B, Kroninger CM, Harrington AM, Kumar V 2014. Power and weight considerations in small, agile quadrotors. Proc. SPIE 9083:90831Q
    [Google Scholar]
  132. 132.  Mehta AM, Rus D, Mohta K, Mulgaonkar Y, Piccoli M, Kumar V 2016. A scripted printable quadrotor: rapid design and fabrication of a folded MAV. Robotics Research: The 16th International Symposium ISRR M Inaba, P Corke 203–19 Cham, Switz.: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105149
Loading
/content/journals/10.1146/annurev-control-060117-105149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error