1932

Abstract

Humans now play a major role in altering Earth and its biota. Finding ways to ameliorate human impacts on biodiversity and to sustain and restore the ecosystem services on which we depend is a grand scientific and societal challenge. Conservation paleobiology is an emerging discipline that uses geohistorical data to meet these challenges by developing and testing models of how biota respond to environmental stressors. Here we () describe how the discipline has already provided insights about biotic responses to key environmental stressors, () outline research aimed at disentangling the effects of multiple stressors, () provide examples of deliverables for managers and policy makers, and () identify methodological advances in geohistorical analysis that will foster the next major breakthroughs in conservation outcomes. We highlight cases for which exclusive reliance on observations of living biota may lead researchers to erroneous conclusions about the nature and magnitude of biotic change, vulnerability, and resilience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040610-133349
2015-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-040610-133349.html?itemId=/content/journals/10.1146/annurev-earth-040610-133349&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson NJ, Bugmann H, Dearing JA, Gaillard M. 2006. Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol. Evol. 21:696–704 [Google Scholar]
  2. Aronson RB, Hilbun NL, Bianchi TS, Filley TR, McKee BA. 2014. Land use, water quality, and the history of coral assemblages at Bocas del Toro, Panamá. Mar. Ecol. Prog. Ser. 504:159–70 [Google Scholar]
  3. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH. et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486:52–58 [Google Scholar]
  4. Baumgartner TR, Soutar A, Ferreira-Bartrina V. 1992. Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin. Calif. Coop. Ocean. Fish. Investig. Rep. 33:24–40 [Google Scholar]
  5. Beard KC. 1998. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bull. Carnegie Mus. Nat. Hist. 34:5–39 [Google Scholar]
  6. Bebber DP, Ramotowski MAT, Gurr SJ. 2013. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3:985–88 [Google Scholar]
  7. Bennington JB, Aronson MFJ. 2012. Reconciling scale in paleontological and neontological data: dimensions of time, space, and taxonomy. See Louys 2012 39–67
  8. Bennington JB, Dimichele WA, Badgley C, Bambach RK, Barrett PM. et al. 2009. Critical issues of scale in paleoecology. Palaios 24:1–4 [Google Scholar]
  9. Birks HH. 2002. The recent extinction of Azolla nilotica in the Nile Delta, Egypt. Acta Palaeobot. 42:203–13 [Google Scholar]
  10. Birks HH, Birks HJB. 2006. Multi-proxy studies in palaeolimnology. Veg. Hist. Archaeobot. 15:235–51 [Google Scholar]
  11. Birks HJB. 1996. Contributions of Quaternary palaeoecology to nature conservation. J. Veg. Sci. 7:89–98 [Google Scholar]
  12. Birks HJB. 2012. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8:292–304 [Google Scholar]
  13. Birks HJB, Birks HH. 2008. Biological responses to rapid climate change at the Younger Dryas–Holocene transition at Kråkenes, western Norway. Holocene 18:19–30 [Google Scholar]
  14. Birks HJB, Heiri O, Seppä H, Bjune AE. 2010. Strengths and weaknesses of quantitative climate reconstructions based on late-Quaternary biological proxies. Open Ecol. J. 3:68–110 [Google Scholar]
  15. Birks HJB, Lotter AF, Juggins S, Smol JP. 2012. Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques Dordrecht, Neth: Springer
  16. Birks HJB, Willis KJ. 2008. Alpine trees and refugia in Europe. Plant Ecol. Divers. 1:147–60 [Google Scholar]
  17. Blois JL, Hadly EA. 2009. Mammalian response to Cenozoic climate change. Annu. Rev. Earth Planet. Sci. 37:181–208 [Google Scholar]
  18. Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C. et al. 2008. Is conservation triage just smart decision making?. Trends Ecol. Evol. 23:649–54 [Google Scholar]
  19. Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C. et al. 2009. Finite conservation funds mean triage is unavoidable. Trends Ecol. Evol. 24:183–84 [Google Scholar]
  20. Boyer AG. 2009. Consistent ecological selectivity through time in Pacific Island avian extinctions. Conserv. Biol. 24:511–19 [Google Scholar]
  21. Brenner M, Whitmore TJ, Flannery MS, Binford MW. 1993. Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake Reserv. Manag. 7:209–17 [Google Scholar]
  22. Brook BW, Sodhi NS, Bradshaw CJA. 2008. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23:453–60 [Google Scholar]
  23. Brush GS, Hilgartner WB. 2000. Paleoecology of submerged macrophytes in the upper Chesapeake Bay. Ecol. Monogr. 70:645–67 [Google Scholar]
  24. Bruzgul JE, Long W, Hadly EA. 2005. Temporal response of the tiger salamander (Ambystoma tigrinum) to 3,000 years of climatic variation. BMC Ecol. 5:7 [Google Scholar]
  25. Burney DA. 2011. Rodrigues Island: Hope thrives at the François Leguat Giant Tortoise and Cave Reserve. Madagascar Conserv. Dev. 6:3–4 [Google Scholar]
  26. Burney DA, Burney LP. 2007. Paleoecology and “inter-situ” restoration on Kaua`i, Hawai`i. Front. Ecol. Environ. 5:483–90 [Google Scholar]
  27. Burney DA, James HF, Burney LP, Olson SL, Kikuchi W. et al. 2001. Fossil evidence for a diverse biota from Kaua`i and its transformation since human arrival. Ecol. Monogr. 71:615–41 [Google Scholar]
  28. Burney DA, Vasey N, Godfrey LR, Ramilisonina, Jungers WL. et al. 2008. New findings at Andrahomana Cave, southeastern Madagascar. J. Cave Karst Stud. 70:13–24 [Google Scholar]
  29. Cahill JA, Green RE, Fulton TL, Stiller M, Jay F. et al. 2013. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLOS Genet. 9:e1003345 [Google Scholar]
  30. Caldeira K, Bala G, Cao L. 2013. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41:231–56 [Google Scholar]
  31. Calderon-Aguilera LE, Flessa KW. 2009. Just add water: transboundary Colorado River flow and ecosystem services in the upper Gulf of California. Conservation of Shared Environments: Learning from the United States and Mexico L López-Hoffman, ED McGovern, RG Varady, KW Flessa 154–69 Tucson: Univ. Ariz. Press [Google Scholar]
  32. Carpenter SR, Brock WA. 2006. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9:311–18 [Google Scholar]
  33. Carpenter SR, Turner MG. 2001. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3:495–97 [Google Scholar]
  34. Cavin L, Kemp A. 2011. The impact of fossils on the Evolutionary Distinctiveness and conservation status of the Australian lungfish. Biol. Conserv. 144:3140–42 [Google Scholar]
  35. Chamberlain CP, Waldbauer JR, Fox-Dobbs K, Newsome SD, Koch PL. et al. 2005. Pleistocene to recent dietary shifts in California condors. PNAS 102:16707–11 [Google Scholar]
  36. Charles DF, Smol JP. 1990. The PIRLA II Project: regional assessment of lake acidification trends. Verh. Int. Ver. Theor. Angew. Limnol. 22:559–66 [Google Scholar]
  37. Christensen MR, Graham MD, Vinebrooke RD, Findlay DL, Paterson MJ, Turner MA. 2006. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Glob. Change Biol. 12:2316–22 [Google Scholar]
  38. Coffey EED, Froyd CA, Willis KJ. 2011. When is an invasive not an invasive? Macrofossil evidence of doubtful native plant species in the Galápagos Islands. Ecology 92:805–12 [Google Scholar]
  39. CPW (Conserv. Paleobiol. Worksh.) 2012. Conservation Paleobiology: Opportunities for the Earth Sciences. Report to the Division of Earth Sciences, National Science Foundation Ithaca, NY: Paleontol. Res. Inst.
  40. Crain CM, Kroeker K, Halpern BS. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11:1304–15 [Google Scholar]
  41. Cramer KL, Jackson JBC, Angioletti CV, Leonard-Pingel J, Guilderson TP. 2012. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol. Lett. 15:561–67 [Google Scholar]
  42. Darling ES, Côté IM. 2008. Quantifying the evidence for ecological synergies. Ecol. Lett. 11:1278–86 [Google Scholar]
  43. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58 [Google Scholar]
  44. de Bruyn M, Hall BL, Chauke LF, Baroni C, Koch PL, Hoelzel AR. 2009. Rapid response of a marine mammal species to Holocene climate and habitat change. PLOS Genet. 5:e1000554 [Google Scholar]
  45. de Bruyn M, Hoelzel AR, Carvalho GR, Hofreiter M. 2011. Faunal histories from Holocene ancient DNA. Trends Ecol. Evol. 26:405–13 [Google Scholar]
  46. Dearing JA, Bullock S, Costanza R, Dawson TP, Edwards ME. et al. 2012. Navigating the perfect storm: research strategies for socialecological systems in a rapidly evolving world. Environ. Manag. 49:767–75 [Google Scholar]
  47. Delcourt PA, Delcourt HR. 1998. Paleoecological insights on conservation of biodiversity: a focus on species, ecosystems, and landscapes. Ecol. Appl. 8:921–34 [Google Scholar]
  48. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  49. Dietl GP. 2009. Paleobiology and the conservation of the evolving web of life. See Dietl & Flessa 2009 221–44
  50. Dietl GP. 2013. The great opportunity to view stasis with an ecological lens. Palaeontology 56:1239–45 [Google Scholar]
  51. Dietl GP, Flessa KW. 2009. Conservation Paleobiology: Using the Past to Manage for the Future New Haven, CT: Paleontol. Soc.
  52. Dietl GP, Flessa KW. 2011. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26:30–37 [Google Scholar]
  53. Donlan CJ, Berger J, Bock CE, Bock JH, Burney DA. et al. 2006. Pleistocene rewilding: an optimistic vision for twenty-first century conservation. Am. Nat. 168:660–81 [Google Scholar]
  54. Donlan CJ, Greene HW, Berger J, Bock CE, Bock JH. et al. 2005. Re-wilding North America. Nature 436:913–14 [Google Scholar]
  55. Donner SD, Knutson TR, Oppenheimer M. 2007. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event. PNAS 104:5483–88 [Google Scholar]
  56. Edgar GJ, Samson CR. 2004. Catastrophic decline in mollusk diversity in eastern Tasmania and its concurrence with shellfish fisheries. Conserv. Biol. 18:1579–88 [Google Scholar]
  57. Emslie SD, Fraser W, Smith RC, Walker W. 1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct. Sci. 10:257–68 [Google Scholar]
  58. Erthal F, Kotzian CB, Simões MG. 2011. Fidelity of molluscan assemblages from the Touro Passo Formation (Pleistocene–Holocene), southern Brazil: taphonomy as a tool for discovering natural baselines for freshwater communities. Palaios 26:433–46 [Google Scholar]
  59. Ewers RM, Didham RK. 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81:117–42 [Google Scholar]
  60. Finney BP, Gregory-Eaves I, Douglas MSV, Smol JP. 2002. Fisheries productivity in the northeastern Pacific Ocean over the past 2,200 years. Nature 416:729–33 [Google Scholar]
  61. Finney BP, Gregory-Eaves I, Sweetman J, Douglas MSV, Smol JP. 2000. Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290:795–99 [Google Scholar]
  62. Flessa KW. 2002. Conservation paleobiology. Am. Paleontol. 10:2–5 [Google Scholar]
  63. Flessa KW, Glenn EP, Hinojosa-Huerta O, de la Parra-Rentería C, Ramírez-Hernández J. et al. 2013. Flooding the Colorado River Delta: a landscape-scale experiment. Eos Trans. AGU 94:485–86 [Google Scholar]
  64. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T. et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35:557–81 [Google Scholar]
  65. Froyd CA, Willis KJ. 2008. Emerging issues in biodiversity and conservation management: the need for a palaeoecological perspective. Quat. Sci. Rev. 27:1723–32 [Google Scholar]
  66. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z. et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92 [Google Scholar]
  67. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 2011. Declining body size: a third universal response to warming?. Trends Ecol. Evol. 26:285–91 [Google Scholar]
  68. Gill JL, Williams JW, Jackson ST, Donnelly JP, Schellinger GC. 2012. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34:66–80 [Google Scholar]
  69. Gillson L, Ekblom A, Willis KJ, Froyd C. 2008. Holocene palaeo-invasions: the link between pattern, process and scale in invasion ecology?. Landsc. Ecol. 23:757–69 [Google Scholar]
  70. Gillson L, Marchant R. 2014. From myopia to clarity: sharpening the focus of ecosystem management through the lens of palaeoecology. Trends Ecol. Evol. 29:317–25 [Google Scholar]
  71. Gorham E, Brush GS, Graumlich LJ, Rosenzweig ML, Johnson AH. 2001. The value of palaeoecology as an aid to monitoring ecosystems and landscapes, chiefly with references to North America. Environ. Rev. 9:99–126 [Google Scholar]
  72. Grayson DK. 2001. The archaeological record of human impacts on animal populations. J. World Prehist. 15:1–68 [Google Scholar]
  73. Greenstein BJ. 2007. Taphonomy: detecting critical events in fossil reef-coral assemblages. Geological Approaches to Coral Reef Ecology R Aronson 31–60 New York: Springer [Google Scholar]
  74. Greenstein BJ, Pandolfi JM. 2008. Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14:513–28 [Google Scholar]
  75. Hadly EA, Barnosky AD. 2009. Vertebrate fossils and the future of conservation biology. See Dietl & Flessa 2009 39–59
  76. Halloran PR, Hall IR, Colmenero-Hidalgo E, Rickaby REM. 2008. Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response. Biogeosciences 5:1651–55 [Google Scholar]
  77. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F. et al. 2008. A global map of human impact on marine ecosystems. Science 319:948–52 [Google Scholar]
  78. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G. et al. 2007. Protected area needs in a changing climate. Front. Ecol. Environ. 5:131–38 [Google Scholar]
  79. Hannisdal B, Henderiks J, Liow LH. 2012. Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Glob. Change Biol. 18:3504–16 [Google Scholar]
  80. Hansen DM. 2010. On the use of taxon substitutes in rewilding projects on islands. Islands Evol. 19:111–46 [Google Scholar]
  81. Hansen DM, Donlan CJ, Griffiths CJ, Campbell K. 2010. Ecological history and latent conservation potential: large and giant tortoises as a model for taxon substitutions. Ecography 33:272–84 [Google Scholar]
  82. Hardin G. 1968. The tragedy of the commons. Science 162:1243–48 [Google Scholar]
  83. Hardin G. 1985. Human ecology: the subversive, conservative science. Am. Zool. 25:469–76 [Google Scholar]
  84. Harvell CD, Kim KK, Burkholder JM, Colwell RR, Epstein PR. et al. 1999. Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–10 [Google Scholar]
  85. Heupink TH, van den Hoff J, Lambert DM. 2012. King penguin population on Macquarie Island recovers ancient DNA diversity after heavy exploitation in historic times. Biol. Lett. 8:586–89 [Google Scholar]
  86. Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ. et al. 2011. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334:1545–48 [Google Scholar]
  87. Hooke RL, Martín-Duque JF, Pedraza J. 2012. Land transformations by humans: a review. GSA Today 22:4–10 [Google Scholar]
  88. Hughes TP, Carpenter S, Rockström J, Scheffer M, Walker B. 2013. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28:389–95 [Google Scholar]
  89. Ireland AW, Booth RK. 2012. Upland deforestation triggered an ecosystem state-shift in a kettle peatland. J. Ecol. 100:586–96 [Google Scholar]
  90. Irie T, Bessho K, Findlay HS, Calosi P. 2010. Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores. PLOS ONE 5:e13436 [Google Scholar]
  91. Jablonski D, Belanger CL, Berke SK, Huang S, Krug AZ. et al. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. PNAS 110:10487–94 [Google Scholar]
  92. Jablonski D, Sepkoski JJ Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:1367–78 [Google Scholar]
  93. Jachowski DS, Kesler DC. 2009. Allowing extinction: Should we let species go?. Trends Ecol. Evol. 24:180 [Google Scholar]
  94. Jackson JBC. 2001. What was natural in the coastal oceans?. PNAS 98:5411–18 [Google Scholar]
  95. Jackson JBC, Alexander KE, Sala E. 2011. Shifting Baselines: The Past and the Future of Ocean Fisheries Washington, DC: Island
  96. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW. et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37 [Google Scholar]
  97. Jackson ST. 1997. Documenting natural and human-caused plant invasions using paleoecological methods. Assessment and Management of Plant Invasions JO Luken, JW Thieret 37–55 Berlin: Springer-Verlag [Google Scholar]
  98. Jackson ST. 2012a. Conservation and resource management in a changing world: extending historical range-of-variability beyond the baseline. Historical Environmental Variation in Conservation and Natural Resource Management JA Wiens, GD Hayward, HD Safford, C Giffen 92–109 West Sussex, UK: Wiley [Google Scholar]
  99. Jackson ST. 2012b. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat. Sci. Rev. 49:1–15 [Google Scholar]
  100. Jackson ST, Hobbs RJ. 2009. Ecological restoration in the light of ecological history. Science 325:567–69 [Google Scholar]
  101. Jackson ST, Overpeck JT. 2000. Responses of plant populations and communities to environmental changes of the Late Quaternary. Paleobiology 26:Suppl.194–220 [Google Scholar]
  102. Jackson ST, Williams JW. 2004. Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow?. Annu. Rev. Earth Planet. Sci. 32:495–537 [Google Scholar]
  103. Jeffers ES, Bonsall MB, Willis KJ. 2011. Stability in ecosystem functioning across a climatic threshold and contrasting forest regimes. PLOS ONE 6:e16134 [Google Scholar]
  104. Keane RE, Hessburg PF, Landres PB, Swanson FJ. 2009. The use of historical range and variability (HRV) in landscape management. For. Ecol. Manag. 258:1025–37 [Google Scholar]
  105. Kerfoot WC, Weider LJ. 2004. Experimental paleoecology (resurrection ecology): chasing Van Valen's Red Queen hypothesis. Limnol. Oceanogr. 49:1300–16 [Google Scholar]
  106. Kidwell SM. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. PNAS 104:17701–6 [Google Scholar]
  107. Kidwell SM. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487–522 [Google Scholar]
  108. Kidwell SM, Tomasovych A. 2013. Implications of time-averaged death assemblages for ecology and conservation biology. Annu. Rev. Ecol. Evol. Syst. 44:539–63 [Google Scholar]
  109. Kuhn TS, McFarlane KA, Groves P, Mooers AO, Shapiro B. 2010. Modern and ancient DNA reveal recent partial replacement of caribou in the southwest Yukon. Mol. Ecol. 19:1312–23 [Google Scholar]
  110. Labandeira CC, Currano ED. 2013. The fossil record of plant-insect dynamics. Annu. Rev. Earth Planet. Sci. 41:287–311 [Google Scholar]
  111. Landres PB, Morgan P, Swanson FJ. 1999. Overview of the use of natural variability concepts in managing ecological systems. Ecol. Appl. 9:1279–88 [Google Scholar]
  112. Langford WT, Gordon A, Bastin L, Bekessy SA, White MD, Newell G. 2011. Raising the bar for systematic conservation planning. Trends Ecol. Evol. 26:634–40 [Google Scholar]
  113. Lawing AM, Polly PD. 2011. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change. PLOS ONE 6:e28554 [Google Scholar]
  114. Leonard JA. 2008. Ancient DNA applications for wildlife conservation. Mol. Ecol. 17:4186–96 [Google Scholar]
  115. Levin PS, Ellis J, Petrik R, Hay ME. 2002. Indirect effects of feral horses on estuarine communities. Conserv. Biol. 16:1364–71 [Google Scholar]
  116. Lötze HK, Lenihan HS, Bourque BJ, Bradbury R, Cooke RG. et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas worldwide. Science 312:1806–9 [Google Scholar]
  117. Louys J. 2012. Paleontology in Ecology and Conservation Berlin: Springer-Verlag
  118. Lyman RL. 2012a. Biodiversity, paleozoology, and conservation biology. See Louys 2012 147–69
  119. Lyman RL. 2012b. A warrant for applied palaeozoology. Biol. Rev. 87:513–25 [Google Scholar]
  120. MacDonald GM, Bennett KD, Jackson ST, Parducci L, Smith FA. et al. 2008. Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers. Prog. Phys. Geogr. 32:139–72 [Google Scholar]
  121. Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243–53 [Google Scholar]
  122. MEA (Millenn. Ecosyst. Assess.) 2005. Ecosystems and Human Well-Being: Synthesis Washington, DC: Island
  123. Miller JH. 2011. Ghosts of Yellowstone: multi-decadal histories of wildlife populations captured by bones on a modern landscape. PLOS ONE 6:e18057 [Google Scholar]
  124. Miller JH, Druckenmiller P, Bahn V. 2013. Antlers on the Arctic refuge: capturing multi-generational patterns of calving ground use from bones on the landscape. Proc. R. Soc. B 280:20130275 [Google Scholar]
  125. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW. et al. 2008. Stationarity is dead: whither water management?. Science 319:573–74 [Google Scholar]
  126. Newsome SD, Etnier MA, Kurle CM, Waldebauer JR, Chamberlain CP, Koch PL. 2007. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332:211–24 [Google Scholar]
  127. NRC (Natl. Res. Counc.) 2005. The Geological Record of Ecological Dynamics: Understanding the Biotic Effects of Future Environmental Change Washington, DC: Natl. Acad. Press
  128. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA. et al. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–58 [Google Scholar]
  129. Parr MJ, Bennun L, Boucher T, Brooks T, Chutas CA. et al. 2009. Why we should aim for zero extinction. Trends Ecol. Evol. 24:181 [Google Scholar]
  130. Pauly D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10:430 [Google Scholar]
  131. Pavoine S, Oilier S, Dufour AB. 2005. Is the originality of a species measurable?. Ecol. Lett. 8:579–86 [Google Scholar]
  132. Pinsky ML, Newsome SD, Dickerson BR, Fang Y, Van Tuinen M. et al. 2010. Dispersal provided resilience to range collapse in a marine mammal: insights from the past to inform conservation biology. Mol. Ecol. 19:2418–29 [Google Scholar]
  133. Polly PD, Eronen JT, Fred M, Dietl GP, Mosbrugger V. et al. 2011. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. B 278:1131–40 [Google Scholar]
  134. Ramakrishnan U, Hadly EA. 2009. Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Mol. Ecol. 18:1310–30 [Google Scholar]
  135. Ramakrishnan U, Hadly EA, Mountain JL. 2005. Detecting past population bottlenecks using temporal genetic data. Mol. Ecol. 14:2915–22 [Google Scholar]
  136. Rick TC, Lockwood R. 2013. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27:45–54 [Google Scholar]
  137. Roy K, Jablonski D, Valentine JW. 2002. Body size and invasion success in marine bivalves. Ecol. Lett. 5:163–67 [Google Scholar]
  138. Saros JE. 2009. Integrating neo- and paleolimnological approaches to refine interpretations of environmental change. J. Paleolimnol. 41:243–52 [Google Scholar]
  139. Sayer CD, Bennion H, Davidson TA, Burgess A, Clarke G. et al. 2012. The application of palaeolimnology to evidence-based lake management and conservation: examples from UK lakes. Aquatic Conserv. Mar. Freshw. Ecosyst. 22:165–80 [Google Scholar]
  140. Sayer CD, Davidson TA, Jones JI, Langdon PG. 2010. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw. Biol. 55:487–99 [Google Scholar]
  141. Scheffer M. 2009. Critical Transitions in Nature and Society Princeton, NJ: Princeton Univ. Press
  142. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR. et al. 2009. Early-warning signals for critical transitions. Nature 461:53–59 [Google Scholar]
  143. Secord R, Bloch JI, Chester SGB, Boyer DM, Wood AR. et al. 2012. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum. Science 335:959–62 [Google Scholar]
  144. Seddon AWR, Froyd CA, Leng MJ, Milne GA, Willis KJ. 2011. Ecosystem resilience and threshold response in the Galápagos coastal zone. PLOS ONE 6:e22376 [Google Scholar]
  145. Seddon AWR, Mackay AW, Baker AG, Birks HJB, Breman E. et al. 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. J. Ecol. 102:256–67 [Google Scholar]
  146. Smol JP. 2008. The Pollution of Lakes and Rivers: A Palaeoenvironmental Perspective Oxford, UK: Blackwell
  147. Smol JP. 2010. The power of the past: using sediments to track the effects of multiple stressors on lake ecosystems. Freshw. Biol. 55:Suppl. 143–59 [Google Scholar]
  148. Smol JP, Wolfe AP, Birks HJB, Douglas MS, Jones VJ. et al. 2005. Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102:4397–402 [Google Scholar]
  149. Steadman DW. 1995. Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267:1123–31 [Google Scholar]
  150. Swetnam TW, Allen CG, Betancourt JL. 1999. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9:1189–206 [Google Scholar]
  151. Terry RC. 2010. The dead don't lie: using skeletal remains for rapid assessment of historical small-mammal community baselines. Proc. R. Soc. B 277:1193–201 [Google Scholar]
  152. Tomasovych A, Kidwell SM. 2009a. Fidelity of variation in species composition and diversity partitioning by death assemblages: Time-averaging transfers diversity from beta to alpha levels. Paleobiology 35:97–121 [Google Scholar]
  153. Tomasovych A, Kidwell SM. 2009b. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:122–48 [Google Scholar]
  154. Tomasovych A, Kidwell SM. 2010a. Effects of temporal scaling on species composition, diversity, and rank-abundance distributions in benthic assemblages. Paleobiology 36:672–95 [Google Scholar]
  155. Tomasovych A, Kidwell SM. 2010b. The effects of temporal resolution on species turnover and on testing metacommunity models. Am. Nat. 175:587–606 [Google Scholar]
  156. Turner MG, Vale VH. 1998. Comparing large, infrequent disturbances: What have we learned?. Ecosystems 1:493–96 [Google Scholar]
  157. Urquhart GR. 2009. Paleoecological record of hurricane disturbance and forest regeneration in Nicaragua. Quat. Int. 195:88–97 [Google Scholar]
  158. Valentine JW, Jablonski D, Krug AZ, Roy K. 2008. Incumbency, diversity, and latitudinal gradients. Paleobiology 34:169–78 [Google Scholar]
  159. van Leeuwen JFN, Froyd CA, van der Knaap WO, Coffey EE, Tye A, Willis KJ. 2008. Fossil pollen as a guide to conservation in Galápagos. Science 322:1206 [Google Scholar]
  160. van Nes EH, Scheffer M. 2007. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169:738–47 [Google Scholar]
  161. Vegas-Vilarrúbia T, Rull V, Montoya E, Safont E. 2011. Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics. Quat. Sci. Rev. 30:2361–88 [Google Scholar]
  162. Vermeij GJ. 2005. Invasion as expectation: a historical fact of life. Species Invasion: Insights into Ecology, Evolution and Biogeography DF Sax, JS Stachowicz, SD Gaines 315–39 Sunderland, MA: Sinauer [Google Scholar]
  163. Vermeij GJ, Roopnarine PD. 2008. The coming Arctic invasion. Science 321:780–81 [Google Scholar]
  164. Vilà C, Sundqvist A, Flagstad Ø, Seddon J, Björnerfeldt S. et al. 2003. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc. R. Soc. B 270:91–97 [Google Scholar]
  165. Virah-Sawmy M, Willis KJ, Gillson L. 2009. Threshold response of Madagascar's littoral forest to sea-level rise. Glob. Ecol. Biogeogr. 18:98–110 [Google Scholar]
  166. Volety AK, Savarese M, Hoye B, Loh AN. 2009. Landscape pattern: present and past distribution of oysters in South Florida Coastal Complex (Whitewater Bay/Oyster Bay/Shark to Robert's Rivers). Rep., Fla. Gulf Coast Univ. [Google Scholar]
  167. Wang R, Dearing JA, Langdon PG, Zhang E, Yang X. et al. 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492:419–22 [Google Scholar]
  168. Western D, Behrensmeyer AK. 2009. Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science 324:1061–64 [Google Scholar]
  169. Wilcox BA. 1978. Supersaturated island faunas: a species-age relationship for lizards on post-Pleistocene land-bridge islands. Science 199:996–98 [Google Scholar]
  170. Willard DA, Cronin TM. 2007. Paleoecology and ecosystem restoration: case studies from Chesapeake Bay and the Florida Everglades. Front. Ecol. Environ. 5:491–98 [Google Scholar]
  171. Williams JW, Kharouba HM, Veloz S, Vellend M, McLachlan J. et al. 2013. The ice age ecologist: testing methods for reserve prioritization during the last global warming. Glob. Ecol. Biogeogr. 22:289–301 [Google Scholar]
  172. Willis KJ, Bailey RM, Bhagwat SA, Birks HJB. 2010a. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25:583–91 [Google Scholar]
  173. Willis KJ, Bennett KD, Bhagwat SA, Birks JB. 2010b. 4°C and beyond: What did this mean for biodiversity in the past?. Syst. Biodivers. 8:3–9 [Google Scholar]
  174. Willis KJ, Bhagwat S. 2010. Questions of importance to the conservation of biological biodiversity. Clim. Past 6:759–69 [Google Scholar]
  175. Willis KJ, Birks HJB. 2006. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–65 [Google Scholar]
  176. Willis KJ, MacDonald GM. 2011. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu. Rev. Ecol. Evol. Syst. 42:267–87 [Google Scholar]
  177. Wolfe AP, Baron JS, Cornett J. 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J. Paleolimnol. 25:1–7 [Google Scholar]
  178. Yanes Y. 2012. Anthropogenic effect recorded in the live-dead fidelity of land snail assemblages from San Salvador Island (Bahamas). Biodivers. Conserv. 21:3445–66 [Google Scholar]
  179. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–83 [Google Scholar]
  180. Zamora-Arroyo F, Flessa KW. 2009. Nature's fair share: finding and allocating water for the Colorado River Delta. Conservation of Shared Environments: Learning from the United States and Mexico L López-Hoffman, ED McGovern, RG Varady, KW Flessa 23–38 Tucson: Univ. Ariz. Press [Google Scholar]
  181. Zamora-Arroyo F, Pitt J, Cornelius S, Glenn E, Hinojosa-Huerta O. et al. 2005. Conservation Priorities in the Colorado River Delta, Mexico and the United States Tucson, AZ: Sonoran Inst http://www.sonoraninstitute.org/component/docman/doc_view/1307-conservation-priorities-in-the-colorado-river-delta-06152005.html
/content/journals/10.1146/annurev-earth-040610-133349
Loading
/content/journals/10.1146/annurev-earth-040610-133349
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error