1932

Abstract

The relative weights of physical forcing and biotic interaction as drivers of evolutionary change have been debated in evolutionary theory. The recent finding that species, genera, clades, and chronofaunas all appear to exhibit a symmetrical pattern of waxing and waning lends support to the view that biotic interactions shape the history of life. Yet, there is similarly abundant evidence that these primary units of biological evolution arise and wane in coincidence with major climatic change. We review these patterns and the process-level explanations offered for them. We also propose a tentative synthesis, characterized by interdependence between physical forcing and biotic interactions. We suggest that species with evolutionary novelties arise predominantly in “species factories” that develop under harsh environmental conditions, under dominant physical forcing, whereas exceptionally mild environments give rise to “oases in the desert,” characterized by strong competition and survival of relics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-050212-124030
2014-05-30
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-050212-124030.html?itemId=/content/journals/10.1146/annurev-earth-050212-124030&mimeType=html&fmt=ahah

Literature Cited

  1. Agustí J, Anton M. 2002. Mammoths, Sabertooths, and Hominids: 65 Million Years of Mammalian Evolution in Europe New York: Columbia Univ. Press
  2. Agustí J, Cabrera L, Garcés M, Krijgsman W, Oms O, Parés JM. 2001. A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Sci. Rev. 52:247–60 [Google Scholar]
  3. Agustí J, Cabrera L, Garcés M, Llenas M. 1999a. Mammal turnover and global climate change in the late Miocene terrestrial record of the Vallès-Penedès basin (NE Spain). See Agustí et al. 1999b 397–412
  4. Agustí J, Cabrera L, Garcés M, Parés JM. 1997. The Vallesian mammal succession in the Vallès-Penedès basin (northeast Spain): paleomagnetic calibration and correlation with global events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 133:149–80 [Google Scholar]
  5. Agustí J, Moyà-Solà S. 1990. Mammal extinctions in the Vallesian (Upper Miocene). Extinction Events in Earth History EG Kauffman, OH Walliser 425–32 Berlin: Springer-Verlag [Google Scholar]
  6. Agustí J, Rook L, Andrews P. 1999b. Hominoid Evolution and Climatic Change in Europe 1 The Evolution of Neogene Terrestrial Ecosystems in Europe Cambridge, UK: Cambridge Univ. Press
  7. Agustí J, Sanz de Siria A, Garcés M. 2003. Explaining the end of the hominoid experiment in Europe. J. Hum. Evol. 45:145–53 [Google Scholar]
  8. Alroy J, Bernor RL, Fortelius M, Werdelin L. 1998. The MN system: regional or continental?. Mitt. Bayer. Staatssaml. Paläont. Hist. Geol. 38:243–58The first continental-scale attempt to apply computational biochronology to Eurasian mammals. [Google Scholar]
  9. An ZS, Kutzbach JE, Prell WL, Porter SC. 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature 411:62–66 [Google Scholar]
  10. Badgley C, Barry JC, Morgan ME, Nelson SV, Behrensmeyer AK. et al. 2008. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proc. Natl. Acad. Sci. USA 105:12145–49 [Google Scholar]
  11. Barnosky AD. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21:172–85 [Google Scholar]
  12. Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Behrensmeyer AK. et al. 2002. Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28:1–71 [Google Scholar]
  13. Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Jacobs LL. et al. 1995. Patterns of faunal turnover and diversity in the Neogene Siwaliks of Northern Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115:209–26 [Google Scholar]
  14. Benton MJ. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–32 [Google Scholar]
  15. Bernor RL. 1983. Geochronology and zoogeographic relationships of Miocene Hominoidea. New Interpretations of Ape and Human Ancestry RL Ciochon, RS Corruccini 21–64 New York: Plenum PressOne of the first attempts to resolve the spatial differences in the development of Eurasian fossil mammal communities. [Google Scholar]
  16. Bernor RL, Fahlbusch V, Andrews P, de Bruijn H, Fortelius M. et al. 1996. The evolution of western Eurasian Neogene mammal faunas: a chronologic, systematic, biogeographic, and paleoenvironmental synthesis. The Evolution of Western Eurasian Neogene Mammal Faunas RL Bernor, V Fahlbusch, W Mittmann 449–70 New York: Columbia Univ. Press [Google Scholar]
  17. Bowman J, Jaeger JAG, Fahrig L. 2002. Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–55 [Google Scholar]
  18. Bradshaw CD, Lunt DJ, Flecker R, Salzmann U, Pound MJ. et al. 2012. The relative roles of CO2 and palaeogeography in determining Late Miocene climate: results from a terrestrial model-data comparison. Clim. Past 8:1257–85 [Google Scholar]
  19. Brett CE, Baird GC. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian marine biotas of the Appalachian Basin. New Approaches to Speciation in the Fossil Record DH Erwin, R Anstey 285–315 New York: Columbia Univ. Press [Google Scholar]
  20. Brewer S, Jackson ST, Williams JW. 2012. Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol. Evol. 27:104–12 [Google Scholar]
  21. Broccoli AJ, Manabe S. 1992. The effects of orography on midlatitude Northern Hemisphere dry climates. J. Clim. 5:1181–201 [Google Scholar]
  22. Bruch AA, Uhl D, Mosbrugger V. 2007. Miocene climate in Europe—patterns and evolution: a first synthesis of NECLIME. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253:1–7 [Google Scholar]
  23. Bruch AA, Utescher T, Mosbrugger V. 2011. Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304:202–11 [Google Scholar]
  24. Cantalapiedra JL, Fernández MH, Alcalde G, Azanza B, DeMiguel D, Morales J. 2012. Ecological correlates of ghost lineages in ruminants. Paleobiology 38:101–11 [Google Scholar]
  25. Carotenuto F, Barbera C, Raia P. 2010. Occupancy, range size, and phylogeny in Eurasian Pliocene to Recent large mammals. Paleobiology 36:399–414 [Google Scholar]
  26. Casanovas-Vilar I, García-Paredes I, Alba DM, van den Hoek Ostende LW, Moyà-Solà S. 2010. The European far west: Miocene mammal isolation, diversity and turnover in the Iberian Peninsula. J. Biogeogr. 37:1079–93 [Google Scholar]
  27. Cerling TE, Harris JM, Leakey MG, Passey BH, Levin NE. 2010. Stable carbon and oxygen isotopes in East African mammals: modern and fossil. Cenozoic Mammals of Africa L Werdelin, W Sanders 941–52 Berkeley: Univ. Calif. Press [Google Scholar]
  28. Cerling TE, Mbua E, Kirera FM, Manthi FK, Grine FE. et al. 2011. Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proc. Natl. Acad. Sci. USA 108:9337–41 [Google Scholar]
  29. Churkina G, Running SW. 1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–15 [Google Scholar]
  30. Cope ED. 1887. The Origin of the Fittest: Essays on Evolution New York: D. Appleton
  31. Cope ED. 1896. The Primary Factors of Organic Evolution Chicago: Open Court
  32. Daams R, van der Meulen AJ, Alvarez-Sierra MA, Peláez-Campomanes P, Calvo JP. et al. 1999a. Stratigraphy and sedimentology of the Aragonian (early to middle Miocene) in its type area (North-Central Spain). Newsl. Stratigr. 37:103–39 [Google Scholar]
  33. Daams R, van der Meulen AJ, Peláez-Campomanes P, Alvarez-Sierra MA. 1999b. Trends in rodent assemblages from the Aragonian (early-middle Miocene) of the Calatayud-Daroca basin, Aragon, Spain. See Agustí et al. 1999b 127–39
  34. Damuth JD. 1982. Analysis of the preservation of community structure in assemblages of fossil mammals. Paleobiology 8:434–46 [Google Scholar]
  35. Damuth JD, Jablonski D, Harris JA, Potts A, Stucky RK. et al. 1992. Taxon-free characterization of animal communities. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals AK Behrensmeyer, JD Damuth, WA DiMichele, R Potts 183–203 Chicago: Univ. Chicago PressA key reference for the taxon-free approach to fossil assemblages. [Google Scholar]
  36. Damuth JD, Janis CM. 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol. Rev. Camb. Philos. Soc. 86:733–58 [Google Scholar]
  37. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: John Murray
  38. de Bruijn H, Daams R, Daxner-Höck G, Fahlbusch V, Ginsburg L. et al. 1992. Report of the RCMNS working group on fossil mammals, Reisensburg 1990. Newsl. Stratigr. 26:65–118 [Google Scholar]
  39. Deng T, Wang X, Fortelius M, Li Q, Wang Y. et al. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science 333:1285–88 [Google Scholar]
  40. Dutton JF, Barron EJ. 1997. Miocene to present vegetation changes: a possible piece of the Cenozoic cooling puzzle. Geology 25:39–41 [Google Scholar]
  41. Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Models in Paleobiology TJM Schopf 82–115 San Francisco: W.H. Freeman [Google Scholar]
  42. Eronen JT, Evans AR, Fortelius M, Jernvall J. 2010a. The impact of regional climate on the evolution of mammals. A case study using fossil horses. Evolution 64:398–408 [Google Scholar]
  43. Eronen JT, Fortelius M, Portmann FT, Puolamäki K, Janis C. 2012. Neogene aridification of the Northern Hemisphere. Geology 40:823–26 [Google Scholar]
  44. Eronen JT, Mirzaie Ataabadi M, Micheels A, Karme A, Bernor RL, Fortelius M. 2009. Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proc. Natl. Acad. Sci. USA 106:11867–71 [Google Scholar]
  45. Eronen JT, Polly PD, Fred M, Damuth J, Frank DC. et al. 2010b. Ecometrics: the traits that bind the past and present together. Integr. Zool. 5:88–101 [Google Scholar]
  46. Eronen JT, Puolamäki K, Liu L, Lintulaakso K, Damuth J. et al. 2010c. Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol. Ecol. Res. 12:217–33 [Google Scholar]
  47. Eronen JT, Puolamäki K, Liu L, Lintulaakso K, Damuth J. et al. 2010d. Precipitation and large herbivorous mammals II: application to fossil data. Evol. Ecol. Res. 12:235–48 [Google Scholar]
  48. Eronen JT, Rook L. 2004. The Mio-Pliocene European primate fossil record: dynamics and habitat tracking. J. Hum. Evol. 47:323–41 [Google Scholar]
  49. Estes S, Arnold SJ. 2007. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169:227–44 [Google Scholar]
  50. Evans AR, Jones D, Boyer AG, Brown JH, Costa DP. et al. 2012. Maximum rates of body size macroevolution in mammals. Proc. Natl. Acad. Sci. USA 109:4187–90 [Google Scholar]
  51. Fauquette S, Suc J-P, Bertini A, Popescu S-M, Warny S. et al. 2006. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:281–301 [Google Scholar]
  52. Feranec RS. 2007. Ecological generalization during adaptive radiation: evidence from Neogene mammals. Evol. Ecol. Res. 9:555–77 [Google Scholar]
  53. Feranec RS, MacFadden BJ. 2006. Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32:191–205 [Google Scholar]
  54. Fluteau F, Ramstein G, Besse J. 1999. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res. 104:D1011995–2018 [Google Scholar]
  55. Foote M. 2007. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517–29 [Google Scholar]
  56. Foote M, Crampton JS, Beu AG, Marshall BA, Cooper RA. et al. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:1131–34 [Google Scholar]
  57. Fortelius M. 2003. Evolution of dental capability in Western Eurasian large mammal plant eaters 22–2 million years ago: a case for environmental forcing mediated by biotic processes. The New Panorama of Animal Evolution: Proceedings, XVIII International Congress of Zoology A Legakis, S Sfenthourakis, R Polymeni, M Thessalou-Legaki 61–68 Sofia, Bulg./Moscow: Pensoft [Google Scholar]
  58. Fortelius M. 2013. The grassiness of all flesh. J. Biogeogr. 40:1213–14 [Google Scholar]
  59. Fortelius M, Eronen J, Jernvall J, Liu LP, Pushkina D. et al. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol. Ecol. Res. 4:1005–16The first publication showing that mean ordinated herbivore hypsodonty can be used as a proxy for rainfall. [Google Scholar]
  60. Fortelius M, Eronen JT, Liu L, Pushkina D, Tesakov A. et al. 2006a. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:219–27 [Google Scholar]
  61. Fortelius M, Gionis A, Jernvall J, Mannila H. 2006b. Spectral ordering and biochronology of European fossil mammals. Paleobiology 32:206–14 [Google Scholar]
  62. Fortelius M, Hokkanen A. 2001. The trophic context of hominoid occurrence in the later Miocene of western Eurasia—a primate-free view. Hominoid Evolution and Climatic Change in Europe 2 Phylogeny of the Neogene Hominoid Primates of Eurasia L de Bonis, G Koufos, P Andrews 19–47 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  63. Fortelius M, Solounias N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am. Mus. Novit. 3301:1–36The original source of the mesowear method of paleodiet reconstruction. [Google Scholar]
  64. Fortelius M, Werdelin L, Andrews P, Bernor RL, Gentry A. et al. 1996. Provinciality, diversity, turnover and paleoecology in land mammal faunas of the later Miocene of western Eurasia. The Evolution of Western Eurasian Neogene Mammal Faunas RL Bernor, V Fahlbusch, W Mittmann 414–48 New York: Columbia Univ . Press [Google Scholar]
  65. Fortelius M, Zhang Z. 2006. An oasis in the desert? History of endemism and climate in the Late Neogene of North China. Palaeontographica A 277:131–41 [Google Scholar]
  66. Franzen JL, Storch G. 1999. Late Miocene mammals from Central Europe. See Agustí et al. 1999b 165–90
  67. Fritz S, Schnitzler J, Eronen JT, Hof C, Böhning-Gaese K, Graham C. 2013. Unearthing diversity: wanted dead and alive. Trends Ecol. Evol. 28:509–16 [Google Scholar]
  68. Futuyma DJ. 1987. On the role of species in anagenesis. Am. Nat. 130:465–73 [Google Scholar]
  69. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2012. The Geologic Time Scale 2012 Boston: Elsevier
  70. Hamon N, Sepulchre P, Donnadieu Y, Henrot A-J, Francois L. et al. 2012. Growth of subtropical forests in Miocene Europe: the roles of carbon dioxide and Antarctic ice volume. Geology 40:567–70 [Google Scholar]
  71. Haywood AM, Dowsett HJ, Valdes PJ, Lunt DJ, Francis JE, Sellwood BW. 2009. Introduction. Pliocene climate, processes and problems. Philos. Trans. R. Soc. A 367:3–17 [Google Scholar]
  72. Haywood AM, Hill DJ, Dolan AM, Otto-Bliesner BL, Bragg F. et al. 2013. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9:191–209 [Google Scholar]
  73. Heikinheimo H, Fortelius M, Eronen J, Mannila H. 2007. Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. J. Biogeogr. 34:1053–64 [Google Scholar]
  74. Henrot A-J, Francois L, Favre E, Butzin M, Oubrdous M, Munhoven G. 2010. Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study. Clim. Past 6:675–94 [Google Scholar]
  75. Herold N, Huber M, Müller RD. 2011. Modeling the Miocene climatic optimum. Part I: land and atmosphere. J. Clim. 24:6353–72 [Google Scholar]
  76. Janis CM. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24:467–500 [Google Scholar]
  77. Janis CM, Damuth J, Theodor JM. 2004. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207:371–98 [Google Scholar]
  78. Janis C, Fortelius M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol. Rev. 63:197–230 [Google Scholar]
  79. Jernvall J, Fortelius M. 2002. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417:538–40 [Google Scholar]
  80. Jernvall J, Fortelius M. 2004. Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. Am. Nat. 164:614–24 [Google Scholar]
  81. Kaakinen A, Passey BH, Zhang Z, Liu L, Pesonen LJ, Fortelius M. 2013. Stratigraphy and paleoecology of the classical dragon bone localities of Baode County, Shanxi Province. See Wang et al. 2013 203–17
  82. Kaiser TM, Müller DWH, Fortelius M, Schultz E, Codron D, Clauss M. 2013. Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Rev. 43:34–46 [Google Scholar]
  83. Knorr G, Butzin M, Micheels A, Lohmann G. 2011. A warm Miocene climate at low atmospheric CO2 levels. Geophys. Res. Lett. 38:L20701 [Google Scholar]
  84. Kostopoulos D. 2009. The Pikermian event: temporal and spatial resolution of the Turolian large mammal fauna in SE Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 274:82–95 [Google Scholar]
  85. Koufos GD. 2006. Palaeoecology and chronology of the Vallesian (late Miocene) in the Eastern Mediterranean region. 234127–45
  86. Kovar-Eder J, Jechorek H, Kvacek Z, Parashiv V. 2008. The integrated plant record: the ultimate tool to reconstruct Neogene zonal vegetation in Europe. Palaios 23:97–111 [Google Scholar]
  87. Kovar-Eder J, Kvacek Z, Martinetto E, Roiron P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:321–39 [Google Scholar]
  88. Kurtén B. 1972. The Age of Mammals New York: Columbia Univ. Press
  89. Kutzbach JE, Prell L, Ruddiman WF. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol. 101:177–90Shows the general effect of mountain uplift on Eurasian climate changes in the Neogene. [Google Scholar]
  90. LaRiviere JP, Ravelo AC, Crimmins A, Dekens PS, Ford HL. et al. 2012. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486:97–100 [Google Scholar]
  91. Lawing AM, Polly PD. 2011. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change. PLoS ONE 16:e28554 [Google Scholar]
  92. Lee-Thorp J, Likius A, Mackaye HT, Vignaud P, Sponheimer M. et al. 2012. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl. Acad. Sci. USA 109:20369–72 [Google Scholar]
  93. Liow LH. 2013. Simultaneous estimation of occupancy and detection probabilities: an illustration using Cincinnatian brachiopods. Paleobiology 39:193–213 [Google Scholar]
  94. Liow LH, Fortelius M, Bingham E, Lintulaakso K, Mannila H. et al. 2008. Higher origination and extinction rates in larger mammals. Proc. Natl. Acad. Sci. USA 105:6097–102 [Google Scholar]
  95. Liow LH, Fortelius M, Lintulaakso K, Mannila H, Stenseth NC. 2009. Lower extinction risk in sleep-or-hide mammals. Am. Nat. 178:264–72 [Google Scholar]
  96. Liow LH, Stenseth NC. 2007. The rise and fall of species: implications for macroevolutionary and macro-ecological studies. Proc. R. Soc. B 274:2745–52 [Google Scholar]
  97. Liow LH, Van Valen L, Stenseth NC. 2011. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26:349–58 [Google Scholar]
  98. Liu L, Eronen JT, Fortelius M. 2009. Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeoclimatol. Palaeogeogr. Palaeoecol. 279:201–6 [Google Scholar]
  99. Liu L, Puolamäki K, Eronen JT, Mirzaie Ataabadi M, Hernesniemi E, Fortelius M. 2012. Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proc. R. Soc. B 279:2793–99Describes and quantifies how mammalian herbivore molars are related to climate and vegetation. [Google Scholar]
  100. MacFadden BJ, Solounias N, Cerling TE. 1999. Ancient diets, ecology, and extinctions of 5-million-year-old horses from Florida. Science 283:824–27 [Google Scholar]
  101. Mein P. 1989. Updating of MN zones. European Neogene Mammal Chronology EH Lindsay, V Fahlbusch, P Mein 73–90 New York: PlenumA key reference for the main biochronologic zonation of Europe. [Google Scholar]
  102. Micheels A, Bruch AA, Eronen J, Fortelius M, Harzhauser M. et al. 2011. Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304:337–50 [Google Scholar]
  103. Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V. 2007. A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253:267–86 [Google Scholar]
  104. Micheels A, Eronen JT, Mosbrugger V. 2009. The Late Miocene climate sensitivity on a modern Sahara desert. Glob. Planet. Change 67:193–204 [Google Scholar]
  105. Mirzaie Ataabadi M, Liu LP, Eronen JT, Bernor RL, Fortelius M. 2013. Continental scale patterns in Neogene mammal community evolution and biogeography: a Europe-Asia perspective. See Wang et al. 2013 629–55
  106. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM. et al. 2007. Evolution of the latitudinal diversity gradient: speciation, extinction, and biogeography. Ecol. Lett. 10:315–31 [Google Scholar]
  107. Mosbrugger V, Utescher T, Dilcher D. 2005. Cenozoic continental climatic evolution of Central Europe. Proc. Natl. Acad. Sci. USA 102:14964–69 [Google Scholar]
  108. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC. et al. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–63 [Google Scholar]
  109. Nogués-Bravo D, Rahbek C. 2011. Communities under climate change. Science 334:1070–71 [Google Scholar]
  110. Okie JG, Boyer AG, Brown JH, Costa DP, Ernest SKM. et al. 2013. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution. Proc. R. Soc. B 280:20131007 [Google Scholar]
  111. Owen-Smith N. 2013. Contrasts in the large herbivore faunas of the southern continents in the late Pleistocene and the ecological implications for human origins. J. Biogeogr. 40:1215–24 [Google Scholar]
  112. Pagani M, Liu Z, LaRiviere J, Ravelo AC. 2009. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3:27–30 [Google Scholar]
  113. Passey BH, Ayliffe LK, Kaakinen A, Zhang ZQ, Eronen JT. et al. 2009. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth Planet. Sci. Lett. 277:443–52 [Google Scholar]
  114. Polly PD. 2010. Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. Carnivoran Evolution: New Views on Phylogeny, Form, and Function A Goswami, A Friscia 374–410 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  115. Polly PD, Eronen JT. 2011. Mammal associations in the Pleistocene of Britain: implications of ecological niche modelling and a method for reconstructing palaeoclimate. The Ancient Human Occupation of Britain N Ashton, SG Lewis, C Stringer 279–304 Amsterdam: Elsevier [Google Scholar]
  116. Polly PD, Eronen JT, Fred M, Dietl GP, Mosbrugger V. et al. 2011. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. B 278:1131–40 [Google Scholar]
  117. Pound MJ, Haywood AM, Salzmann U, Riding JB. 2012. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Sci. Rev. 112:1–22 [Google Scholar]
  118. Puolamäki K, Fortelius M, Mannila H. 2006. Seriation in paleontological data using Markov Chain Monte Carlo methods. PLoS Comput. Biol. 2:e6 [Google Scholar]
  119. Quental TB, Marshall CR. 2013. How the Red Queen drives terrestrial mammals to extinction. Science 341:290–92 [Google Scholar]
  120. Raia P, Carotenuto F, Eronen JT, Fortelius M. 2011. Longer in the tooth, shorter in the record? The evolutionary correlates of hypsodonty in Neogene ruminants. Proc. R. Soc. B 278:3474–81 [Google Scholar]
  121. Raia P, Carotenuto F, Meloro C, Piras P, Barbera C, Kotsakis T. 2009. More than three million years of community evolution. The temporal and geographical resolution of the Plio-Pleistocene Western Eurasia mammal faunas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276:15–23 [Google Scholar]
  122. Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D. 2010. The shape of contention. Adaptation, history and contingency in ungulate mandibles. Evolution 64:1489–503 [Google Scholar]
  123. Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M. 2012a. Ecological specialization in fossil mammals explains Cope's rule. Am. Nat. 179:328–37 [Google Scholar]
  124. Raia P, Fortelius M. 2013. Cope's Law of the Unspecialized, Cope's Rule, and weak directionality in evolution. Evol. Ecol. Res. 15747–56
  125. Raia P, Meloro C, Loy A, Barbera C. 2006. Species occupancy and its course in the past: macroecological patterns in extinct communities. Evol. Ecol. Res. 8:181–94 [Google Scholar]
  126. Raia P, Passaro F, Fulgione D, Carotenuto F. 2012b. Habitat tracking, stasis and survival in Neogene large mammals. Biol. Lett. 8:64–66 [Google Scholar]
  127. Raia P, Piras P, Kotsakis T. 2005. Turnover pulse or Red Queen? Evidence from the large mammal communities during the Plio-Pleistocene of Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 221:293–312 [Google Scholar]
  128. Ramstein G, Fluteau F, Besse J, Joussaume S. 1997. Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–95 [Google Scholar]
  129. Robinson BW, Wilson DS. 1998. Optimal foraging, specialization, and a solution to Liem's paradox. Am. Nat. 151:223–35 [Google Scholar]
  130. Rodwell MJ, Hoskins BJ. 1996. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc. 122:1385–404 [Google Scholar]
  131. Salisbury CL, Seddon N, Cooney CR, Tobias JA. 2012. The latitudinal gradient in dispersal constraints: ecological specialization drives diversification in tropical birds. Ecol. Lett. 15:847–55 [Google Scholar]
  132. Salzmann U, Haywood AM, Lunt DJ, Valdes PJ, Hill DJ. 2008. A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob. Ecol. Biogeogr. 17:432–47 [Google Scholar]
  133. Salzmann U, Williams M, Haywood AM, Johnson ALA, Kender S, Zalasiewicz J. 2011. Climate and environment of a Pliocene warm world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309:73–82 [Google Scholar]
  134. Steininger FF. 1999. Chronostratigraphy, geochronology and biochronology of the Miocene “European Land Mammal Mega-Zones (ELMMZ)” and the Miocene “Mammal-Zones (MN-Zones)”. The Miocene Land Mammals of Europe GE Rössner, K Heissig 9–24 München, Ger: Friedrich Pfeil [Google Scholar]
  135. Strömberg CAE. 2011. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39:517–44The most recent global overview of grasslands evolution and related climate and evolution. [Google Scholar]
  136. Tang H, Micheels A, Eronen JT, Ahrens B, Fortelius M. 2013. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim. Dyn. 40:1531–49 [Google Scholar]
  137. Tang H, Micheels A, Eronen JT, Fortelius M. 2011. Regional climate model experiments to investigate the Asian monsoon in the Late Miocene. Clim. Past 7:847–68 [Google Scholar]
  138. Uhen M, Barnosky A, Bills B, Blois J, Carrasco M. et al. 2013. From card catalogs to computers: databases in vertebrate paleontology. J. Vertebr. Paleontol. 33:13–28 [Google Scholar]
  139. Ukkonen A, Fortelius M, Mannila H. 2005. Finding partial orders from unordered 0-1 data. Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining R Grossman, R Bayardo, KP Bennett 285–93 New York: Assoc . Comput. Mach.
  140. Uno KT, Cerling TE, Harris JM, Kunimatsu Y, Leakey MG. et al. 2011. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl. Acad. Sci. USA 108:6509–14 [Google Scholar]
  141. Utescher T, Mosbrugger V, Ashraf AR. 2000. Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios 15:430–49 [Google Scholar]
  142. Uyeda JC, Hansen TF, Arnold SJ, Pienaar J. 2011. The million-year wait for macroevolutionary bursts. Proc. Natl. Acad. Sci. USA 108:15908–13 [Google Scholar]
  143. van Dam JA, Abdul Aziz H, Angeles Alvarez Sierra M, Hilgen FJ, van den Hoek Ostende LW. et al. 2006. Long-period astronomical forcing of mammal turnover. Nature 443:687–91 [Google Scholar]
  144. van der Meulen AJ, Pelaez-Campomanes P, Levin SA. 2005. Age structure, residents, and transients of Miocene rodent communities. Am. Nat. 165:108–25 [Google Scholar]
  145. Van Valen L. 1973. A new evolutionary law. Evol. Theory 1:1–30Arguably the most influential theoretical treatment since Darwin's of the relationship between physical forcing and biotic interactions as drivers of evolution. [Google Scholar]
  146. Van Valen LM. 1985. A theory of origination and extinction. Evol. Theory 7:133–42 [Google Scholar]
  147. Vermeij GJ, Dietl GP. 2006. Majority rule: adaptation and the long-term dynamics of species. Paleobiology 32:173–78 [Google Scholar]
  148. Vrba ES. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S. Afr. J. Sci. 81:229–36 [Google Scholar]
  149. Vrba ES. 1992. Mammals as a key to evolutionary theory. J. Mammal. 73:1–28 [Google Scholar]
  150. Wang X, Flynn LJ, Fortelius M. 2013. Fossil Mammals of Asia: Neogene Terrestrial Biostratigraphy and Chronology New York: Columbia Univ. Press
  151. West JB, Bowen GJ, Cerling TE, Ehleringer JR. 2006. Stable isotopes as one of nature's ecological recorders. Trends Ecol. Evol. 21:408–14 [Google Scholar]
  152. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93 [Google Scholar]
  153. Zhang Z, Kaakinen A, Liu L, Lunkka JP, Sen S. et al. 2013. Mammalian biochronology of the Late Miocene Bahe Formation. See Wang et al.; 2013.187–202
  154. Zhang Z, Wang H, Guo Z, Jiang D. 2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245:317–31 [Google Scholar]
/content/journals/10.1146/annurev-earth-050212-124030
Loading
/content/journals/10.1146/annurev-earth-050212-124030
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error