1932

Abstract

Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (∼90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface, and subsurface in order to make further progress in understanding Titan's complex climate system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012428
2016-06-29
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012428.html?itemId=/content/journals/10.1146/annurev-earth-060115-012428&mimeType=html&fmt=ahah

Literature Cited

  1. Achterberg RK, Conrath BJ, Gierasch PJ, Flasar FM, Nixon CA. 2008. Titan's middle-atmospheric temperatures and dynamics observed by the Cassini Composite Infrared Spectrometer. Icarus 194:263–77 [Google Scholar]
  2. Ádámkovics M, Barnes JW, Hartung M, de Pater I. 2010. Observations of a stationary mid-latitude cloud system on Titan. Icarus 208:868–77 [Google Scholar]
  3. Ádámkovics M, Mitchell JL, Hayes AG, Rojo PM, Corlies P. et al. 2016. Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT. Icarus 270:376–88 [Google Scholar]
  4. Aharonson O, Hayes AG, Lunine JI, Lorenz RD, Allison MD, Elachi C. 2009. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2:851–54 [Google Scholar]
  5. Anderson CM, Young EF, Chanover NJ, McKay CP. 2008. HST spectral imaging of Titan's haze and methane profile between 0.6 and 1 μm during the 2000 opposition. Icarus 194:721–45 [Google Scholar]
  6. Barth EL, Rafkin SCR. 2007. TRAMS: a new dynamic cloud model for Titan's methane clouds. Geophys. Res. Lett. 34:L03203 [Google Scholar]
  7. Barth EL, Rafkin SCR. 2010. Convective cloud heights as a diagnostic for methane environment on Titan. Icarus 206:467–84 [Google Scholar]
  8. Bird MK, Allison M, Asmar SW, Atkinson DH, Avruch IM. et al. 2005. The vertical profile of winds on Titan. Nature 438:800–2 [Google Scholar]
  9. Brown ME, Bouchez AH, Griffith CA. 2002. Direct detection of variable tropospheric clouds near Titan's south pole. Nature 420:795–97 [Google Scholar]
  10. Brown ME, Roberts JE, Schaller EL. 2010. Clouds on Titan during the Cassini prime mission: a complete analysis of the VIMS data. Icarus 205:571–80 [Google Scholar]
  11. Charnay B, Lebonnois S. 2012. Two boundary layers in Titan's lower troposphere inferred from a climate model. Nat. Geosci. 5:106–9 [Google Scholar]
  12. Charney JG. 1963. A note on large-scale motions in the tropics. J. Atmos. Sci. 20:607–9 [Google Scholar]
  13. Choukroun M, Sotin C. 2012. Is Titan's shape caused by its meteorology and carbon cycle?. Geophys. Res. Lett. 39:L04201 [Google Scholar]
  14. Courtin R, Gautier D, McKay CP. 1995. Titan's thermal emission spectrum: reanalysis of the Voyager infrared measurements. Icarus 114:144–62 [Google Scholar]
  15. Elachi C, Wall S, Allison M, Anderson Y, Boehmer R. et al. 2005. Cassini Radar views the surface of Titan. Science 308:970–74 [Google Scholar]
  16. Ewing RC, Hayes AG, Lucas A. 2015. Sand dune patterns on Titan controlled by long-term climate cycles. Nat. Geosci. 8:15–19 [Google Scholar]
  17. Flasar FM, Achterberg RK. 2009. The structure and dynamics of Titan's middle atmosphere. Philos. Trans. R. Soc. A 367:649–64 [Google Scholar]
  18. Flasar FM, Achterberg RK, Conrath BJ, Gierasch PJ, Kunde VG. et al. 2005. Titan's atmospheric temperatures, winds, and composition. Science 308:975–78 [Google Scholar]
  19. Flasar FM, Samuelson RE, Conrath BJ. 1981. Titan's atmosphere: temperature and dynamics. Nature 292:693–98 [Google Scholar]
  20. Fulchignoni M, Ferri F, Angrilli F, Ball AJ, Bar-Nun A. et al. 2005. In situ measurements of the physical characteristics of Titan's environment. Nature 438:785–91 [Google Scholar]
  21. Gierasch PJ. 1975. Meridional circulation and the maintenance of the Venus atmospheric circulation. J. Atmos. Sci. 32:1038–44 [Google Scholar]
  22. Griffith CA, Hall JL, Geballe TR. 2000. Detection of daily clouds on Titan. Science 290:509–13 [Google Scholar]
  23. Griffith CA, Lora JM, Turner J, Penteado PF, Brown RH. et al. 2012. Possible tropical lakes on Titan from observations of dark terrain. Nature 486:237–39 [Google Scholar]
  24. Griffith CA, McKay CP, Ferri F. 2008. Titan's tropical storms in an evolving atmosphere. Astrophys. J. 687:L41–44 [Google Scholar]
  25. Griffith CA, Owen T, Miller GA, Geballe T. 1998. Transient clouds in Titan's lower atmosphere. Nature 395:575–78 [Google Scholar]
  26. Griffith CA, Penteado P, Baines K, Drossart P, Barnes J. et al. 2005. The evolution of Titan's mid-latitude clouds. Science 310:474–77 [Google Scholar]
  27. Griffith CA, Penteado P, Rodriguez S, Le Mouélic S, Baines KH. et al. 2009. Characterization of clouds in Titan's tropical atmosphere. Astrophys. J. 702:L105–9 [Google Scholar]
  28. Griffith CA, Rafkin S, Rannou P, McKay CP. 2014. Storms, clouds, and weather. See Müller-Wodarg et al. 2014 190–223
  29. Hayes A, Aharonson O, Callahan P, Elachi C, Gim Y. et al. 2008. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35:L09204 [Google Scholar]
  30. Hayes AG, Aharonson O, Lunine JI, Kirk RL, Zebker HA. et al. 2011. Transient surface liquid in Titan's polar regions from Cassini. Icarus 211:655–71 [Google Scholar]
  31. Held IM, Hou AY. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37:515–33 [Google Scholar]
  32. Holton JR. 1992. An Introduction to Dynamical Meteorology San Diego: Academic, 3rd ed..
  33. Hourdin F, Talagrand O, Sadourny R, Courtin R, Gautier D, McKay CP. 1995. Numerical simulations of the general circulation of the atmosphere of Titan. Icarus 117:358–74 [Google Scholar]
  34. Hubbard WB, Sicardy B, Miles R, Hollis AJ, Forrest RW. et al. 1993. The occultation of 28 Sgr by Titan. Astron. Astrophys. 269:541–63 [Google Scholar]
  35. Hueso R, Sánchez-Lavega A. 2006. Methane storms on Saturn's moon Titan. Nature 442:428–31 [Google Scholar]
  36. Jennings DE, Cottini V, Nixon CA, Flasar FM, Kunde VG. et al. 2011. Seasonal changes in Titan's surface temperatures. Astrophys. J. 737:L15 [Google Scholar]
  37. Jennings DE, Flasar FM, Kunde VG, Samuelson RE, Pearl JC. et al. 2009. Titan's surface brightness temperatures. Astrophys. J. 691:L103–5 [Google Scholar]
  38. Kuiper GP. 1944. Titan: a satellite with an atmosphere. Astrophys. J. 100:378–83 [Google Scholar]
  39. Lebonnois S, Burgalat J, Rannou P, Charnay B. 2012. Titan global climate model: a new 3-dimensional version of the IPSL Titan GCM. Icarus 218:707–22 [Google Scholar]
  40. Li L. 2015. Dimming Titan revealed by the Cassini observations. Sci. Rep. 5:8239 [Google Scholar]
  41. Li L, Nixon CA, Achterberg RK, Smith MA, Gorius NJP. et al. 2011. The global energy balance of Titan. Geophys. Res. Lett. 38:L23201 [Google Scholar]
  42. Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL. 1983. The atmosphere of Titan—an analysis of the Voyager 1 radio occultation measurements. Icarus 53:348–63 [Google Scholar]
  43. Lopes R, Stofan E, Peckyno R, Radebaugh J, Mitchell K. et al. 2010. Distribution and interplay of geologic processes on Titan from Cassini Radar data. Icarus 205:540–58 [Google Scholar]
  44. Lora JM, Goodman PJ, Russell JL, Lunine JI. 2011. Insolation in Titan's troposphere. Icarus 216:116–19 [Google Scholar]
  45. Lora JM, Lunine JI, Russell JL. 2015. GCM simulations of Titan's middle and lower atmosphere and comparison to observations. Icarus 250:516–28 [Google Scholar]
  46. Lora JM, Lunine JI, Russell JL, Hayes AG. 2014. Simulations of Titan's paleoclimate. Icarus 243:264–73 [Google Scholar]
  47. Lora JM, Mitchell JL. 2015. Titan's asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophys. Res. Lett. 42:6213–20 [Google Scholar]
  48. Lorenz RD, Lopes RM, Paganelli F, Lunine JI, Kirk RL. et al. 2008. Titan's inventory of organic surface materials. Geophys. Res. Lett. 35:L02206 [Google Scholar]
  49. Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E. et al. 2006. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312:724–27 [Google Scholar]
  50. Lunine JI, Lorenz RD. 2009. Rivers, lakes, dunes, and rain: crustal processes in Titan's methane cycle. Annu. Rev. Earth Planet. Sci. 37:299–320 [Google Scholar]
  51. Lunine JI, Stevenson DJ, Yung YL. 1983. Ethane ocean on Titan. Science 222:1229–30 [Google Scholar]
  52. Luz D, Hourdin F, Rannou P, Lebonnois S. 2003. Latitudinal transport by barotropic waves in Titan's stratosphere. II. Results from a coupled dynamics-microphysics-photochemistry GCM. Icarus 166:343–58 [Google Scholar]
  53. Mastrogiuseppe M, Valerio P, Hayes A, Lorenz R, Lunine J. et al. 2014. The bathymetry of a Titan sea. Geophys. Res. Lett. 41:1432–37 [Google Scholar]
  54. Matsuno T. 1966. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44:25–43 [Google Scholar]
  55. McKay CP, Pollack JB, Courtin R. 1989. The thermal structure of Titan's atmosphere. Icarus 80:23–53 [Google Scholar]
  56. McKay CP, Pollack JB, Courtin R. 1991. The greenhouse and antigreenhouse effects on Titan. Science 253:1118–21 [Google Scholar]
  57. Mitchell JL. 2008. The drying of Titan's dunes: Titan's methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. 113:E08015 [Google Scholar]
  58. Mitchell JL. 2012. Titan's transport-driven methane cycle. Astrophys. J. 756:L26 [Google Scholar]
  59. Mitchell JL, Ádámkovics M, Caballero R, Turtle EP. 2011. Locally enhanced precipitation organized by planetary-scale waves on Titan. Nat. Geosci. 4:589–92 [Google Scholar]
  60. Mitchell JL, Pierrehumbert RT, Frierson DMW, Caballero R. 2006. The dynamics behind Titan's methane clouds. PNAS 103:18421–26 [Google Scholar]
  61. Mitchell JL, Pierrehumbert RT, Frierson DMW, Caballero R. 2009. The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere. Icarus 203:250–64 [Google Scholar]
  62. Mitchell JL, Vallis GK. 2010. The transition to superrotation in terrestrial atmospheres. J. Geophys. Res. 115:E12008 [Google Scholar]
  63. Moore JM, Howard AD, Morgan AM. 2014. The landscape of Titan as witness to its climate evolution. J. Geophys. Res. Planets 119:2060–77 [Google Scholar]
  64. Mousis O, Schmitt B. 2008. Sequestration of ethane in the cryovolcanic subsurface of Titan. Astrophys. J. 667:L67–70 [Google Scholar]
  65. Muhleman DO, Grossman AW, Butler BJ, Slade MA. 1990. Radar reflectivity of Titan. Science 25:975–80 [Google Scholar]
  66. Müller-Wodarg I, Griffith CA, Lellouch E, Cravens TE. 2014. Titan: Interior, Surface, Atmosphere, and Space Environment Cambridge, UK: Cambridge Univ. Press
  67. Neish CD, Lorenz RD. 2014. Elevation distribution of Titan's craters suggests extensive wetlands. Icarus 228:27–34 [Google Scholar]
  68. Newman CE, Lee C, Lian Y, Richardson MI, Toigo AD. 2011. Stratospheric superrotation in the TitanWRF model. Icarus 213:636–54 [Google Scholar]
  69. Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE. et al. 2005. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–84 [Google Scholar]
  70. Penteado PF, Griffith CA. 2010. Ground-based measurements of the methane distribution of Titan. Icarus 206:345–51 [Google Scholar]
  71. Pierrehumbert R. 1995. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52:1784–806 [Google Scholar]
  72. Pierrehumbert RT. 2010. Principles of Planetary Climate Cambridge, UK: Cambridge Univ. Press
  73. Porco C, Baker E, Barbara J, Beurle K, Brahic A. et al. 2005. Imaging of Titan from the Cassini spacecraft. Nature 434:159–68 [Google Scholar]
  74. Radebaugh J, Lorenz RD, Lunine JI, Wall SD, Boubin G. et al. 2008. Dunes on Titan observed by Cassini Radar. Icarus 194:690–703 [Google Scholar]
  75. Rannou P, Montmessin F, Hourdin F, Lebonnois S. 2006. The latitudinal distribution of clouds on Titan. Science 311:201–5 [Google Scholar]
  76. Rodriguez S. Mouélic S, Rannou P, Sotin C, Brown RH. , Le et al. 2011. Titan's cloud seasonal activity from winter to spring with Cassini/VIMS. Icarus 216:89–110 [Google Scholar]
  77. Rodriguez S. Mouélic S, Rannou P, Tobie G, Baines KH. , Le et al. 2009. Global circulation as the main source of cloud activity on Titan. Nature 459:678–82 [Google Scholar]
  78. Roe HG. 2012. Titan's methane weather. Annu. Rev. Earth Planet. Sci. 40:355–82 [Google Scholar]
  79. Roe HG, Bouchez AH, Trujillo CA, Schaller EL, Brown ME. 2005. Discovery of temperate latitude clouds on Titan. Astrophys. J. 618:L49–52 [Google Scholar]
  80. Roe HG, de Pater I, Macintosh BA, McKay CP. 2002. Titan's clouds from Gemini and Keck adaptive optics imaging. Astrophys. J. 581:1399–406 [Google Scholar]
  81. Rossow WB, Williams GP. 1979. Large-scale motion in the Venus stratosphere. J. Atmos. Sci. 36:377–89 [Google Scholar]
  82. Samuelson RE, Nath NR, Borysow A. 1997. Gaseous abundances and methane supersaturation in Titan's troposphere. Planet. Space Sci. 45:959–80 [Google Scholar]
  83. Schaller EL, Brown ME, Roe HG, Bouchez AH. 2006a. A large cloud outburst at Titan's south pole. Icarus 182:224–29 [Google Scholar]
  84. Schaller EL, Brown ME, Roe HG, Bouchez AH, Trujillo CA. 2006b. Dissipation of Titan's south polar clouds. Icarus 184:517–23 [Google Scholar]
  85. Schaller EL, Roe HG, Schneider T, Brown ME. 2009. Storms in the tropics of Titan. Nature 460:873–75 [Google Scholar]
  86. Schinder PJ, Flasar FM, Marouf EA, French RG, McGhee CA. et al. 2011. The structure of Titan's atmosphere from Cassini radio occultations. Icarus 215:460–74 [Google Scholar]
  87. Schinder PJ, Flasar FM, Marouf EA, French RG, McGhee CA. et al. 2012. The structure of Titan's atmosphere from Cassini radio occultations: occultations from the Prime and Equinox missions. Icarus 221:1020–31 [Google Scholar]
  88. Schneider T. 2006. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34:655–88 [Google Scholar]
  89. Schneider T, Graves SDB, Schaller EL, Brown ME. 2012. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481:58–61 [Google Scholar]
  90. Smith BA, Soderblom L, Beebe R, Boyce J, Briggs G. et al. 1981. Encounter with Saturn: Voyager 1 imaging science results. Science 212:163–91 [Google Scholar]
  91. Sobel AH, Bretherton CS. 2000. Modeling tropical precipitation in a single column. J. Clim. 13:4378–92 [Google Scholar]
  92. Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B. et al. 2007. The lakes of Titan. Nature 445:61–64 [Google Scholar]
  93. Tobie G, Lunine JI, Sotin C. 2006. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64 [Google Scholar]
  94. Tokano T. 2005. Meteorological assessment of the surface temperatures on Titan: constraints on the surface type. Icarus 173:222–42 [Google Scholar]
  95. Tokano T, McKay CP, Neubauer FM, Atreya SK, Ferri F. et al. 2006. Methane drizzle on Titan. Nature 442:432–35 [Google Scholar]
  96. Tokano T, Neubauer FM, Laube M, McKay CP. 1999. Seasonal variation of Titan's atmospheric structure simulated by a general circulation model. Planet. Space Sci. 47:493–520 [Google Scholar]
  97. Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M. et al. 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438:765–78 [Google Scholar]
  98. Tomasko MG, Bézard B, Doose L, Engel S, Karkoschka E. 2008a. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci. 56:624–47 [Google Scholar]
  99. Tomasko MG, Bézard B, Doose L, Engel S, Karkoschka E, Vinatier S. 2008b. Heat balance in Titan's atmosphere. Planet. Space Sci. 56:648–59 [Google Scholar]
  100. Tomasko MG, Doose L, Engel S, Dafoe L, West R. et al. 2008c. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56:669–707 [Google Scholar]
  101. Trenberth K, Stepaniak D. 2003. Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Clim. 16:3691–705 [Google Scholar]
  102. Turtle EP, Del Genio AD, Barbara JM, Perry JE, Schaller EL. et al. 2011a. Seasonal changes in Titan's meteorology. Geophys. Res. Lett. 38:L03203 [Google Scholar]
  103. Turtle EP, Perry JE, Hayes AG, Lorenz RD, Barnes JW. et al. 2011b. Rapid and extensive surface changes near Titan's equator: evidence of April showers. Science 331:1414–17 [Google Scholar]
  104. Turtle EP, Perry JE, Hayes AG, McEwen AS. 2011c. Shoreline retreat at Titan's Ontario Lacus and Arrakis Planitia from Cassini Imaging Science Subsystem observations. Icarus 212:957–59 [Google Scholar]
  105. Turtle EP, Perry JE, McEwen AS, Del Genio AD, Barbara J. et al. 2009. Cassini imaging of Titan's high-latitude lakes, clouds, and south-polar surface changes. Geophys. Res. Lett. 36:L02204 [Google Scholar]
  106. Vallis GK. 2006. Atmospheric and Oceanic Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  107. Wheeler M, Kiladis GN. 1999. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56:374–99 [Google Scholar]
  108. Williams IN, Pierrehumbert RT, Huber M. 2009. Global warming, convective threshold and false thermostats. Geophys. Res. Lett. 36:L21805 [Google Scholar]
  109. Williams KE, McKay CP, Persson F. 2012. The surface energy balance at the Huygens landing site and the moist surface conditions on Titan. Planet. Space Sci. 60:376–85 [Google Scholar]
  110. Yung Y, Allen M, Pinto JP. 1984. Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. 55:465–506 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012428
Loading
/content/journals/10.1146/annurev-earth-060115-012428
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error