1932

Abstract

Energy dissipation due to intrinsic attenuation occurs at elevated temperatures in rocks as a result of a range of processes. Examples where small-strain, transient deformation occurs are seismic waves, tidal deformation, and at longer timescales post-glacial rebound and far-field post-seismic deformation. Experiments at mantle temperatures and seismic frequencies show that grain boundary sliding is a key process that results in a broad absorption band, as indicated by seismic observations. Models of grain boundary sliding predict a smooth transition from elastic behavior through an anelastic regime toward viscous (Maxwell) behavior, consistent with experimental observations. Other mechanisms that may contribute to dissipation in Earth, at least locally, are dislocations and melt. Extrapolation of the laboratory data shows that first-order observations of planetary behavior and structure can be explained by the effects of temperature and pressure on transient creep properties, but that locally, additional mechanisms are required.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054732
2015-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060313-054732.html?itemId=/content/journals/10.1146/annurev-earth-060313-054732&mimeType=html&fmt=ahah

Literature Cited

  1. Aizawa Y, Barnhoorn A, Faul UH, Fitz Gerald JD, Jackson I, Kovacs I. 2008. Seismic properties of Anita Bay dunite: an exploratory study of the influence of water. J. Petrol. 49:841–55 [Google Scholar]
  2. Anderson DL, Archambeau CB. 1964. The anelasticity of the Earth. J. Geophys. Res. 69:2071–84 [Google Scholar]
  3. Anderson DL, Minster JB. 1979. The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble. Geophys. J. R. Astron. Soc. 58:431–40 [Google Scholar]
  4. Anderson DL, Sammis CG. 1970. Partial melting in the upper mantle. Phys. Earth Planet. Inter. 3:41–50 [Google Scholar]
  5. Barnhoorn A, Jackson I, Fitz Gerald JD, Aizawa Y. 2007. Suppression of elastically accommodated grain-boundary sliding in high-purity MgO. J. Eur. Ceram. Soc. 27:4697–703 [Google Scholar]
  6. Benjamin D, Wahr J, Ray RD, Egbert GD, Desai SD. 2006. Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly. Geophys. J. Int. 165:3–16 [Google Scholar]
  7. Berckhemer H, Kampfmann W, Aulbach E, Schmeling H. 1982. Shear modulus and Q of forsterite and dunite near partial melting from forced oscillation experiments. Phys. Earth Planet. Inter. 29:30–41 [Google Scholar]
  8. Bollinger C, Raterron P, Cordier P, Merkel S. 2014. Polycrystalline olivine rheology in dislocation creep: revisiting experimental data to 8.1 GPa. Phys. Earth Planet. Inter. 228:211–19 [Google Scholar]
  9. Bulau JR, Waff HS, Tyburczy JA. 1979. Mechanical and thermodynamic constraints on fluid distribution in partial melts. J. Geophys. Res. 84:6102–8 [Google Scholar]
  10. Bunton JH. 2001. The impact of grain size on the shear creep and attenuation behavior of polycrystalline olivine Master's thesis, Univ. Wisc. Madison:
  11. Cole DM, Durell GD. 1995. The cyclic loading of saline ice. Philos. Mag. A 72:209–29 [Google Scholar]
  12. Condit RH, Weed HC, Piwinskii AJ. 1985. A technique for observing oxygen diffusion along grain boundary regions in synthetic forsterite. Geophys. Monogr. 3195–105 [Google Scholar]
  13. Cooper RF. 2002. Seismic wave attenuation: energy dissipation in viscoelastic crystalline solids. Rev. Mineral. Geochem. 51:253–90 [Google Scholar]
  14. Cordier P, Demouchy S, Beausir B, Taupin V, Barou F, Fressengeas C. 2014. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507:51–56 [Google Scholar]
  15. Dobson DP, Dohmen R, Wiedenbeck M. 2008. Self-diffusion of oxygen and silicon in MgSiO3 perovskite. Earth Planet. Sci. Lett 270:125–29 [Google Scholar]
  16. Dohmen R, Chakraborty S, Becker HW. 2002. Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys. Res. Lett. 29:2126–126-4 [Google Scholar]
  17. Dohmen R, Milke R. 2010. Diffusion in polycrystalline materials: Grain boundaries, mathematical models, and experimental data. Rev. Mineral. Geochem. 72:921–70 [Google Scholar]
  18. Efroimsky M. 2012. Tidal dissipation compared to seismic dissipation: in small bodies, in Earths, and in super-Earths. Astrophys. J. 746:150 [Google Scholar]
  19. Farla RJM, Jackson I, Fitz Gerald JD, Faul UH, Zimmerman ME. 2012. Dislocation damping and anisotropic seismic wave attenuation in Earth's upper mantle. Science 336:332–35 [Google Scholar]
  20. Farla RJM, Kokkonen H, Fitz Gerald JD, Barnhoorn A, Faul UH, Jackson I. 2011. Dislocation recovery in fine-grained polycrystalline olivine. Phys. Chem. Minerals 38:363–77 [Google Scholar]
  21. Farver JR, Yund RA. 2000. Silicon diffusion in forsterite aggregates: implications for diffusion accommodated creep. Geophys. Res. Lett. 27:2337–40 [Google Scholar]
  22. Farver JR, Yund RA, Rubie DC. 1994. Magnesium grain-boundary diffusion in forsterite aggregates at 1000°C–1300°C and 0.1 MPa to 10 GPa. J. Geophys. Res. 99:19809–19 [Google Scholar]
  23. Faul UH. 2001. Melt retention and segregation beneath mid-ocean ridges. Nature 410:920–23 [Google Scholar]
  24. Faul UH, Fitz Gerald JD, Jackson I. 2004. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J. Geophys. Res. 109:B06202 [Google Scholar]
  25. Faul UH, Jackson I. 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234:119–34 [Google Scholar]
  26. Faul UH, Jackson I. 2007. Diffusion creep of dry, melt-free olivine. J. Geophys. Res. 110:B04204 [Google Scholar]
  27. Faul UH, Toomey DR, Waff HS. 1994. Intergranular basaltic melt is distributed in thin, elongated inclusions. Geophys. Res. Lett. 21:29–32 [Google Scholar]
  28. Findley WN, Lai JS, Onaran K. 1976. Creep and Relaxation of Nonlinear Viscoelastic Materials Amsterdam: North-Holland Publ. Co.
  29. Gaherty J, Jordan T, Gee L. 1996. Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res. 101:22291–309 [Google Scholar]
  30. Garapić G, Faul UH, Brisson E. 2013. High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem. Geophys. Geosyst. 14:3556–66 [Google Scholar]
  31. Garcia RF, Gagnepain-Beyneix J, Chevrot S, Lognonne P. 2011. Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188:96–113 [Google Scholar]
  32. Getting IC, Dutton SJ, Burnley PC, Karato S, Spetzler HA. 1997. Shear attenuation and dispersion in MgO. Phys. Earth Planet. Inter. 99:249–57 [Google Scholar]
  33. Goetze C. 1977. Bounds on the subsolidus attenuation for four rock types at simultaneous high temperature and pressure. Tectonophysics 42:T1–5 [Google Scholar]
  34. Goetze C, Brace WF. 1972. Laboratory observations of high temperature rheology of rocks. Tectonophysics 13:583–600 [Google Scholar]
  35. Goldsby DL, Kohlstedt DL. 2001. Superplastic deformation of ice: Experimental observations. J. Geophys. Res. 106:11,017–30 [Google Scholar]
  36. Gribb TT, Cooper RF. 1998a. A high-temperature torsion apparatus for the high-resolution characterization of internal friction and creep in refractory metals and ceramics: application to the seismic-frequency, dynamic response of Earth's upper mantle. Rev. Sci. Instrum. 69:559–64 [Google Scholar]
  37. Gribb TT, Cooper RF. 1998b. Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and physical significance of the Andrade model for viscoelastic rheology. J. Geophys. Res. 103:27,267–79 [Google Scholar]
  38. Gribb TT, Cooper RF. 2000. The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophys. Res. Lett. 27:2341–44 [Google Scholar]
  39. Guéguen Y, Darot M, Mazot P, Woigard J. 1989. Q−1 of forsterite single crystals. Phys. Earth Planet. Inter. 55:254–58 [Google Scholar]
  40. Hirth G, Kohlstedt DL. 1995. Experimental constraints on the dynamics of the partially molten upper mantle: 1. Deformation in the diffusion creep regime. J. Geophys. Res. 100:1981–2001 [Google Scholar]
  41. Hirth G, Kohlstedt DL. 2003. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. 13883–105 [Google Scholar]
  42. Jackson I. 1993. Progress in the experimental study of seismic wave attenuation. Annu. Rev. Earth Planet. Sci. 21:375–406 [Google Scholar]
  43. Jackson I. 2000. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale S Karato, AM Forte, RC Liebermann, G Masters, L Stixrude, Geophys. Monogr., 117:265–89 Washington, DC: Am. Geophys. Union
  44. Jackson I. 2014. Properties of rocks and minerals: physical origins of anelasticity and attenuation in rock. Treatise on Geophysics Vol 2: Mineral Physics, ed. G Schubert 493–525 Amsterdam: Elsevier Sci [Google Scholar]
  45. Jackson I, Barnhoorn A, Aizawa Y, Saint C. 2009. Improved procedures for the laboratory study of high-temperature viscoelastic relaxation. Phys. Earth Planet. Inter. 172:104–15 [Google Scholar]
  46. Jackson I, Faul U, Fitz Gerald J, Tan B. 2004. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals 1. Specimen fabrication and mechanical testing. J. Geophys. Res. 109:B06201 [Google Scholar]
  47. Jackson I, Faul UH. 2010. Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183:151–63 [Google Scholar]
  48. Jackson I, Faul UH, Skelton R. 2014. Elastically accommodated grain-boundary sliding: new insights from experiment and modeling. Phys. Earth Planet. Int. 228:203–10 [Google Scholar]
  49. Jackson I, Fitz Gerald JD, Faul UH, Tan BH. 2002. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res. 107:2360 [Google Scholar]
  50. Jackson I, Fitz Gerald JD, Kokkonen H. 2000. High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth's inner core. J. Geophys. Res. 105:23605–34 [Google Scholar]
  51. Jackson I, Paterson MS, Fitz Gerald JD. 1992. Seismic wave dispersion and attenuation in Åheim dunite: an experimental study. Geophys. J. Int. 108:517–34 [Google Scholar]
  52. Kampfmann W, Berckhemer H. 1985. High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Phys. Earth Planet. Inter. 40:223–47 [Google Scholar]
  53. Kanamori H, Anderson DL. 1977. Importance of physical dispersion in surface wave and free oscillation problems: review. Rev. Geophys. Space Phys. 15:105–12 [Google Scholar]
  54. Karato SI. 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20:1623–26 [Google Scholar]
  55. Karato SI. 2008. Deformation of Earth Materials Cambridge, UK: Cambridge Univ. Press
  56. Karato SI, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 157:193–207 [Google Scholar]
  57. Karato SI, Sato H. 1982. Effect of oxygen partial pressure on the dislocation recovery in olivine—a new constraint on creep mechanisms. Phys. Earth Planet. Inter. 28:312–19 [Google Scholar]
  58. Karato SI, Spetzler HA. 1990. Defect microdynamics and physical mechanisms of seismic wave attenuation and velocity dispersion in the Earth's mantle. Rev. Geophys. 28:399–421 [Google Scholar]
  59. Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T. et al. 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 342:499–502 [Google Scholar]
  60. TS. 1947. Experimental evidence of the viscous behaviour of grain boundaries in metals. Phys. Rev. 71:533–46 [Google Scholar]
  61. Khan A, Maclennan J, Taylor S, Connelly J. 2006. Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J. Geophys. Res. 111:E05005 [Google Scholar]
  62. Kind R, Yuan X, Kumar P. 2012. Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics 536–37:25–43 [Google Scholar]
  63. Kohlstedt DL, Goetze C, Durham WB, Vandersande J. 1976. New technique for decorating dislocations in olivine. Science 191:1045–46 [Google Scholar]
  64. Lee LC, Morris SJS, Wilkening J. 2011. Stress concentrations, diffusionally accommodated grain boundary sliding and the viscoelasticity of polycrystals. Proc. R. Soc. A 467:1624–44 [Google Scholar]
  65. Liu HP, Anderson DL, Kanamori H. 1976. Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. R. Astron. Soc. 47:41–58 [Google Scholar]
  66. Lu C, Jackson I. 2006. Low-frequency seismic properties of thermally cracked and argon saturated granite. Geophysics 71:F147–59 [Google Scholar]
  67. Mavko GM. 1980. Velocity and attenuation in partially molten rocks. J. Geophys. Res. 85:5173–89 [Google Scholar]
  68. Mavko GM, Nur A. 1975. Melt squirt in the asthenosphere. J. Geophys. Res. 80:1444–48 [Google Scholar]
  69. McCarthy C, Castillo-Rogez JC. 2013. The Science of Solar System Ices M Gudipati, J Castillo-Rogez 183–225 New York: Springer
  70. McCarthy C, Takei Y. 2011. Anelasticity and viscosity of partially molten rock analogue: toward seismic detection of small quantities of melt. Geophys. Res. Lett. 38:28 [Google Scholar]
  71. McCarthy C, Takei Y, Hiraga T. 2011. Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. J. Geophys. Res. 116:B09207 [Google Scholar]
  72. Morris SJS, Jackson I. 2009. Diffusionally-assisted grain-boundary sliding and viscoelasticity of polycrystals. J. Mech. Phys. Solids 57:744–61 [Google Scholar]
  73. Nakamura T, Abe O. 1978. Internal friction of Antarctic Mizuho ice cores at low frequency. Mem. Natl. Inst. Polar Res. (Jpn.) 10:102–13 [Google Scholar]
  74. Nakamura T, Abe O. 1979. A grain-boundary relaxation peak of Antarctic Mizuho ice observed in internal friction measurements at low frequency. J. Fac. Sci., Hokkaido Univ., Ser. 7 6:1165–71 [Google Scholar]
  75. Nimmo F, Faul UH, Garnero EJ. 2012. Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117:9005 [Google Scholar]
  76. Nishimura CE, Forsyth DW. 1989. The anisotropic structure of the upper mantle in the Pacific. Geophys. J. Int. 96:203–29 [Google Scholar]
  77. Nowick AS, Berry BS. 1972. Anelastic Relaxation in Crystalline Solids. New York/London: Academic Press
  78. O'Connell RJ, Budiansky B. 1977. Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res. 82:5719–39 [Google Scholar]
  79. O'Connell RJ, Budiansky B. 1978. Measures of dissipation in viscoelastic media. Geophys. Res. Lett. 5:5–8 [Google Scholar]
  80. Pezzotti G. 1999. Internal friction of polycrystalline ceramic oxides. Phys. Rev. B 60:4018–29 [Google Scholar]
  81. Pezzotti G, Kleebe HJ, Nishimura H, Ota K. 2001. Grain-boundary viscosity of preoxidized and nitrogen-annealed silicon carbides. J. Am. Ceram. Soc. 84:2371–76 [Google Scholar]
  82. Poirier JP. 1985. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals Cambridge, UK: Cambridge Univ. Press
  83. Raj R. 1975. Transient behaviour of diffusion-induced creep and creep rupture. Metall. Trans. A 6A:1499–509 [Google Scholar]
  84. Raj R, Ashby MF. 1971. On grain boundary sliding and diffusional creep. Metall. Trans. 2:1113–27 [Google Scholar]
  85. Rivière A. 2001. High temperature damping. Mater. Sci. Forum 366–68:268–75 [Google Scholar]
  86. Rychert CA, Fischer KM, Rondenay S. 2005. A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 436:542–45 [Google Scholar]
  87. Rychert CA, Rondenay S, Fischer KM. 2007. P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America. J. Geophys. Res. 112:B08314 [Google Scholar]
  88. Rychert CA, Shearer PM. 2011. Imaging the lithosphere-asthenosphere boundary beneath the Pacific using SS waveform modeling. J. Geophys. Res. 116:B07307 [Google Scholar]
  89. Schmeling H. 1985. Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part 1: Elasticity and anelasticity. Phys. Earth Planet. Int. 41:34–57 [Google Scholar]
  90. Schmerr N. 2012. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary. Science 355:1480–83 [Google Scholar]
  91. Stixrude L, Lithgow-Bertelloni C. 2005. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J. Geophys. Res. 110:B03204 [Google Scholar]
  92. Sundberg M, Cooper RF. 2010. A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size. Philos. Mag. 90:2817–40 [Google Scholar]
  93. Tan BH, Jackson I, Fitz Gerald JD. 1997. Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. J. Geophys. Res. 24:1055–58 [Google Scholar]
  94. Tan BH, Jackson I, Fitz Gerald JD. 2001. High-temperature viscoelasticity of fine-grained polycrystalline olivine. Phys. Chem. Minerals 28:641–64 [Google Scholar]
  95. Tatibouët J, Perez J, Vassoille R. 1983. Study of lattice defects in ice Ih by very-low-frequency internal friction measurements. J. Phys. Chem. 87:4050–54 [Google Scholar]
  96. Tatibouët J, Perez J, Vassoille R. 1987. Study of grain boundaries in ice by internal friction measurement. J. Phys. Colloq. 48:C1–197203 [Google Scholar]
  97. Van Orman JA, Fei YW, Hauri EH, Wang JH. 2003. Diffusion in MgO at high pressures: Constraints on deformation mechanisms and chemical transport at the core-mantle boundary. Geophys. Res. Lett. 30:1056 [Google Scholar]
  98. Walsh JB. 1969. New analysis of attenuation in partially-melted rock. J. Geophys. Res. 74:4333–37 [Google Scholar]
  99. Webb S, Jackson I, Fitz Gerald JD. 1999. Viscoelastic rheology of the titanate perovskites CaTiO3 and SrTiO3 at high temperature. Phys. Earth Planet. Inter. 115:259–91 [Google Scholar]
  100. Williams JG, Konopliv AS, Boggs DH, Park RS, Yuan DN. et al. 2014. Lunar interior properties from the GRAIL mission. J. Geophys. Res. 119:1546–78 [Google Scholar]
  101. Yuen DA, Peltier WR. 1982. Normal modes of the viscoelastic Earth. Geophys. J. R. Astron. Soc. 69:495–526 [Google Scholar]
  102. Zener C. 1941. Theory of the elasticity of polycrystals with viscous grain boundaries. Phys. Rev. 60:906–8 [Google Scholar]
  103. Zener C. 1948. Elasticity and Anelasticity of Metals Chicago: Univ. Chicago Press
/content/journals/10.1146/annurev-earth-060313-054732
Loading
/content/journals/10.1146/annurev-earth-060313-054732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error