1932

Abstract

The characterization of exoplanetary atmospheres has come of age in the past decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods, and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature, and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques. In this review, we focus on highly irradiated, large exoplanets (the hot Jupiters), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions, and look toward the future by considering a separate set of exploratory questions. Attaining the next level of understanding requires a concerted effort of constructing multifaceted, multiwavelength datasets for benchmark objects. Understanding clouds presents a formidable obstacle, as they introduce degeneracies into the interpretation of spectra, yet their properties and existence are directly influenced by atmospheric dynamics. Confronting general circulation models with these multifaceted, multiwavelength datasets will help us understand these and other degeneracies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105146
2015-05-30
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105146.html?itemId=/content/journals/10.1146/annurev-earth-060614-105146&mimeType=html&fmt=ahah

Literature Cited

  1. Agol E, Cowan NB, Knutson HA, Deming D, Steffen JH. et al. 2010. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721:1861–77 [Google Scholar]
  2. Angerhausen D, DeLarme E, Morse JA. 2014. A comprehensive study of Kepler phase curves and secondary eclipses temperatures and albedos of confirmed Kepler giant planets arXiv1404.4348
  3. Baraffe I, Chabrier G, Barman T. 2010. The physical properties of extra-solar planets. Rep. Prog. Phys. 73:016901 [Google Scholar]
  4. Barman TS, Macintosh BA, Konopacky QM, Marois C. 2011. Clouds and chemistry in the atmosphere of extrasolar planet HR 8799b. Astrophys. J. 733:65 [Google Scholar]
  5. Batygin K, Stanley S, Stevenson DJ. 2013. Magnetically controlled circulation on hot extrasolar planets. Astrophys. J. 776:53 [Google Scholar]
  6. Batygin K, Stevenson DJ. 2010. Inflating hot Jupiters with Ohmic dissipation. Astrophys. J. Lett. 714:L238–43 [Google Scholar]
  7. Bending VL, Lewis SR, Kolb U. 2012. Benchmark experiments with global climate models applicable to extrasolar gas giant planets in the shallow atmosphere approximation. MNRAS 428:2874–84 [Google Scholar]
  8. Birkby JL, de Kok RJ, Brogi M, de Mooij EJW, Schwarz H. et al. 2013. Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm. MNRAS Lett. 436:L35–39 [Google Scholar]
  9. Bodenheimer P, Lin DNC, Mardling RA. 2001. On the tidal inflation of short-period extrasolar planets. Astrophys. J. 548:466–72 [Google Scholar]
  10. Borucki WJ, Koch D, Jenkins J, Sasselov D, Gilliland R. et al. 2009. Kepler's optical phase curve of the exoplanet HAT-P-7b. Science 325:709 [Google Scholar]
  11. Broeg C, Fortier A, Ehrenreich D, Alibert Y, Baumjohann W. et al. 2013. CHEOPS: A transit photometry mission for ESA's small mission programme. arXiv1305.2270
  12. Brogi M, de Kok RJ, Birkby JL, Schwarz H, Snellen IAG. 2014. Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949b. Astron. Astrophys. 565:A124 [Google Scholar]
  13. Brogi M, Snellen IAG, de Kok RJ, Albrecht S, Birkby J, de Mooij EJW. 2012. The signature of orbital motion from the dayside of the planet T Botis b. Nature 486:502–4 [Google Scholar]
  14. Brown TM. 2001. Transmission spectra as diagnostics of extrasolar giant planet atmospheres. Astrophys. J. 553:1006–26 [Google Scholar]
  15. Burkert A, Lin DNC, Bodenheimer PH, Jones CA, Yorke HW. 2005. On the surface heating of synchronously spinning short-period Jovian planets. Astrophys. J. 618:512–23 [Google Scholar]
  16. Burrows A, Heng K, Nampaisarn T. 2011. The dependence of brown dwarf radii on atmospheric metallicity and clouds: theory and comparison with observations. Astrophys. J. 736:47–60 [Google Scholar]
  17. Burrows A, Hubeny I, Budaj J, Knutson HA, Charbonneau D. 2007. Theoretical spectral models of the planet HD 209458b with a thermal inversion and water emission bands. Astrophys. J. Lett. 668:L171 [Google Scholar]
  18. Burrows A, Rauscher E, Spiegel DS, Menou K. 2010. Photometric and spectral signatures of 3D models of transiting giant exoplanets. Astrophys. J. 719:341–50 [Google Scholar]
  19. Burrows A, Sudarsky D, Lunine JI. 2003. Beyond the T dwarfs: theoretical spectra, colors, and detectability of the coolest brown dwarfs. Astrophys. J. 596:587–96 [Google Scholar]
  20. Burrows AS. 2014a. Spectra as windows into exoplanet atmospheres. PNAS 111:12601–9 [Google Scholar]
  21. Burrows AS. 2014b. Highlights in the study of exoplanet atmospheres. Nature 513:345–52 [Google Scholar]
  22. Chabrier G, Baraffe I. 2007. Heat transport in giant (exo)planets: a new perspective. Astrophys. J. Lett. 661:L81–84 [Google Scholar]
  23. Charbonneau D, Knutson HA, Barman T, Allen LE, Mayor M. et al. 2008. The broadband infared emission spectrum of the exoplanet HD 189733b. Astrophys. J. 686:1341–48 [Google Scholar]
  24. Cho JY-K, Menou K, Hansen BMS, Seager S. 2003. The changing face of the extrasolar giant planet HD 209458b. Astrophys. J. Lett. 587:L117–20 [Google Scholar]
  25. Cho JY-K, Menou K, Hansen BMS, Seager S. 2008. Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations. Astrophys. J. 675:817–45 [Google Scholar]
  26. Cooper CS, Showman AP. 2005. Dynamic meteorology at the photosphere of HD 209458b. Astrophys. J. Lett. 629:L45–48 [Google Scholar]
  27. Cooper CS, Showman AP. 2006. Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649:1048–63 [Google Scholar]
  28. Cowan NB, Agol E. 2008. Inverting phase functions to map exoplanets. Astrophys. J. Lett. 678:L129–32 [Google Scholar]
  29. Cowan NB, Agol E. 2011a. A model for thermal phase variations of circular and eccentric exoplanets. Astrophys. J. 726:82–94 [Google Scholar]
  30. Cowan NB, Agol E. 2011b. The statistics of albedo and heat recirculation on hot exoplanets. Astrophys. J. 729:54 [Google Scholar]
  31. Cowan NB, Machalek P, Croll B, Shekhtman LM, Burrows A. et al. 2012. Thermal phase variations of WASP-12b. Astrophys. J. 747:82 [Google Scholar]
  32. Crossfield IJM, Hansen BMS, Harrington J, Cho JY-K, Deming D. et al. 2010. A new 24 micron phase curve for ψ Andromedae b. Astrophys. J. 723:1436–46 [Google Scholar]
  33. Crossfield IJM, Knutson H, Fortney J, Showman AP, Cowan NB, Deming D. 2012. Spitzer/MIPS 24 m observations of HD 209458b: 3 eclipses, 2.5 transits, and a phase curve corrupted by instrumental sensitivity variations. Astrophys. J. 752:81 [Google Scholar]
  34. de Kok RJ, Brogi M, Snellen IAG, Birkby J, Albrecht S, de Mooij EJW. 2013. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. 554:A82 [Google Scholar]
  35. Deming D, Seager S. 2009. Light and shadow from distant worlds. Nature 462:301–6 [Google Scholar]
  36. Deming D, Wilkins A, McCullough P, Burrows A, Fortney JJ. et al. 2013. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble Space Telescope. Astrophys. J. 774:95–111 [Google Scholar]
  37. Demory B-O. 2014. The albedos of Kepler's close-in super-Earths. Astrophys. J. Lett. 789:L20 (arXiv:1405.3798) [Google Scholar]
  38. Demory B-O, de Wit J, Lewis N, Fortney J, Zsom A. et al. 2013. Inference of inhomogeneous clouds in an exoplanet atmosphere. Astrophys. J. Lett. 776:L25 [Google Scholar]
  39. Demory B-O, Seager S. 2011. Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. Astrophys. J. Suppl. 197:12–16 [Google Scholar]
  40. de Wit J, Gillon M, Demory B-O, Seager S. 2012. Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. Astron. Astrophys. 548:A128 [Google Scholar]
  41. de Wit J, Seager S. 2013. Constraining exoplanet mass from transmission spectroscopy. Science 342:1473–77 [Google Scholar]
  42. Dobbs-Dixon I, Agol E. 2013. Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b. MNRAS 435:3159–68 [Google Scholar]
  43. Dobbs-Dixon I, Agol E, Burrows A. 2012. The impact of circumplantary jets on transit spectra and timing offsets for hot-Jupiters. Astrophys. J. 751:87 [Google Scholar]
  44. Dobbs-Dixon I, Cumming A, Lin DNC. 2010. Radiative hydrodynamic simulations of HD209458b: temporal variability. Astrophys. J. 710:1395 [Google Scholar]
  45. Dobbs-Dixon I, Lin DNC. 2008. Atmospheric dynamics of short-period extrasolar gas giant planets. I. Dependence of nightside temperature on opacity. Astrophys. J. 673:513–25 [Google Scholar]
  46. Evans TM, Pont F, Sing DK, Aigrain S, Barstow JK. et al. 2013. The deep blue color of HD 189733b: Albedo measurements with Hubble Space Telescope/Space Telescope imaging spectrograph at visible wavelengths. Astrophys. J. Lett. 772:L16 [Google Scholar]
  47. Faigler S, Tal-Or L, Mazeh T, Latham DW, Buchhave LA. 2013. Beer analysis of Kepler and CoRoT light curves. 1. Discovery of Kepler-76b: a hot Jupiter with evidence for superrotation. Astrophys. J. 771:26 [Google Scholar]
  48. Fortney JJ, Shabram M, Showman AP, Lian Y, Marley MS. et al. 2010. Transmission spectra of three-dimensional hot Jupiter model atmospheres. Astrophys. J. 709:1396–406 [Google Scholar]
  49. Gill AE. 1980. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106:447–62 [Google Scholar]
  50. Goldreich P, Soter S. 1966. Q in the solar system. Icarus 5:375–89 [Google Scholar]
  51. Goody RM, Yung YL. 1989. Atmospheric Radiation: Theoretical Basis New York: Oxford Univ. Press, 2nd ed..
  52. Guillot T. 2010. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520:A27–39 [Google Scholar]
  53. Guillot T, Showman AP. 2002. Evolution of “51 Pegasus b-like” planets. Astron. Astrophys. 385:156–65 [Google Scholar]
  54. Hansen BMS. 2008. On the absorption and redistribution of energy in irradiated planets. Astrophys. J. 179:484–508 [Google Scholar]
  55. Hansen CJ, Schwartz JC, Cowan NB. 2014. Features in the broadband eclipse spectra of exoplanets: signal or noise?. MNRAS 444:3632 [Google Scholar]
  56. Harrington J, Hansen BM, Luszcz SH, Seager S, Deming D. et al. 2006. The phase-dependent infrared brightness of the extrasolar planet ψ Andromedae b. Science 314:623–26 [Google Scholar]
  57. Held IM, Suarez MJ. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 75:1825–30 [Google Scholar]
  58. Heng K. 2012a. The influence of atmospheric scattering and absorption on Ohmic dissipation in hot Jupiters. Astrophys. J. Lett. 748:L17 [Google Scholar]
  59. Heng K. 2012b. The study of climate on alien worlds. Am. Sci. 100:334 (arXiv:1206.3640) [Google Scholar]
  60. Heng K. 2012c. On the existence of shocks in irradiated exoplanetary atmospheres. Astrophys. J. Lett. 761:L1 [Google Scholar]
  61. Heng K, Demory B-O. 2013. Understanding trends associated with clouds in irradiated exoplanets. Astrophys. J. 777:100 [Google Scholar]
  62. Heng K, Frierson DMW, Phillipps PJ. 2011a. Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment. MNRAS 418:2669–96 [Google Scholar]
  63. Heng K, Hayek W, Pont F, Sing DK. 2012. On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical temperature-pressure profiles. MNRAS 420:20 [Google Scholar]
  64. Heng K, Mendonça JM, Lee J-M. 2014. Analytical models of exoplanetary atmospheres. II. Radiative transfer via the two-stream approximation. Astrophys. J. Suppl. 215:4 (arXiv:1405.0026) [Google Scholar]
  65. Heng K, Menou K, Phillipps PJ. 2011b. Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers. MNRAS 413:2380 [Google Scholar]
  66. Heng K, Workman J. 2014. Analytical models of exoplanetary atmospheres. I. Atmospheric dynamics via the shallow water system. Astrophys. J. Suppl. 213:27 [Google Scholar]
  67. Hubeny I, Burrows A, Sudarsky D. 2003. Possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594:1011–18 [Google Scholar]
  68. Huitson CM, Sing DK, Vidal-Madjar A, Ballester GE, Lecavelier des Etangs A. et al. 2012. Temperature–pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating. MNRAS 422:2477–88 [Google Scholar]
  69. Kataria T, Showman AP, Lewis NK, Fortney JJ, Marley MS, Freedman RS. 2013. Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits. Astrophys. J. 767:76 [Google Scholar]
  70. Kempton EM-R, Perna R, Heng K. 2014. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models. Astrophys. J. 795:24 (arXiv:1409.1250) [Google Scholar]
  71. Kempton EM-R, Rauscher E. 2012. Constraining high speed winds in exoplanet atmospheres through observations of anomalous Doppler shifts during transit. Astrophys. J. 751:117–29 [Google Scholar]
  72. Knopoff L. 1964. Q. Rev. Geophys. 2:625–60 [Google Scholar]
  73. Knutson HA, Benneke B, Deming D, Homeier D. 2014. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b. Nature 505:66–68 [Google Scholar]
  74. Knutson HA, Charbonneau D, Allen LE, Burrows A, Megeath ST. 2008. The 3.6-8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673:526–31 [Google Scholar]
  75. Knutson HA, Charbonneau D, Allen LE, Fortney JJ, Agol E. et al. 2007. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447:183–86 [Google Scholar]
  76. Knutson HA, Charbonneau D, Cowan NB, Fortney JJ, Showman AP. et al. 2009a. Multiwavelength constraints on the day-night circulation patterns of HD 189733b. Astrophys. J. 690:822–36 [Google Scholar]
  77. Knutson HA, Charbonneau D, Cowan NB, Fortney JJ, Showman AP. et al. 2009b. The 8 ?m phase variation of the hot Saturn HD 149026b. Astrophys. J. 703:769–84 [Google Scholar]
  78. Knutson HA, Lewis N, Fortney JJ, Burrows A, Showman AP. et al. 2012. 3.6 and 4.5 μm phase curves and evidence for non-equilbrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754:22–37 [Google Scholar]
  79. Konopacky QM, Barman TS, Macintosh BA, Marois C. 2013. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science 339:1398–401 [Google Scholar]
  80. Kreidberg L, Bean JL, Desert J-M, Benneke B, Deming D. et al. 2014. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature 505:69–72 [Google Scholar]
  81. Kundu PK, Cohen IM. 2004. Fluid Dynamics San Diego: Elsevier, 3rd ed..
  82. Lainey V, Arlot J-E, Karatekin Ö, Van Hoolst T. 2010. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459:957–59 [Google Scholar]
  83. Langton J, Laughlin G. 2008. Hydrodynamic simulations of unevenly irradiated Jovian planets. Astrophys. J. 674:1106 [Google Scholar]
  84. Lee J-M, Heng K, Irwin PGJ. 2013. Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b. Astrophys. J. 778:97 [Google Scholar]
  85. Lee J-M, Irwin PGJ, Fletcher LN, Heng K, Barstow JK. 2014. Constraining the atmospheric composition of the day-night terminators of HD 189733b: atmospheric retrieval with aerosols. Astrophys. J. 789:14 [Google Scholar]
  86. Lewis NK, Knutson HK, Showman AP, Cowan NB, Laughlin G. et al. 2013. Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766:95–117 [Google Scholar]
  87. Lewis NK, Showman AP, Fortney JJ, Marley MS, Freedman RS, Lodders K. 2010. Atmospheric circulation of eccentric hot Neptune GJ436b. Astrophys. J. 720:344–56 [Google Scholar]
  88. Li J, Goodman J. 2010. Circulation and dissipation of hot Jupiters. Astrophys. J. 725:1146 [Google Scholar]
  89. Line MR, Wolf AS, Zhang X, Knutson H, Kammer JA. et al. 2013. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775:137 [Google Scholar]
  90. Liu B, Showman AP. 2013. Atmospheric circulation of hot Jupiters: insensitivity to initial conditions. Astrophys. J. 770:42 [Google Scholar]
  91. Madhusudhan N, Knutson H, Fortney J, Barman T. 2014. Exoplanetary atmospheres. Protostars and Planets VI H Beuther, R Klessen, C Dullemond, Th. Henning Tucson: Univ. Ariz. Press (arXiv1402.1169) [Google Scholar]
  92. Majeau C, Agol E, Cowan NB. 2012a. A two-dimensional map of the extrasolar planet HD 189733b. Astrophys. J. Lett. 747:2L20 [Google Scholar]
  93. Majeau C, Agol E, Cowan NB. 2012b. Erratum. A two-dimensional map of the extrasolar planet HD 189733b. Astrophys. J. Lett. 747:L32 [Google Scholar]
  94. Mandell AM, Haynes K, Sinukoff E, Madhusudhan N, Burrows A, Deming D. 2013. Exoplanet transit spectroscopy using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b. Astrophys. J. 779:128 [Google Scholar]
  95. Marois C, Macintosh B, Barman T, Zuckerman B, Song I. et al. 2008. Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348–52 [Google Scholar]
  96. Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T. 2010. Images of a fourth planet orbiting HR 8799. Nature 468:1080–83 [Google Scholar]
  97. Matsuno T. 1966. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44:25–43 [Google Scholar]
  98. Mayne NJ, Baraffe I, Acreman DM, Smith C, Browning MK. et al. 2014. The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters. Astron. Astrophys. 561:A1 [Google Scholar]
  99. Mayne NJ, Baraffe I, Acreman DM, Smith C, Wood N. et al. 2013. Using the UM dynamical cores to reproduce idealized 3-D flows. Geosci. Model Dev. Discuss. 6:3681 [Google Scholar]
  100. Mayor M, Queloz D. 1995. A Jupiter-mass companion to a solar-type star. Nature 378:355–59 [Google Scholar]
  101. Menou K. 2012a. Atmospheric circulation and composition of GJ1214b. Astrophys. J. Lett. 744:L16 [Google Scholar]
  102. Menou K. 2012b. Magnetic scaling laws for the atmospheres of hot giant exoplanets. Astrophys. J. 745:138 [Google Scholar]
  103. Menou K, Rauscher E. 2009. Atmospheric circulation of hot Jupiters: a shallow three-dimensional model. Astrophys. J. 700:887–97 [Google Scholar]
  104. Menou K, Rauscher E. 2010. Radiation-hydrodynamics of hot Jupiters atmospheres. Astrophys. J. 713:1174 [Google Scholar]
  105. Montalto M, Santos NC, Boisse I, Boue G, Figueira P, Sousa S. 2011. Exoplanet transmission spectroscopy: accounting for the eccentricity and the longitude of periastron. Superwinds in the upper atmosphere of HD 209458b?. Astron. Astrophys. 528:L17 [Google Scholar]
  106. Moses JI, Visscher C, Fortney JJ, Showman AP, Lewis NK. et al. 2011. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737:15 [Google Scholar]
  107. Nikolov N, Sing DK, Pont F, Burrows AS, Fortney JJ. et al. 2014. Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b. MNRAS 437:46–66 [Google Scholar]
  108. Parmentier V, Showman AP, de Wit J. 2014. Unveiling the atmospheres of giant exoplanets with an EChO-class mission.. Exp. Astron. doi: 10.1007/s10686-014-9395-0
  109. Parmentier V, Showman AP, Lian Y. 2013. 3D mixing in hot Jupiter atmospheres I: application to the day/night cold trap in HD 209458b. Astron. Astrophys. 558:A91 [Google Scholar]
  110. Peixoto JP, Oort AH. 1992. Physics of Climate New York: Springer-Verlag
  111. Perez-Becker D, Showman AP. 2013. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776:134 [Google Scholar]
  112. Perna R, Heng K, Pont F. 2012. The effects of irradiation on hot Jovian atmospheres: heat redistribution and energy dissipation. Astrophys. J. 751:59 [Google Scholar]
  113. Perna R, Menou K, Rauscher E. 2010a. Magnetic drag on hot Jupier atmospheric winds. Astrophys. J. 719:1421–26 [Google Scholar]
  114. Perna R, Menou K, Rauscher E. 2010b. Ohmic dissipation in the atmosphere of hot Jupiters. Astrophys. J. 724:313 [Google Scholar]
  115. Pierrehumbert R. 2010. Principles of Planetary Climate New York: Cambridge Univ. Press, 1st ed..
  116. Polichtchouk I, Cho JY-K. 2012. Baroclinic instability on hot extrasolar planets. MNRAS 424:1307–26 [Google Scholar]
  117. Pont F, Husnoo N, Mazeh T, Fabrycky D. 2011. Determining eccentricities of transiting planets: a divide in the mass-period plane. MNRAS 414:1278–84 [Google Scholar]
  118. Pont F, Knutson HA, Gilliland RL, Moutou C, Charbonneau D. 2008. Detection of an atmospheric haze on an extrasolar planet: the 0.55–1.05 m transmission spectrum of HD 189733b. MNRAS 385:109 [Google Scholar]
  119. Pont F, Sing DK, Gibson NP, Aigrain S, Henry G, Husnoo N. 2013. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. MNRAS 432:2917–44 [Google Scholar]
  120. Rauer H, Catala C, Aerts C, Appourchaux T, Benz W. et al. 2014. The PLATO 2.0 mission. Exp. Astron. 38:1–2249–330 (arXiv:1310.0696) [Google Scholar]
  121. Rauscher E, Menou K. 2010. Three dimensional modeling of hot Jupiter atmospheric flows. Astrophys. J. 714:1334 [Google Scholar]
  122. Rauscher E, Menou K. 2012a. The role of drag in the energetics of strongly forced exoplanet atmospheres. Astrophys. J. 745:78 [Google Scholar]
  123. Rauscher E, Menou K. 2012b. A general circulation model for gaseous exoplanets with double-gray radiative transfer. Astrophys. J. 750:96 [Google Scholar]
  124. Rauscher E, Menou K. 2013. Three-dimensional atmospheric circulation models of HD 189733b and HD 209458b with consistent magnetic drag and Ohmic dissipation. Astrophys. J. 764:103 [Google Scholar]
  125. Rauscher E, Showman AP. 2014. The influence of differential and circulation of the thermal evolution of gas giant planets. I. Upper limits from radiative equilibrium. Astrophys. J. 784:160 [Google Scholar]
  126. Reiners A, Basri G. 2008. Chromospheric activity, rotation, and rotational braking in M and L dwarfs. Astrophys. J. 684:1390 [Google Scholar]
  127. Ricker GR, Winn JN, Vanderspek R, Latham DW, Bakos GA. et al. 2014. The transiting exoplanet survey satellite. J. Astron. Telesc. Instrum. Syst. 1:014003 (arXiv:1406.0151) [Google Scholar]
  128. Rodler F, Lopez-Morales M, Ribas I. 2012. Weighing the non-transiting hot Jupiter. Astrophys. J. Lett. 753:L25 [Google Scholar]
  129. Rogers TM, Showman AP. 2014. Magnetohydrodynamic simulations of the atmosphere of HD 2094558b. Astrophys. J. Lett. 782:L4 [Google Scholar]
  130. Salby ML, Garcia RR, O'Sullivan D, Tribbia J. 1990. Global transport calculations with an equivalent barotropic system. J. Atmos. Sci. 47:188–214 [Google Scholar]
  131. Seager S. 2010. Exoplanet Atmospheres: Physical Processes Princeton, NJ: Princeton Univ. Press, 1st ed..
  132. Seager S. 2012. Written in the stars. Astrobiology 12:83–88 [Google Scholar]
  133. Seager S, Deming D. 2010. Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 48:631–72 [Google Scholar]
  134. Seager S, Sasselov DD. 2000. Theoretical transmission spectra during an extrasolar giant planet transit. Astrophys. J. 537:916–21 [Google Scholar]
  135. Showman AP, Cooper CS, Fortney JJ, Marley MS. 2008a. Atmospheric circulation of hot Jupiters: three-dimensional circulation models of HD209458b and HD189733b with simplified forcing. Astrophys. J. 682:559–76 [Google Scholar]
  136. Showman AP, Fortney JJ, Lewis NK, Shabram M. 2013a. Doppler signatures of the atmospheric circulation on hot Jupiters. Astrophys. J. 762:24 [Google Scholar]
  137. Showman AP, Fortney JJ, Lian Y, Marley MS, Freedman RS. et al. 2009. Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699:564–84 [Google Scholar]
  138. Showman AP, Guillot T. 2002. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385:166–80 [Google Scholar]
  139. Showman AP, Kaspi Y. 2013. Atmospheric circulation of brown dwarfs and directly imaged giant planets. Astrophys. J. 776:85 [Google Scholar]
  140. Showman AP, Menou K, Cho JY-K. 2008b. Atmospheric circulation of hot Jupiters: a review of current understanding. Extreme Solar Systems ASP Conf. Ser., 398, Proc. Conf. 25–29 June, 2007, Santorini Island, Greece, ed. D Fischer, FA Rasio, SE Thorsett, A Wolszczan 419–41 San Francisco: ASP [Google Scholar]
  141. Showman AP, Menou K, Cho JY-K. 2010. Atmospheric circulation of exoplanets. Exoplanets S Seager 471–516 Tucson: Univ. Ariz. Press [Google Scholar]
  142. Showman AP, Polvani LM. 2010. The Matsuno-Gill model and equatorial superrotation. Geophys. Res. Lett. 37L18811
  143. Showman AP, Polvani LM. 2011. Equatorial superrotation on tidally locked exoplanets. Astrophys. J. 738:71 [Google Scholar]
  144. Showman AP, Wordsworth RD, Merlis TM, Kaspi Y. 2013b. Atmospheric circulation of terrestrial exoplanets. Comparative Climatology of Terrestrial Planets S Mackwell, A Simon-Miller, J Harder, M Bullock, 610:277 Tucson: Univ. Ariz. Press (arXiv:1306.2418) [Google Scholar]
  145. Sing DK, Désert J-M, Fortney JJ, Lecavelier des Etangs A, Ballester GE. et al. 2011b. Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry. Astron. Astrophys. 527:A73 [Google Scholar]
  146. Sing DK, Huitson CM, López-Morales M, Pont F, Désert J-M. et al. 2012. GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy. MNRAS 426:1663 [Google Scholar]
  147. Sing DK, Pont F, Aigrain S, Charbonneau D, Désert J-M. et al. 2011a. Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. MNRAS 416:1443–55 [Google Scholar]
  148. Snellen IAG, Brandl BR, de Kok RJ, Brogi M, Birkby J, Schwarz H. 2014. Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63–65 [Google Scholar]
  149. Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S. 2010. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–51 [Google Scholar]
  150. Snellen IAG, de Mooij EJW, Albrecht S. 2009. The changing phases of extrasolar planet CoRoT-1b. Nature 459:543–45 [Google Scholar]
  151. Spiegel DS, Silverio K, Burrows A. 2009. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets. Astrophys. J. 699:1487–500 [Google Scholar]
  152. Stanisforth A, Thuburn J. 2012. Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc. 138:1–26 [Google Scholar]
  153. Thrastarson HTh, Cho Y-JK. 2010. Effects of initial flow on close-in planet atmospheric circulation. Astrophys. J. 716:144 [Google Scholar]
  154. Thrastarson HTh, Cho J-K. 2011. Relaxation time and dissipation interaction in hot planet atmospheric flow simulations. Astrophys. J. 729:117 [Google Scholar]
  155. Triaud AHMJ. 2014. Colour-magnitude diagrams of transiting exoplanets I. Systems with parallaxes. MNRAS 439:L61–64 [Google Scholar]
  156. Tsai S-M, Dobbs-Dixon I, Gu P-G. 2014. Three-dimensional structures of equatorial waves and the resulting super-rotation in the atmosphere of a tidally locked hot Jupiter. Astrophys. J. 793:141 [Google Scholar]
  157. Vallis GK. 2006. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation New York: Cambridge Univ. Press
  158. Welsh WF, Orosz JA, Seager S, Fortney JJ, Jenkins J. et al. 2010. The discovery of ellipsoidal variations in the Kepler light curve of HAT-P-7. Astrophys. J. Lett. 713:L145–49 [Google Scholar]
  159. Wolszczan A, Frail DA. 1992. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355:145–47 [Google Scholar]
  160. Wu Y, Lithwick Y. 2013. Ohmic heating suspends, not reverses, the cooling contraction of hot Jupiters. Astrophys. J. 763:13 [Google Scholar]
  161. Zellem RT, Lewis NK, Knutson HA, Griffith CA, Showman AP. et al. 2014. The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b. Astrophys. J. 790:53 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105146
Loading
/content/journals/10.1146/annurev-earth-060614-105146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error