1932

Abstract

Jadeitite is a relatively rare, very tough rock composed predominantly of jadeite and typically found associated with tectonic blocks of high-pressure/low-temperature metabasaltic rocks (e.g., eclogite, blueschist) in exhumed serpentinite-matrix mélanges. Studies over the past ∼20 years have interpreted jadeitite either as the direct hydrous fluid precipitate from subduction channel dewatering into the overlying mantle wedge or as the metasomatic replacement by such fluids of oceanic plagiogranite, graywacke, or metabasite along the channel margin. Thus, jadeitites directly sample and record fluid transport in the subduction factory and provide a window into this geochemical process that is critical to a major process in the Earth system. They record the remarkable transport of large ion lithophile elements, such as Li, Ba, Sr, and Pb, as well as elements generally considered more refractory, such as U, Th, Zr, and Hf. Jadeitite is also the precious form of jade, utilized since antiquity in the form of tools, adornments, and symbols of prestige.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105215
2015-05-30
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105215.html?itemId=/content/journals/10.1146/annurev-earth-060614-105215&mimeType=html&fmt=ahah

Literature Cited

  1. Angiboust S, Pettke T, de Hoog CJ, Caron B, Oncken O. 2014. Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J. Petrol. 55:883–916 [Google Scholar]
  2. Birch F, LeComte P. 1960. Temperature-pressure plane for albite composition. Am. J. Sci. 258:209–17 [Google Scholar]
  3. Bleeck AWG. 1908. Jadeite in the Kachin Hills, Upper Burma. Rec. Geol. Surv. India 36:254–85 [Google Scholar]
  4. Bosc EA. 1971. Geology of the San Agustín Acasaguastlán Quadrangle and Northeastern part of El Progresso Quadrangle, Guatemala PhD Thesis, Rice Univ., Houston, TX
  5. Bradley DC. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Sci. Rev. 108:16–33 [Google Scholar]
  6. Bröcker M, Enders M. 2001. Unusual bulk-rock compositions in eclogite-facies rocks from Syros and Tinos (Cyclades, Greece): implications for U-Pb zircon geochronology. Chem. Geol. 175:581–603 [Google Scholar]
  7. Bröcker M, Keasling A. 2006. Ionprobe U-Pb zircon ages from the high-pressure/low-temperature mélange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. J. Metamorph. Geol. 24:615–31 [Google Scholar]
  8. Buffon G-LL. 1749. Histoire Naturelle, Générale et Particulière, avec la Description du Cabinet du Roi Paris: Imprim. R.
  9. Buffon G-LL. 1783–1788. Histoire Naturelle des Minéraux Paris: Imprim. R.
  10. Cárdenas-Párraga J, García-Casco A, Núñez-Cambra K, Rodríguez-Vega A, Blanco-Quintero IF. et al. 2010. Jadeitite jade occurrence from the Sierra del Convento mélange (eastern Cuba). Bol. Soc. Geol. Mex. 62:199–205 [Google Scholar]
  11. Carpenter MA. 1981. Time-temperature-transformation (TTT) analysis of cation disordering in omphacite. Contrib. Mineral. Petrol. 78:433–40 [Google Scholar]
  12. Chan LH, Leeman WP, Plank T. 2006. Lithium isotopic composition of marine sediments. Geochem. Geophys. Geosyst. 7:2005GC001202 [Google Scholar]
  13. Chhibber HL. 1934. The Mineral Resources of Burma London: MacMillan
  14. Coggon R, Holland TJB. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 20:683–96 [Google Scholar]
  15. Coleman RG. 1961. Jadeite deposits of the Clear Creek area, New Idria district, San Benito County, California. J. Petrol. 2:209–47 [Google Scholar]
  16. Coleman RG. 1971. Plate tectonic emplacement of upper mantle peridotites along continental edges. J. Geophys. Res. 76:1212–22 [Google Scholar]
  17. Coleman RG. 1980. Tectonic inclusions in serpentinite. Arch. Sci. 33:89–102 [Google Scholar]
  18. Compagnoni R, Rolfo F. 2003. First report of jadeitite from the Monviso meta-ophiolite, Western Alps. Geoitalia 4:205–6 [Google Scholar]
  19. Compagnoni R, Rolfo F, Castelli D. 2012. Jadeitite from the Monviso meta-ophiolite, western Alps: occurrence and genesis. Eur. J. Mineral. 24:333–43 [Google Scholar]
  20. da Silva ZCG. 1967. Studies on jadeites and albites from Guatemala MA Thesis, Rice Univ., Houston, TX
  21. da Silva ZCG. 1970. Origin of albitites from eastern Guatemala. Bol. Serv. Geol. Minas 22:23–32 [Google Scholar]
  22. Dale J, Powell R, White RW, Elmer FL, Holland TJB. 2005. A thermodynamic model for Ca-Na clinoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for petrological calculations. J. Metamorph. Geol. 23.8:771–91 [Google Scholar]
  23. Damour AA. 1846. Analyses du jade oriental. Ann. Chim. Phys. 16:469–74 [Google Scholar]
  24. Damour AA. 1881. Nouvelles analyses sur la jadeite et sur quelques roches sodifères. Bull. Soc. Fr. Min. Crist. 4:157–64 [Google Scholar]
  25. de Capitani C, Petrakakis K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 95:1006–16 [Google Scholar]
  26. de Roever WP. 1955. Genesis of jadeite by low-grade metamorphism. Am. J. Sci. 253:283–98 [Google Scholar]
  27. Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: a review. Lithos 178:96–127 [Google Scholar]
  28. Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K. 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem. Geol. 269:262–77 [Google Scholar]
  29. Dilek Y. 2003. Ophiolite pulses, mantle plumes and orogeny. Geol. Soc. Spec. Publ. 218:9–19 [Google Scholar]
  30. Dilek Y, Furnes H. 2014. Ophiolites and their origin. Elements 10:93–100 [Google Scholar]
  31. Dobretsov NL. 1984. Problem of the jadeite rocks, associating with ophiolites. Mineral. Slov. 16:3–12 [Google Scholar]
  32. Dobretsov NL, Ponomareva LG. 1965. Comparative characteristics of jadeite and associated rocks from Polar Ural and Prebalkhash region, transl. JE Agrell, 1968. Int. Geol. Rev. 10:221–79 (from Russian) [Google Scholar]
  33. Draper G, Nagle F, Renne PR. 1991. Geology, structure, and tectonic development of the Rio San Juan Complex, northern Dominican Republic. Geol. Soc. Am. Spec. Pap. 262:77–96 [Google Scholar]
  34. Ernst WG. 1970. Tectonic contact between the Franciscan Mélange and the Great Valley Sequence—crustal expression of a Late Mesozoic Benioff Zone. J. Geophys. Res. 75:886–901 [Google Scholar]
  35. Evans BW. 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 46:479–506 [Google Scholar]
  36. Fishman AM. 2006. Gems in the North Ural and Timan Syktyvkar, Russ: Geoprint
  37. Flores KE, Martens U, Harlow GE, Brueckner HK, Pearson N. 2013. Jadeitite formed during subduction: in situ zircon geochronology constraints from two different tectonic events in the Guatemala Suture Zone. Earth Planet. Sci. Lett.371–7267–81
  38. Foshag WF. 1957. Mineralogical studies on Guatemalan jade. Smithson. Misc. Collect. 135:4307 [Google Scholar]
  39. Foshag WF, Leslie R. 1955. Jadeite from Manzanal, Guatemala. Am. Antiq. 21:81–83 [Google Scholar]
  40. Fu B, Paul B, Cliff J, Bröcker M, Bulle F. 2012. O-Hf isotope constraints on the origin of zircons in high-pressure mélange blocks and associated matrix rocks from Tinos and Syros, Greece. Eur. J. Mineral. 24:277–87 [Google Scholar]
  41. Fu B, Valley JW, Kita NT, Spicuzza MJ, Paton C. et al. 2010. Origin of zircons in jadeitite. Contrib. Mineral. Petrol. 159:769–80 [Google Scholar]
  42. Galvez ME, Martinez I, Beyssac O, Benzerara K, Agrinier P, Assayag N. 2013. Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contrib. Mineral. Petrol. 166:1687–708 [Google Scholar]
  43. García-Casco A, Rodríguez Vega A, Cárdenas Párraga J, Iturralde-Vinent MA, Lázaro C. et al. 2009. A new jadeitite jade locality (Sierra del Convento, Cuba): first report and some petrological and archaeological implications. Contrib. Mineral. Petrol. 158:1–16 [Google Scholar]
  44. Gerya TV. 2011. Future directions in subduction modeling. J. Geodyn. 52:344–78 [Google Scholar]
  45. Giaramita MJ, Sorensen SS. 1994. Primary fluids in low-temperature eclogites: evidence from two subduction complexes (Dominican Republic, and California, USA). Contrib. Mineral. Petrol. 117:279–92 [Google Scholar]
  46. Glodny J, Austrheim H, Molina JF, Rusin A, Seward D. 2003. Rb/Sr record of fluid-rock interaction in eclogites: the Marun-Keu complex, Polar Urals, Russia. Geochim. Cosmochim. Acta 67:4353–71 [Google Scholar]
  47. Glodny J, Pease V, Montero P, Austrheim H, Rusin AI. 2004. Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre- and early Uralian evolution of the northeastern European continental margin. Geol. Soc. Mem. 30:87–105 [Google Scholar]
  48. Green ECR, Holland TJB, Powell R. 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. Am. Mineral. 92:1181–89 [Google Scholar]
  49. Harlow GE. 1994. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. J. Metamorph. Geol. 12:49–68 [Google Scholar]
  50. Harlow GE, Davies HL, Summerfield GR, Matisoo-Smith E. 2012a. Archaeological jade mystery solved using a 119-year-old rock collection specimen Presented at AGU Fall Meet., Dec. 3–7, San Francisco, CA. Abstr. ED41E-0706
  51. Harlow GE, Flores KE. 2011. Jadeite jade: origin, sources, varieties and exploration. Proc. Int. Symp. Jade HAO Weicheng 13–22 Beijing: Peking Univ. [Google Scholar]
  52. Harlow GE, Price NA, Tsujimori T. 2006. Serpentinites of the Motagua fault zone, Guatemala: a mineralogical assessment Presented at 19th Gen. Meet. Int. Mineral. Assoc., July 23–28, Kobe, Jpn. Abstr. P19-17
  53. Harlow GE, Shi G. 2011. An LA-ICP-MS study of lavender jadeite from Burma, Guatemala, and Japan. Gems Gemol. 47:116–17 (Abstr.) [Google Scholar]
  54. Harlow GE, Sisson VB, Sorensen SS. 2011. Jadeitite from Guatemala: distinctions among multiple occurrences. Acta Geol. 9:363–87 [Google Scholar]
  55. Harlow GE, Sorensen SS. 2005. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections. Int. Geol. Rev. 47:113–46 [Google Scholar]
  56. Harlow GE, Sorensen SS, Sisson VB. 2007. Jade. Mineral. Assoc. Can. Short-Course Ser. 37:207–54 [Google Scholar]
  57. Harlow GE, Sorensen SS, Sisson VB, Shi G. 2014. The geology of jade deposits. Mineral. Assoc. Can. Short-Course Ser. 44:305–74 [Google Scholar]
  58. Harlow GE, Summerfield GR, Davies HL, Matisoo-Smith L. 2012b. A jade gouge from Emirau Island, Papua New Guinea (Early Lapita context: 3300 BP): a unique jadeitite. Eur. J. Mineral. 24:391–99 [Google Scholar]
  59. Hertwig A, McClelland WC, Kitajima K, Schertl HP, Maresch WV, Valley JW. 2013. Geochronology, geochemistry and oxygen isotopes of zircon in a concordant jadeitite layer and its blueschist host (Rio San Juan Complex, Dominican Republic). Presented at 10th Int. Eclogite Conf., Sept. 2–10, Courmayeur, Italy. Abstr. 52 [Google Scholar]
  60. Hirth G, Guillot S. 2013. Rheology and tectonic significance of serpentinite. Elements 9:107–13 [Google Scholar]
  61. Holland TJB, Powell R. 1998. An internally consistent thermodynamic dataset for phases of petrological interest. J. Metamorph. Geol. 16:309–43 [Google Scholar]
  62. Hughes RW, Galibert O, Bosshart G, Ward F, Oo T. et al. 2000. Burmese jade: the inscrutable gem. Gems Gemol. 36:2–26 [Google Scholar]
  63. Isacks B, Oliver J, Sykes LR. 1968. Seismology and the new global tectonics. J. Geophys. Res. 73:5855–99 [Google Scholar]
  64. Johnson CA, Harlow GE. 1999. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone. Geology 27:629–32 [Google Scholar]
  65. Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J. 2011. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Earth Planet. Sci. 39:545–76 [Google Scholar]
  66. Knippenberg S, Rodríguez Ramos R, Schertl HP, Maresch WV, Hertwig A. et al. 2012. The manufacture and exchange of jadeitite celts in the Caribbean. Presented at 1st Eur. Mineral. Conf., Sept. 2–6, Frankfurt, Ger. Abstr. EMC2012-400
  67. Kunugiza K, Goto A. 2010. Hydrothermal activity of the Hida-Gaien belt indicating initiation of subduction of proto-Pacific plate in ca. 520 Ma. J. Geogr. 119:279–93 [Google Scholar]
  68. Lázaro C, García-Casco A, Rojas Agramonte Y, Kröner A, Neubauer F, Iturralde-Vinent M. 2009. Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J. Metamorph. Geol. 27:19–40 [Google Scholar]
  69. Liou JG, Tsujimori T, Yang JS, Zhang RY, Ernst WG. 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: a review. J. Asian Earth Sci. 96:386–420 [Google Scholar]
  70. Liou JG, Tsujimori T, Zhang RY, Katayama I, Maruyama S. 2004. Global UHP metamorphism and continental subduction/collision: the Himalayan model. Int. Geol. Rev. 46:1–27 [Google Scholar]
  71. Manning CE. 1998. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Schweiz. Mineral. Petrogr. Mitt. 78:225–42 [Google Scholar]
  72. Manning CE. 2004. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223:1–16 [Google Scholar]
  73. Maresch W, Grevel C, Stanek KP, Schertl HP, Carpenter M. 2012. Multiple growth mechanisms of jadeite in Cuban metabasite. Eur. J. Mineral. 24:217–35 [Google Scholar]
  74. Martens U, Brueckner HK, Mattinson CG, Liou JG, Wooden JL. 2012. Timing of eclogite-facies metamorphism of the Chuacús complex, Central Guatemala: record of Late Cretaceous continental subduction of North America's sialic basement. Lithos 146–47:1–10 [Google Scholar]
  75. Maruyama S, Liou JG, Terbayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 38:485–594 [Google Scholar]
  76. McBirney AR, Aoki KI, Bass M. 1967. Eclogites and jadeite from the Motagua fault zone, Guatemala. Am. Mineral. 52:908–18 [Google Scholar]
  77. McDonough WF, Sun SS. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  78. Meng F, Makeyev AB, Yang JS. 2011. Zircon U-Pb dating of jadeitite from the Syum-Keu ultramafic complex, Polar Urals, Russia: constraints for subduction initiation. J. Asian Earth Sci. 42:596–606 [Google Scholar]
  79. Miyajima H. 1999. Bulk chemistry of jades from the Itoigawa-Omi district Presented at Annu. Meet. Jpn. Assoc. Mineral. Petrol. Econ. Geol., Sept. 24–26, Mito, Jpn. Abstr. 170
  80. Miyashiro A, Banno S. 1958. Nature of glaucophanitic metamorphism. Am. J. Sci. 256:97–110 [Google Scholar]
  81. Mori Y, Orihashi Y, Miyamoto T, Shimada K, Shigeno M, Nishiyama T. 2011. Origin of zircon in jadeitite from Nishisonogi metamorphic rocks, Kyushu, Japan. J. Metamorph. Geol. 29:673–84 [Google Scholar]
  82. Morishita T, Arai S, Ishida Y. 2007. Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones. Island Arc 16:40–56 [Google Scholar]
  83. Mottana A. 2012. Mineral novelties from America during Renaissance: the “stones” in Hernández' and Sahagún's treatises (1576–1577). Rend. Lincei 23:165–86 [Google Scholar]
  84. Nagel TJ, Hoffmann JE, Münker C. 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology 40:375–78 [Google Scholar]
  85. Newton MS, Kennedy GC. 1968. Jadeite, analcime, nepheline and albite at high temperatures and pressures. Am. J. Sci. 266:728–35 [Google Scholar]
  86. Nicolas A, Jackson M. 1982. High temperature dikes in peridotites: origin by hydraulic fracturing. J. Petrol. 23:568–82 [Google Scholar]
  87. Oberhänsli R, Bousquet R, Moinzadeh H, Moazzen M, Arvin M. 2007. The field of stability of blue jadeite: a new occurrence of jadeitite from Sorkhan, Iran, as a case study. Can. Mineral. 45:1705–13 [Google Scholar]
  88. Pan D, Spanu L, Harrison B, Sverjensky DA, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. PNAS 110:6646–50 [Google Scholar]
  89. Peacock S. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?. Geology 29:299–302 [Google Scholar]
  90. Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145:325–94 [Google Scholar]
  91. Qi M, Xiang H, Zhang ZM, Zhong ZQ. 2014. Zircon U-Pb ages of Myanmar jadeitite and constraint on the fluid in subduction zone of the Neo-Tethys. Acta Petrol. Sin. 30:2279–86 [Google Scholar]
  92. Qiu ZL, Wu FY, Yang SF, Zhu M, Sun JF, Yang P. 2009. Age and genesis of the Myanmar jadeite: constraints from U-Pb ages and Hf isotopes of zircon inclusions. Chin. Sci. Bull. 54:658–68 [Google Scholar]
  93. Robertson EC, Birch F, MacDonald GJF. 1957. Experimental determination of jadeite stability relations to 25,000 bars. Am. J. Sci. 255:115–37 [Google Scholar]
  94. Roy R, Tuttle OF. 1956. Investigations under hydrothermal conditions. Phys. Chem. Earth 1:138–80 [Google Scholar]
  95. Schertl HP, Hertwig A, Knippenberg S, Maresch W, Speich L. et al. 2014. Jade artefacts from the Playa Grande site, Dominican Republic: mineralogical characterization and archeological implications. 21st Gen. Meet. Int. Mineral. Assoc. (IMA) Abstr. Vol. D Chetty, L Andrews, J de Villiers, R Dixon, P Nex, et al., p. 202. Johannesburg: Geol. Soc. S. Afr./Mineral. Assoc. S. Afr. [Google Scholar]
  96. Schertl HP, Maresch WV, Stanek KP, Hertwig A, Krebs M. et al. 2012. New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: petrological and geochronological overview. Eur. J. Mineral. 24:199–216 [Google Scholar]
  97. Schulze DJ, Flemming RL, Shepherd PHM, Helmstaedt H. 2014. Mantle-derived guyanaite in a Cr-omphacitite xenolith from Moses Rock diatreme, Utah. Am. Mineral. 99:1277–83 [Google Scholar]
  98. Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32:751–57 [Google Scholar]
  99. Shatsky VS, Simonov VA, Yagoutz E. 2000. New data on the age of eclogites of the Polar Urals. Dokl. Earth Sci. 371:519–23 (in Russian) [Google Scholar]
  100. Shervais JW. 2001. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochem. Geophys. Geosyst. 2:2000GC000080 [Google Scholar]
  101. Shervais JW. 2008. Tonalites, trondhjemites, and diorites of the Elder Creek ophiolite, California: low-pressure slab melting and reaction with the mantle wedge. Geol. Soc. Am. Spec. Pap. 438:113–32 [Google Scholar]
  102. Shi GH, Cui WY, Cao SM, Jiang N, Jian P. et al. 2008. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite. J. Geol. Soc. 165:221–34 [Google Scholar]
  103. Shi GH, Cui WY, Tropper P, Wang CQ, Shu GM, Yu HX. 2003. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma. Contrib. Mineral. Petrol. 145:355–76 [Google Scholar]
  104. Shi GH, Tropper P, Cui W, Tan J, Wang C. 2005. Methane (CH4)-bearing fluid inclusions in the Myanmar jadeitite. Geochem. J. 39:503–16 [Google Scholar]
  105. Shigeno M, Mori Y, Nishiyama T. 2005. Reaction microtextures in jadeitites from the Nishisonogi metamorphic rocks, Kyushu, Japan. J. Mineral. Petrol. 100:237–46 [Google Scholar]
  106. Shigeno M, Mori Y, Shimada K, Nishiyama T. 2012. Jadeitites with retrograde metasomatic zoning from the Nishisonogi metamorphic rocks, western Japan: fluid–tectonic block interaction during exhumation. Eur. J. Mineral. 24:289–311 [Google Scholar]
  107. Shoji T, Kobayashi S. 1988. Fluid inclusions found in jadeite and stronalsite, and a comment on the jadeite-analcime boundary. J. Mineral. Petrol. Econ. Geol. 83:1–8 [Google Scholar]
  108. Simons KK, Harlow GE, Sorensen SS, Brueckner HK, Goldstein SL. et al. 2010. Lithium isotopes in Guatemala and Franciscan HP-LT rocks: insights into the role of sediment-derived fluids in the mantle wedge. Geochim. Cosmochim. Acta 74:3621–41 [Google Scholar]
  109. Sisson VB, Sorensen SS, Harlow GE. 2006. Subduction zone fluid composition estimated from fluid inclusions in Guatemalan jadeitite. Geol. Soc. Am. Abstr. Programs 38:7270 [Google Scholar]
  110. Sobolev VS. 1949. The Introduction into Silicates Mineralogy Lvov, Ukr: Lvov Univ. Publ. (in Russian)
  111. Sobolev VS. 1951. On the terms of the alkaline pyroxene and alkaline amphibole. Mineral. Collect. Lvov Geol. Soc. 5:316–18 [Google Scholar]
  112. Sorensen SS, Barton MD. 1987. Metasomatism and partial melting in a subduction complex: Catalina Schist, southern California. Geology 15:115–18 [Google Scholar]
  113. Sorensen SS, Harlow GE, Rumble D. 2006. The origin of jadeitite-forming subduction zone fluids: CL-guided SIMS oxygen isotope and trace element evidence. Am. Mineral. 91:979–96 [Google Scholar]
  114. Sorensen SS, Sisson VB, Harlow GE, Avé Lallemant HG. 2010. Element residence and transport during subduction zone metasomatism: evidence from a jadeitite-serpentinite contact, Guatemala. Int. Geol. Rev. 52:899–940 [Google Scholar]
  115. Stern RJ, Tsujimori T, Harlow GE, Groat LA. 2013. Plate tectonic gemstones. Geology 41:723–26 [Google Scholar]
  116. Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42:313–45 [Google Scholar]
  117. Sun SS, McDonough WF. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  118. Syracuse EM, van Keken PE, Abers GA. 2010. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183:73–90 [Google Scholar]
  119. Tsujimori T, Ernst WG. 2014. Lawsonite blueschists and lawsonite eclogites as proxies for paleosubduction zone processes: a review. J. Metamorph. Geol. 32:437–54 [Google Scholar]
  120. Tsujimori T, Harlow GE. 2012. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review. Eur. J. Mineral. 24:371–90 [Google Scholar]
  121. Tsujimori T, Liou JG, Wooden J, Miyamoto T. 2005. U-Pb dating of large zircons in low-temperature jadeitite from the Osayama serpentinite mélange, Southwest Japan: insights into the timing of serpentinization. Int. Geol. Rev. 47:1048–57 [Google Scholar]
  122. Tsujimori T, Sisson VB, Liou JG, Harlow GE, Sorensen SS. 2006a. Petrologic characterization of Guatemalan lawsonite eclogite: eclogitization of subducted oceanic crust in a cold subduction zone. Geol. Soc. Am. Spec. Pap. 403:147–68 [Google Scholar]
  123. Tsujimori T, Sisson VB, Liou JG, Harlow GE, Sorensen SS. 2006b. Very low-temperature record in subduction process: a review of worldwide lawsonite eclogites. Lithos 92:609–24 [Google Scholar]
  124. Wada I, Wang K, He J, Hyndman RD. 2008. Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization. J. Geophys. Res. 113:B04402 [Google Scholar]
  125. Watson KD, Morton DM. 1969. Eclogite inclusions in kimberlite pipes at Garnet Ridge, northeastern Arizona. Am. Mineral. 54:267–85 [Google Scholar]
  126. Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. Am. Mineral. 95:185–87 [Google Scholar]
  127. Wohlers A, Manning CE, Thompson AB. 2011. Experimental investigation of the solubility of albite and jadeite in H2O, with paragonite + quartz at 500 and 600ºC and 1–2.25 GPa. Geochim. Cosmochim. Acta 75:2924–39 [Google Scholar]
  128. Yoder HS Jr. 1950. The jadeite problem, parts I and II. Am. J. Sci. 248:225–48, 312–34 [Google Scholar]
  129. Yui TF, Fukoyama M, Iizuka Y, Wu CM, Wu TW. et al. 2013. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon. Lithos 160–61:268–82 [Google Scholar]
  130. Yui TF, Maki K, Usuki T, Lan CY, Martens U. et al. 2010. Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon. Chem. Geol. 270:45–55 [Google Scholar]
  131. Yui TF, Maki K, Wang KL, Lan CY, Iizuka Y. et al. 2012. Hf isotope and REE compositions of zircon from jadeitite (Tone, Japan and north of the Motagua fault, Guatemala): implications on jadeitite genesis and possible protoliths. Eur. J. Mineral. 24:263–75 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105215
Loading
/content/journals/10.1146/annurev-earth-060614-105215
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error