1932

Abstract

The Central Asian Orogenic Belt records the accretion and convergence of three collage systems that were finally rotated into two major oroclines. The Mongolia collage system was a long, N–S-oriented composite ribbon that was rotated to its current orientation when the Mongol-Okhotsk orocline was formed. The components of the Kazakhstan collage system were welded together into a long, single composite arc that was bent to form the Kazakhstan orocline. The cratons of Tarim and North China were united and sutured by the Beishan orogen, which terminated with formation of the Solonker suture in northern China. All components of the three collage systems were generated by the Neoproterozoic and were amalgamated in the Permo-Triassic. The Central Asian Orogenic Belt evolved by multiple convergence and accretion of many orogenic components during multiple phases of amalgamation, followed by two phases of orocline rotation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105254
2015-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105254.html?itemId=/content/journals/10.1146/annurev-earth-060614-105254&mimeType=html&fmt=ahah

Literature Cited

  1. Abrajevitch A, Van der Voo R, Bazhenov ML, Levashova NM, McCausland PJA. 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455:61–76 [Google Scholar]
  2. Abrajevitch A, Van der Voo R, Levashova NM, Bazhenov ML. 2007. Paleomagnetic constraints on the paleogeography and oroclinal bending of the Devonian volcanic arc in Kazakhstan. Tectonophysics 441:67–84 [Google Scholar]
  3. Ai YL, Zhang LF, Li XP, Qu JF. 2006. Geochemical characteristics and tectonic implications of HP-UHP eclogites and blueschists in southwestern Tianshan, China. Prog. Nat. Sci. 16:624–32 [Google Scholar]
  4. Ao SJ, Xiao WJ, Han CM, Mao QG, Zhang JE. 2010. Zircon U-Pb age, geochemistry and Hf isotopes of the early Permian mafic-ultramafic complexes in the Beishan area, NW China: implications for the late Paleozoic tectonic evolution of the Altaids. Gondwana Res. 18:466–78 [Google Scholar]
  5. Bazhenov ML, Levashova NM, Degtyarev KE, Van der Voo R, Abrajevitch AV, McCausland PJA. 2012. Unraveling the early–middle Paleozoic paleogeography of Kazakhstan on the basis of Ordovician and Devonian paleomagnetic results. Gondwana Res. 22:974–91 [Google Scholar]
  6. Biske YS, Seltmann R. 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan Oceans. Gondwana Res. 17:602–13 [Google Scholar]
  7. Burtman VS. 2010. Tien Shan, Pamir, and Tibet: history and geodynamics of Phanerozoic oceanic basins. Geotectonics 44:388–404 [Google Scholar]
  8. Buslov MM, Watanabe T, Fujiwara Y, Iwata K, Smirnova LV. et al. 2004. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J. Asian Earth Sci. 23:655–71 [Google Scholar]
  9. Cai DS, Lu HF, Jia D, Wu SM. 1995. Paleozoic plate tectonic evolution of southern Tianshan. Chin. Geol. Rev. 41:432–42 (in Chinese with English abstract) [Google Scholar]
  10. Cai K, Sun M, Yuan C, Long X, Xiao W. 2011. Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russ. Geol. Geophys. 52:1619–33 [Google Scholar]
  11. Carroll AR, Graham SA, Chang EZ, McKnight C. 2001. Sinian through Permian tectonostratigraphic evolution of the northwestern Tarim basin, China. Geol. Soc. Am. Mem. 194:47–69 [Google Scholar]
  12. Cawood PA, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci. Rev. 82:217–56 [Google Scholar]
  13. Chen B, Jahn BM, Tian W. 2009. Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collision-related magmas and forearc sediments. J. Asian Earth Sci. 34:245–57 [Google Scholar]
  14. Choulet F, Faure M, Cluzel D, Chen Y, Lin W, Wang B. 2012. From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China. Gondwana Res. 21:530–47 [Google Scholar]
  15. Chu H, Wei C, Wang H, Ren Y. 2013. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia. Chin. Sci. Bull. 58:3580–87 [Google Scholar]
  16. Cocks LRM, Torsvik TH. 2007. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth-Sci. Rev. 82:29–74 [Google Scholar]
  17. Dalziel IWD, Lawver LA, Murphy JB. 2000. Plumes, orogenesis, and supercontinental fragmentation. Earth Planet. Sci. Lett. 178:1–11 [Google Scholar]
  18. de Jong K, Xiao WJ, Windley BF, Masago H, Lo CH. 2006. Ordovician 40Ar/39Ar phengite ages from the blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) and implications for the early Palaeozoic history of continental blocks in China and adjacent areas. Am. J. Sci. 306:799–845 [Google Scholar]
  19. Dewey JF. 2005. Orogeny can be very short. PNAS 102:15286–93 [Google Scholar]
  20. Dewey JF, Shackleton R, Chang CF, Sun Y. 1988. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. A 327:379–413 [Google Scholar]
  21. Dobretsov NL, Buslov MM, Zhimulev FI, Travin AV, Zayachkovsky AA. 2006. Vendian–Early Ordovician geodynamic evolution and model for exhumation of ultrahigh- and high-pressure rocks from the Kokchetav subduction-collision zone (northern Kazakhstan). Russ. Geol. Geophys. 47:424–40 [Google Scholar]
  22. Dobrzhinetskaya LF. 2012. Microdiamonds—frontier of ultrahigh-pressure metamorphism: a review. Gondwana Res. 21:207–23 [Google Scholar]
  23. Domeier M, Torsvik TH. 2014. Plate tectonics in the late Paleozoic. Geosci. Front. 5:303–50 [Google Scholar]
  24. Eizenhöfer PR, Zhao G, Zhang J, Sun M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 33:441–63 [Google Scholar]
  25. Faryad SW, Dobrzhinetskaya L, Hoinkes G, Zhang J. 2013. Ultrahigh-pressure and high-pressure metamorphic terranes in orogenic belts: reactions, fluids and geological processes: preface. Gondwana Res. 23:841–43 [Google Scholar]
  26. Feng JY, Xiao WJ, Windley B, Han CM, Wan B. et al. 2013. Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: implications for Late Permian accretionary tectonics in the southern Altaids. J. Asian Earth Sci. 78:114–42 [Google Scholar]
  27. Gao J, He GQ, Li MS, Xiao XC, Tang YQ. 1995. The mineralogy, petrology, metamorphic PTDt trajectory and exhumation mechanism of blueschists, south Tianshan, northwestern China. Tectonophysics 250:151–68 [Google Scholar]
  28. Gao J, Klemd R. 2003. Formation of HP-LT rocks and their tectonic implications on the western Tianshan orogen, NW China: geochemical and age constraints. Lithos 66:1–22 [Google Scholar]
  29. Gao R, Hou H, Cai X, Knapp J, He R. 2013. Fine crustal structure beneath the junction of the southwest Tian Shan and Tarim Basin, NW China. Lithosphere 5382–92
  30. Ge R, Zhu W, Wilde S, He J, Cui X. et al. 2014. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics 33:302–29 [Google Scholar]
  31. Geng HY, Sun M, Yuan C, Zhao GC, Xiao WJ. et al. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications. J. Asian Earth Sci. 42:854–66 [Google Scholar]
  32. Geng YS, Wang XS, Shen QH, Wu CM. 2007. Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia. Geol. China 34:251–61 (in Chinese with English abstract) [Google Scholar]
  33. Glorie S, De Grave J, Buslov MM, Zhimulev FI, Izmer A. et al. 2011. Formation and Palaeozoic evolution of the Gorny-Altai–Altai-Mongolia suture zone (South Siberia): zircon U/Pb constraints on the igneous record. Gondwana Res. 20:465–84 [Google Scholar]
  34. Guo FX. 2000. Affinity between Paleozoic blocks of Xinjiang and their suturing ages. Acta Geol. Sin. 74:1–6 (in Chinese with English abstract) [Google Scholar]
  35. Guy A, Schulmann K, Clauer N, Hasalová P, Seltmann R. et al. 2014. Late Paleozoic–Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data. Gondwana Res. 25:309–37 [Google Scholar]
  36. Han BF, He GQ, Wang XC, Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Sci. Rev. 109:74–93 [Google Scholar]
  37. He DF, Li D, Fan C, Yang XF. 2013. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, northwest China: insights into the continental growth of Central Asia. Gondwana Res. 24:560–77 [Google Scholar]
  38. Hegner E, Klemd R, Kröner A, Corsini M, Alexeiev DV. et al. 2010. Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the South Tianshan orogen of Kyrgyzstan. Am. J. Sci. 310:916–50 [Google Scholar]
  39. Heumann M J, Johnson C L, Webb LE, Taylor JP, Jalbaa U. et al. 2012. Paleogeographic reconstruction of a late Paleozoic arc collision zone, southern Mongolia. Geol. Soc. Am. Bull. 124:1514–34 [Google Scholar]
  40. Hu A, Jahn BM, Zhang G, Chen Y, Zhang Q. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328:15–51 [Google Scholar]
  41. Jahn BM, Windley B, Natal'in B, Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. J. Asian Earth Sci. 23:599–603 [Google Scholar]
  42. Jian P, Kröner A, Jahn BM, Windley BF, Shi Y. et al. 2014. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt. Earth-Sci. Rev. 133:62–93 [Google Scholar]
  43. Jian P, Liu DY, Kröner A, Windley BF, Shi YR. et al. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth. Lithos 101:233–59 [Google Scholar]
  44. Jian P, Shi YR, Zhang FQ, Miao LC, Zhang LQ, Kröner A. 2007. Geological excursion to Inner Mongolia, China, to study the accretionary evolution of the southern margin of the Central Asian Orogenic Belt. Abstract and Excursion Guidebook, Third International Workshop and Field Excursion for IGCP Project 480 DY Liu, B Natal'in, P Jian, A Kröner, T Wang 49–72 Paris: Int. Geosci. Programme (IGCP) [Google Scholar]
  45. Johnston ST. 2001. The Great Alaskan Terrane Wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth Planet. Sci. Lett. 193:259–72 [Google Scholar]
  46. Johnston ST. 2004. The New Caledonia–D'Entrecasteaux orocline and its role in clockwise rotation of the Vanuatu–New Hebrides Arc and formation of the North Fiji Basin. Geol. Soc. Am. Spec. Pap. 383:225–36 [Google Scholar]
  47. Johnston ST, Acton S. 2003. The Eocene Southern Vancouver Island Orocline—a response to seamount accretion and the cause of fold-and-thrust belt and extensional basin formation. Tectonophysics 365:165–83 [Google Scholar]
  48. Johnston ST, Weil AB, Gutiérrez-Alonso G. 2013. Oroclines: thick and thin. Geol. Soc. Am. Bull. 125:643–63 [Google Scholar]
  49. Khain EV, Bibikova EV, Kröner A, Zhuravlev DZ, Sklyarov EV. et al. 2002. The most ancient ophiolite of Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhungur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 199:311–25 [Google Scholar]
  50. Kheraskova TN, Didenko AN, Bush VA, Volozh YA. 2003. The Vendian–Early Paleozoic history of the continental margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt. Russ. J. Earth Sci. 5:165–84 [Google Scholar]
  51. Kheraskova T, Bush V, Didenko A, Samygin S. 2010. Breakup of Rodinia and early stages of evolution of the Paleoasian ocean. Geotectonics 44:3–24 [Google Scholar]
  52. Klemd R, Brocker M, Hacker BR, Gao J, Gans P, Wemmer K. 2005. New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China. J. Geol. 113:157–68 [Google Scholar]
  53. Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E. et al. 2007. Accretionary growth and crust-formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Geol. Soc. Am. Mem. 200:181–209 [Google Scholar]
  54. Lehmann J, Schulmann K, Lexa O, Corsini M, Kröner A. et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia. Am. J. Sci. 310:575–628 [Google Scholar]
  55. Levashova NM, Degtyarev KE, Bazhenov ML, Collins AQ, Van der Voo R. 2003. Middle Paleozoic paleomagnetism of east Kazakhstan: post-Middle Devonian rotations in a large-scale orocline in the central Ural–Mongolia belt. Tectonophysics 377:249–68 [Google Scholar]
  56. Levashova NM, Mikolaichuk AV, McCausland PJA, Bazhenov ML, Van der Voo R. 2007. Devonian paleomagnetism of the North Tien Shan: implications for the middle-Late Paleozoic paleogeography of Eurasia. Earth Planet. Sci. Lett. 257:104–20 [Google Scholar]
  57. Levashova NM, Meert JG, Gibsher AS, Grice WG, Bazhenov ML. 2011. The origin of microcontinents in the Central Asian Orogenic Belt: constraints from paleomagnetism and geochronology. Precambr. Res. 185:37–54 [Google Scholar]
  58. Li Q, Zhang LF. 2004. The P-T path and geological significance of the low-pressure granulite-facies metamorphism in Muzhaerte, Southwest Tian Shan. Acta Petrol. Sin. 20:583–94 [Google Scholar]
  59. Li S, Wang T, Wilde SA, Tong Y. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci. Rev. 126:206–34 [Google Scholar]
  60. Li XD, Cui X. 1994. Structures. Comprehensive Survey of Geological Sections in the West Tianshan of Xinjiang, China BY Wang, ZJ Lang, XD Li, X Qu, TF Li 126–68 Beijing: Science (in Chinese with English abstract) [Google Scholar]
  61. Li Y, Zhou H, Brouwer FM, Wijbrans JR, Zhong Z, Liu H. 2011. Tectonic significance of the Xilin Gol Complex, Inner Mongolia, China: petrological, geochemical and U–Pb zircon age constraints. J. Asian Earth Sci. 42:1018–29 [Google Scholar]
  62. Li Z, Yang X, Li Y, Santosh M, Chen H, Xiao W. 2014. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite. Lithos 204:83–96 [Google Scholar]
  63. Lin L, Xiao W, Wan B, Windley B, Ao S. et al. 2014. Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): significance for termination of accretionary orogenesis in the southern Altaids. Am. J. Sci. 314:679–703 [Google Scholar]
  64. Long XP, Sun M, Yuan C, Xiao WJ, Lin SF. et al. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics 26:TC5015 [Google Scholar]
  65. Lu S, Li H, Zhang C, Niu G. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambr. Res. 160:94–107 [Google Scholar]
  66. Ma C, Xiao WJ, Windley BF, Zhao GP, Han CM. et al. 2012. Tracing a subducted ridge-transform system in a late Carboniferous accretionary prism of the southern Altaids: orthogonal sanukitoid dyke swarms in western Junggar, NW China. Lithos 140–41:152–65 [Google Scholar]
  67. Mao QG, Xiao WJ, Windley BF, Han CM, Qu JF. et al. 2012. The Liuyuan complex in the Beishan, NW China: a Carboniferous–Permian forearc sliver in southern Altaids?. Geol. Mag. 149:483–506 [Google Scholar]
  68. Maruyama S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc 6:91–120 [Google Scholar]
  69. Maruyama S, Hasegawa A, Santosh M, Kogiso T, Omori S. et al. 2009. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Res. 16:414–30 [Google Scholar]
  70. Masago H, Omori S, Maruyama S. 2009. Counter-clockwise prograde P-T path in collisional orogeny and water subduction at the Precambrian–Cambrian boundary: the ultrahigh-pressure pelitic schist in the Kokchetav massif, northern Kazakhstan. Gondwana Res. 15:137–50 [Google Scholar]
  71. Masago H, Omori S, Maruyama S. 2010. Significance of retrograde hydration in collisional metamorphism: a case study of water infiltration in the Kokchetav ultrahigh-pressure metamorphic rocks, northern Kazakhstan. Gondwana Res. 18:205–12 [Google Scholar]
  72. Mei HL, Yu HF, Li S, Lu SN, Li HM. et al. 1998. First discovery of eclogite-granitoid in Beishan, Gansu Province. Chin. Sci. Bull. 43:2105–11 (in Chinese with English abstract) [Google Scholar]
  73. Miao L, Zhang F, Fan W, Liu D. 2007. Phanerozoic evolution of the Inner Mongolia–Daxinganling orogenic belt in North China: constraints from geochronology of ophiolites and associated formations. Geol. Soc. Lond. Spec. Publ. 206:223–37 [Google Scholar]
  74. Miao LC, Fan WM, Liu DY, Zhang FQ, Shi YR, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt, China. J. Asian Earth Sci. 32:348–70 [Google Scholar]
  75. Milsom J, Kaye S, Sardjona S. 1996. Extension, collision and curvature in the eastern Banda arc. Geol. Soc. Lond. Spec. Publ. 196:85–94 [Google Scholar]
  76. Natal'in BA, Şengör AMC. 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyan closure. Tectonophysics 404:175–202 [Google Scholar]
  77. Ni Z, Zhai M, Wang R, Tong Y. 2006. Late Paleozoic retrograded eclogites from within the northern margin of the North China Craton: evidence for subduction of the Paleo-Asian ocean. Gondwana Res. 9:209–24 [Google Scholar]
  78. Niu H, Shan Q, Zhang H, Yu X. 2007. 40Ar/39Ar chronology of the ultra-high-pressure metamorphic quartz-magnesitite in Zaheba, eastern Junggar, Xinjiang. Acta Petrol. Sin. 23:1627–34 (in Chinese with English abstract) [Google Scholar]
  79. Rong JY, Boucot AJ, Su YZ, Strusz DL. 1995. Biogeographical analysis of Late Silurian brachiopod fauna, chiefly from Asia and Australia. Lethaia 28:39–60 [Google Scholar]
  80. Rong JY, Zhang ZX. 1982. A southward extension of the Silurian Tuvaella brachiopod fauna. Lethaia 15:133–47 [Google Scholar]
  81. Safonova IY, Buslov MM, Iwata K, Kokh DA. 2004. Fragments of Vendian–Early Carboniferous oceanic crust of the Paleo-Asian Ocean in foldbelts of the Altai-Sayan region of Central Asia: geochemistry, biostratigraphy and structural setting. Gondwana Res. 7:771–90 [Google Scholar]
  82. Safonova IY, Santosh M. 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 25:126–58 [Google Scholar]
  83. Safonova IY, Utsunomiya A, Kojima S, Nakae S, Tomurtogoo O. et al. 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Res. 16:587–608 [Google Scholar]
  84. Seltmann R, Porter TM. 2005. The porphyry Cu-Au/Mo deposits of Central Eurasia. 1. Tectonic, geologic and metallogenic setting and significant deposits. Super Porphyry Copper and Gold Deposits: A Global Perspective TM Porter 467–512 Adelaide, Aust: PGC [Google Scholar]
  85. Şengör AMC, Natal'in B. 1996a. Paleotectonics of Asia: fragments of a synthesis. The Tectonic Evolution of Asia A Yin, TM Harrison 486–640 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  86. Şengör AMC, Natal'in B. 1996b. Turkic-type orogeny and its role in the making of the continental crust. Annu. Rev. Earth Planet. Sci. 24:263–337 [Google Scholar]
  87. Şengör AMC, Natal'in BA, Burtman US. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:209–304 [Google Scholar]
  88. Shang Q. 2004. Occurrences of Permian radiolarians in central and eastern Nei Mongol (Inner Mongolia) and their geological significance to the Northern China Orogen. Chin. Sci. Bull. 49:2613–19 [Google Scholar]
  89. Shu LS, Wang YJ. 2003. Late Devonian–Early Carboniferous radiolarian fossils from siliceous rocks of the Kelameili ophiolite, Xinjiang. Geol. Rev. 49:408–13 [Google Scholar]
  90. Simonov VA, Sakiev KS, Volkova NI, Stupakov SI, Travin AV. 2008. Conditions of formation of the Atbashi Ridge eclogites (South Tien Shan). Russ. Geol. Geophys. 49:803–15 [Google Scholar]
  91. Sklyarov EV, Gladkochub DP, Mazukabzov A, Donskaya TV, Stenevich AM. 2003. Geologic complexes of the southern marginal part of the Siberian Craton as indicators of the supercontinent evolution. Russ. J. Earth Sci. 5:347–59 [Google Scholar]
  92. Smethurst MA, Khramov AN, Torsvik TH. 1998. The Neoproterozoic and Paleozoic palaeomagnetic data for the Siberian platform: from Rodinia to Pangea. Earth-Sci. Rev. 43:1–24 [Google Scholar]
  93. Su B, Qin K, Zhou M, Sakyi P, Thakurta J. 2014. Petrological, geochemical and geochronological constraints on the origin of the Xiadong Ural-Alaskan type complex in NW China and tectonic implication for the evolution of the southern Central Asian Orogenic Belt. Lithos 200–1226–40
  94. Sun M, Yuan C, Xiao WJ, Long XP, Xia XP. et al. 2007. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Paleozoic. Chem. Geol. 247:352–83 [Google Scholar]
  95. Tagiri M, Yano T, Bakirov A, Nakajima T, Uchiumi S. 1995. Mineral parageneses and metamorphic P–T paths of ultrahigh-pressure eclogites from Kyrghyzstan Tien Shan. Island Arc 4:280–92 [Google Scholar]
  96. Tian Z, Xiao W, Shan Y, Windley B, Han C. et al. 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. J. Struct. Geol. 52:119–35 [Google Scholar]
  97. Tian ZH, Xiao WJ, Sun JM, Windley BF, Glen R. et al. 2015. Early–Late Triassic deformation of Permian–Early Triassic arc-related sediments in the Beishan (NW China): last pulse of the accretionary orogenesis in the southernmost Altaids?. Tectonophysics In press. doi: 10.1016/j.tecto.2015.01.009
  98. Torsvik TH, Cocks LRM. 2013. Gondwana from top to base in space and time. Gondwana Res. 24:999–1030 [Google Scholar]
  99. Torsvik TH, Cocks LRM. 2004. Earth geography from 400 to 250 Ma: a paleomagnetic, faunal and facies review. J. Geol. Soc. Lond. 161:555–72 [Google Scholar]
  100. Van der Voo R, Levashova NM, Skrinnik LI, Kara TV, Bazhenov ML. 2006. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan. Tectonophysics 426:335–60 [Google Scholar]
  101. van Staal CR, Dewey JF, Mac Niocall C, McKerrow WS. 1998. The Cambrian–Silurian tectonic evolution of the northern Appalachian and British Caledonides: history of a complex west and southwest Pacific-type segment of Iapetus. Geol. Soc. Lond. Spec. Publ. 143:199–242 [Google Scholar]
  102. Volkava NI, Budanov VI. 1999. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: seamount volcanism and accretionary tectonics. Lithos 47:201–16 [Google Scholar]
  103. Volkova NI, Sklyarov EV. 2007. High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russ. Geol. Geophys. 48:83–90 [Google Scholar]
  104. Wakita K, Metcalfe I. 2005. Ocean plate stratigraphy in East and Southeast Asia. J. Asian Earth Sci. 24:679–702 [Google Scholar]
  105. Wakita K, Pubellier M, Windley B. 2013. Tectonic processes, from rifting to collision via subduction, in SE Asia and the western Pacific: a key to understanding the architecture of the Central Asian Orogenic Belt. Lithosphere 5:265–76 [Google Scholar]
  106. Wang B, Chen Y, Zhan S, Shu LS, Faure M. et al. 2007. Primary Carboniferous and Permian paleomagnetic results from Yili Block and their geodynamic implications on evolution of Chinese Tianshan Belt. Earth Planet. Sci. Lett. 263:288–308 [Google Scholar]
  107. Wang Q, Liu XY. 1986. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics 5:1073–88 [Google Scholar]
  108. Wang Y, Wang J, Wang L, Long L, Tang P. 2012. The Tuerkubantao ophiolite mélange in Xinjiang, NW China: new evidence for the Erqis suture zone. Geosci. Front. 3:587–602 [Google Scholar]
  109. Wang YJ, Fan ZY. 1997. Discovery of the Permian radiolarian fossils in the ophiolites north of the Xar Moron River, Inner Mongolia, and its geological implications. Acta Palaeontol. Sin. 36:58–69 [Google Scholar]
  110. Wilhem C, Windley BF, Stampfli GM. 2012. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Sci. Rev. 113:303–41 [Google Scholar]
  111. Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic belt. J. Geol. Soc. Lond. 164:31–47 [Google Scholar]
  112. Xiao W, Santosh M. 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res. 25:1429–44 [Google Scholar]
  113. Xiao WJ, Windley BF, Hao J, Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics 22:1069 [Google Scholar]
  114. Xiao WJ, Windley BF, Badarch G, Sun S, Li JL. et al. 2004a. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the lateral growth of Central Asia. J. Geol. Soc. Lond. 161:339–42 [Google Scholar]
  115. Xiao WJ, Zhang LC, Qin KZ, Sun S, Li JL. 2004b. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. Am. J. Sci. 304:370–95 [Google Scholar]
  116. Xiao WJ, Han CM, Yuan C, Sun M, Lin SF. et al. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. J. Asian Earth Sci. 32:102–17 [Google Scholar]
  117. Xiao WJ, Windley BF, Yuan C, Sun M, Han CM. et al. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. Am. J. Sci. 309:221–70 [Google Scholar]
  118. Xiao WJ, Han CM, Yuan C, Sun M, Zhao GC, Shan YH. 2010a. Transitions among Mariana-, Japan-, Cordillera-, and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. Geol. Soc. Lond. Spec. Publ. 338:35–53 [Google Scholar]
  119. Xiao WJ, Huang BC, Han CM, Sun S, Li JL. 2010b. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 18:253–73 [Google Scholar]
  120. Xiao WJ, Mao QG, Windley BF, Qu JF, Zhang JE. et al. 2010c. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am. J. Sci. 310:1553–94 [Google Scholar]
  121. Xiao WJ, Windley BF, Allen M, Han CM. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 23:1316–41 [Google Scholar]
  122. Xie L, Yin HQ, Zhou HR, Zhang WJ. 2014. Permian radiolarians from the Engeerwusu suture zone in Alashan area, Inner Mongolia and its geological significance. Geol. Bull. China 33:691–97 (in Chinese with English abstract) [Google Scholar]
  123. Xu B, Charvet J, Chen Y, Zhao P, Shi G. 2013a. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res. 23:1342–64 [Google Scholar]
  124. Xu QQ, Ji JQ, Zhao L, Gong JF, Zhou J. et al. 2013b. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: remnant ocean model. Earth-Sci. Rev. 126:178–205 [Google Scholar]
  125. Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. J. Asian Earth Sci. 23:761–79 [Google Scholar]
  126. Yang G, Li Y, Gu P, Yang B, Tong L, Zhang H. 2012a. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution. Gondwana Res. 21:1037–49 [Google Scholar]
  127. Yang G, Li Y, Santosh M, Gu P, Yang B. et al. 2012b. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China. Lithos 140–41:53–65 [Google Scholar]
  128. Yi Z, Huang B, Xiao W, Yang L, Qiao Q. 2014. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): implications for the tectonic evolution of the western Altaids. Gondwana Res. 27:862–77 [Google Scholar]
  129. Yin A, Harrison TM. 2000. Geological evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28:211–80 [Google Scholar]
  130. Yin A, Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. The Tectonic Evolution of Asia A Yin, TM Harrison 442–85 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  131. Yin J, Yuan C, Sun M, Long X, Zhao G. et al. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Res. 17:145–52 [Google Scholar]
  132. Yuan W, Yang Z. 2015a. The Alashan terrane did not amalgamate with North China block by the Late Permian: evidence from Carboniferous and Permian paleomagnetic results. J. Asian Earth Sci. In press
  133. Yuan W, Yang Z. 2015b. The Alashan Terrane was not part of North China by the Late Devonian: evidence from detrital zircon U–Pb geochronology and Hf isotopes. Gondwana Res. 27:1270–82 [Google Scholar]
  134. Yue Y, Liou JG, Graham SA. 2001. Tectonic correlation of Beishan and Inner Mongolia orogens and its implications for the palinspastic reconstruction of north China. Geol. Soc. Am. Mem. 194:101–16 [Google Scholar]
  135. Zhang LF, Ai YL, Li XP, Rubatto D, Song B. et al. 2007a. Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U–Pb dating of zircon from HP/UHP eclogitic rocks. Lithos 96:266–80 [Google Scholar]
  136. Zhang S, Gao R, Li H, Hou H, Wu H. et al. 2014. Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: an integrated interpretation. Tectonophysics 612–13:26–39 [Google Scholar]
  137. Zhang S, Zhao Y, Kröner A, Liu X, Xie L. 2009. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int. J. Earth Sci. 98:1441–67 [Google Scholar]
  138. Zhang S, Zhao Y, Song B, Yang Y. 2007b. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from Western Beijing: evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block. Gondwana Res. 12:157–65 [Google Scholar]
  139. Zheng R, Wu T, Zhang W, Xu C, Meng Q, Zhang Z. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites. Gondwana Res. 25:842–58 [Google Scholar]
  140. Zheng YF, Xiao WJ, Zhao G. 2013. Introduction to tectonics of China. Gondwana Res. 23:1189–206 [Google Scholar]
  141. Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ. 2011. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics 499:105–17 [Google Scholar]
  142. Zonenshain LP, Kuzmin MI, Natapov LM. 1990. Geology of the USSR: A Plate Tectonic Synthesis Geodyn. Ser. 21 Washington, DC: AGU
/content/journals/10.1146/annurev-earth-060614-105254
Loading
/content/journals/10.1146/annurev-earth-060614-105254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error