1932

Abstract

Paleosols are ancient soils that have been incorporated into the geological record. Soils form in response to interactions among the lithosphere, hydrosphere, biosphere, and atmosphere, so paleosols potentially record physical, biological, and chemical information about past conditions near Earth's surface. As a result, paleosols are an important resource for terrestrial environmental and climatic reconstructions. Long-standing paleosol research topics include morphology, classification, and clay mineralogy, all of which provide information about pedogenic processes and local paleoenvironments. Paleosols are also used to infer processes involved in the development of stratigraphic architecture and basin evolution. Recent paleosol research has introduced semiquantitative and quantitative measures for environmental and chronometric reconstructions that provide insight into major regional to global changes in temperature, precipitation, and atmospheric CO. These new proxies focus on morphological and chemical transfer functions and stable isotope geochemistry to provide estimates of precipitation, temperature, CO, and productivity, as well as chronometric estimates of mineral crystallization in deep-time pedogenic systems. Looking forward, consensus must be reached on terminology that most effectively communicates paleosol characteristics and implies important processes. Proxy development will continue to improve as data sets become available across greater ranges of environments and timescales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105355
2015-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105355.html?itemId=/content/journals/10.1146/annurev-earth-060614-105355&mimeType=html&fmt=ahah

Literature Cited

  1. Adams JS, Kraus MJ, Wing SL. 2011. Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309:358–66 [Google Scholar]
  2. Allen JRL, Williams BPJ. 1979. Interfluvial drainage on Siluro-Devonian alluvial plains in Wales and the Welsh Borders. J. Geol. Soc. Lond. 136:361–66 [Google Scholar]
  3. Alonso-Zarza AM. 1999. Initial stages of laminar calcrete formation by roots: examples from the Neogene of central Spain. Sediment. Geol. 126:177–91 [Google Scholar]
  4. Arkley RJ. 1963. Calculation of carbonate and water movement in soil from climatic data. Soil Sci. 96:239–48 [Google Scholar]
  5. Atchley SC, Nordt LC, Dworkin SI. 2004. Eustatic control on alluvial sequence stratigraphy: a possible example from the Cretaceous–Tertiary transition of the Tornillo Basin, Big Bend National Park, west Texas, U. S.A. J. Sediment. Res. 74:391–404 [Google Scholar]
  6. Atchley SC, Nordt LC, Dworkin SI, Cleveland DM, Mintz JS, Harlow H. 2013. Alluvial stacking pattern analysis and sequence stratigraphy: concepts and case studies. SEPM Spec. Publ. 104:109–30 [Google Scholar]
  7. Austin J. 2011. Soil CO2 efflux simulations using Monte Carlo method and implications for recording paleo-atmospheric PCO2 in pedogenic gibbsite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305:280–85 [Google Scholar]
  8. Babechuk MG, Kamber BS. 2013. The Flin Flon paleosol revisited. Can. J. Earth Sci. 50:1223–43 [Google Scholar]
  9. Banfield JF, Murakami T. 1998. Transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite. Am. Mineral. 83:348–57 [Google Scholar]
  10. Beauvais A, Ruffet G, Henocque O, Colin F. 2008. Chemical and physical erosion rhythms of the West African morphogenesis: the 40Ar-39Ar of supergene K-Mn oxides. J. Geophys. Res. 113:F04007 [Google Scholar]
  11. Birkeland PW. 1999. Soils and Geomorphology New York: Oxford Univ. Press
  12. Blokhuis WA. 1982. Morphology and genesis of Vertisols. Proc. 12th Int. Congr. Soil Sci.23–47 New Delhi: Indian Soc. Soil Sci. [Google Scholar]
  13. Bowen GJ, Beerling DJ. 2004. An integrated model for soil organic carbon and CO2: implications for paleosol carbonate pCO2 paleobarometry. Glob. Biogeochem. Cycles 18:GB1026 [Google Scholar]
  14. Bown TM, Kraus MJ. 1987. Integration of channel and floodplain suites. I. Developmental sequence and lateral relations of alluvial paleosols. J. Sediment. Petrol. 57:587–601 [Google Scholar]
  15. Breecker DO, Retallack GJ. 2014. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 406:1–8 [Google Scholar]
  16. Breecker DO, Sharp ZD, McFadden LD. 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol. Soc. Am. Bull. 121:630–40 [Google Scholar]
  17. Breecker DO, Sharp ZD, McFadden LD. 2010. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100 PNAS 107:576–80 [Google Scholar]
  18. Brook GA, Folkoff ME, Box EO. 1983. A world model of soil carbon dioxide. Earth Surf. Process. Landf. 8:79–88 [Google Scholar]
  19. Buck BJ, Mack GH. 1995. Latest Cretaceous (Maastrichtian) aridity indicated by paleosols in the McRae Formation, south-central New Mexico. Cretac. Res. 16:559–72 [Google Scholar]
  20. Cerling TE. 1999. Stable carbon isotopes in palaeosol carbonates. Spec. Publ. Int. Assoc. Sedimentol. 27:43–60 [Google Scholar]
  21. Churchman GJ. 1980. Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Miner. 15:59–76 [Google Scholar]
  22. Cleveland DM, Atchley SC, Nordt LC. 2007. Continental sequence stratigraphy of the Upper Triassic (Norian–Rhaetian) Chinle strata, northern New Mexico, U.S.A.: allocyclic and autocyclic origins of paleosol-bearing alluvial successions. J. Sediment. Res. 77:909–24 [Google Scholar]
  23. Cleveland DM, Nordt LC, Atchley SC. 2008. Paleosols, trace fossils, and precipitation estimates of the uppermost Triassic strata in northern New Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257:421–44 [Google Scholar]
  24. Cohen AS. 1982. Paleoenvironments of root casts from the Koobi Fora Formation, Kenya. J. Sediment. Petrol. 52:401–14 [Google Scholar]
  25. Coplen TB. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl. Chem. 66:273–76 [Google Scholar]
  26. Cotton JM, Sheldon ND. 2012. New constraints on using paleosols to reconstruct atmospheric pCO2. Geol. Soc. Am. Bull. 124:1411–23 [Google Scholar]
  27. Cremeens DL, Mokma DL. 1986. Argillic horizon expression and classification in the soils of two Michigan hydrosequences. Soil Sci. Soc. Am. J. 50:1002–7 [Google Scholar]
  28. Dan J, Yaalon DH. 1981. Automorphic saline soils in Israel. Aridic Soils and Geomorphic Processes: Proc. Int. Conf. Int. Soc. Soil Sci., Jerusalem, Mar. 29–Apr. 4103–15 Cremlingen, Ger.: Catena [Google Scholar]
  29. Dasog GS, Acton DF, Mermut AR, De Jong E. 1988. Shrink-swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68:251–60 [Google Scholar]
  30. Delgado A, Reyes E. 1996. Oxygen and hydrogen isotope compositions in clay minerals: a potential single-mineral geothermometer. Geochim. Cosmochim. Acta 60:4285–89 [Google Scholar]
  31. Driese SG, Mora CI, Stiles CA, Joeckel JM, Nordt LC. 2000. Mass-balance reconstruction of a modern Vertisol: implications for interpreting the geochemistry and burial alteration of paleo-Vertisols. Geoderma 95:179–204 [Google Scholar]
  32. Driese SG, Nordt LC. 2013. New frontiers in paleopedology and terrestrial paleoclimatology: paleosols and soil surface analog systems. SEPM Spec. Publ. 104:1–3 [Google Scholar]
  33. Drits VA, Weber F, Salyn AL, Tsipursky SI. 1993. X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays Clay Miner. 41:389–98 [Google Scholar]
  34. Dudal R, Eswaran H. 1988. Distribution, properties and classification of Vertisols. Vertisols: Their Distribution, Properties, Classification and Management LP Wilding, R Puentes 1–22 College Station: Tex. A&M Univ. Print. Cent. [Google Scholar]
  35. Dworkin SI, Nordt L, Atchley S. 2005. Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth Planet. Sci. Lett. 237:56–68 [Google Scholar]
  36. Ekart DD, Cerling TE, Montañez IP, Tabor NJ. 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299:805–27 [Google Scholar]
  37. Flaig PP, McCarthy PJ, Fiorillo AR. 2013. Anatomy, evolution, and paleoenvironmental interpretation of an ancient arctic coastal plain: integrated paleopedology and palynology from the upper Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska, USA. SEPM Spec. Publ. 104:179–230 [Google Scholar]
  38. Gallagher TM, Sheldon ND. 2013. A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology 41:647–50 [Google Scholar]
  39. Ghosh P, Adkins J, Affek H, Balta B, Guo W. et al. 2006. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70:1439–56 [Google Scholar]
  40. Gile LH, Peterson FF, Grossman RB. 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Sci. 101:347–60 [Google Scholar]
  41. Gocke M, Pustovoytov K, Kuzyakov Y. 2012. Pedogenic carbonate formation: recrystallization versus migration—process rates and periods assessed by 14C labeling. Glob. Biogeochem. Cycles 26:1–12 [Google Scholar]
  42. Gulbranson EL, Montañez IP, Tabor NJ. 2011a. A proxy for humidity and floral province from paleosols. J. Geol. 119:559–73 [Google Scholar]
  43. Gulbranson EL, Montañez IP, Tabor NJ, Limarino O. 2015. Late Pennsylvanian aridification on the southwestern margin of Gondwana (Paganzo Basin, NW Argentina): a regional expression of a global climate perturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417:220–35 [Google Scholar]
  44. Gulbranson EL, Tabor NJ, Montañez IP. 2011b. A pedogenic goethite record of soil CO2 variations as a response to soil moisture content. Geochim. Cosmochim. Acta 75:7099–116 [Google Scholar]
  45. Hartley AJ, Weissmann GS, Bhattacharyya P, Nichols GJ, Scuderi LA. et al. 2013. Soil development on modern distributive fluvial systems: preliminary observations with implications for interpretation of paleosols in the rock record. SEPM Spec. Publ. 104:149–58 [Google Scholar]
  46. Henkes GA, Passey BH, Grossman EL, Shenton BJ, Perez-Huerta A, Yancey TE. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochim. Cosmochim. Acta 139:362–82 [Google Scholar]
  47. Hough BG, Man M, Passey BH. 2014. Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: implications for paleoelevation and paleoclimate reconstruction. Earth Planet. Sci. Lett. 391:110–20 [Google Scholar]
  48. Jenny H. 1941. Factors of Soil Formation: A System of Quantitative Pedology New York: Dover
  49. Jenny H, Leonard CD. 1935. Functional relationships between soil properties and rainfall. Soil Sci. 38:363–81 [Google Scholar]
  50. Kabanov PB, Alekseeva TV, Alekseeva VA, Alekseev AO, Gubin SV. 2010. Late Moscovian (Carboniferous) marine carbonates of the East European craton revealing “Great Calcimagnesian Plain” paleolandscapes. J. Sediment. Res. 80:195–215 [Google Scholar]
  51. Kahmann JA, Driese SG. 2008. Paleopedology and geochemistry of Late Mississippian (Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA: implications for high-frequency climate variations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259:357–81 [Google Scholar]
  52. Kelly SD, Rasbury T, Cattopadhyay S, Kropf AJ, Kemner KM. 2006. Evidence of a stable uranyl site in ancient organic-rich calcite. Environ. Sci. Technol. 40:2262–68 [Google Scholar]
  53. Khormali F, Abtahi A. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Miner. 38:511–27 [Google Scholar]
  54. Khormali F, Abtahi A, Mahmoodi S, Stoops G. 2003. Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena 53:273–301 [Google Scholar]
  55. Klappa CF. 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–29 [Google Scholar]
  56. Kraus MJ. 1997. Lower Eocene alluvial paleosols: pedogenic development, stratigraphic relationships, and paleosol-landscape association. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129:387–406 [Google Scholar]
  57. Kraus MJ. 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth Sci. Rev. 47:41–70 [Google Scholar]
  58. Kraus MJ, Aslan A. 1993. Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes. J. Sediment. Petrol. 63:453–63 [Google Scholar]
  59. Kraus MJ, Hasiotis ST. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. J. Sediment. Res. 76:633–46 [Google Scholar]
  60. Lieth H. 1975. Modeling the primary productivity of the world. Primary Productivity of the Biosphere H Lieth, RH Whittaker 237–63 New York: Springer-Verlag [Google Scholar]
  61. Ludvigson GA, González LA, Fowle DA, Roberts JA, Driese SG. et al. 2013. Paleoclimatic applications and modern process studies of pedogenic siderite. SEPM Spec. Publ. 104:79–87 [Google Scholar]
  62. Ludvigson GA, González LA, Metzger RA, Witzke BJ, Brenner RL. et al. 1998. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology 26:1039–42 [Google Scholar]
  63. Ludvigson GA, Joeckel RM, González LA, Gulbranson EL, Rasbury ET. et al. 2010. Correlation of Aptian-Albian carbon isotope excursions in continental strata of the Cretaceous foreland basin, eastern Utah, U. S.A. J. Sediment. Res. 80:955–74 [Google Scholar]
  64. Machette MN. 1985. Calcic soils of the southwestern United States. Geol. Soc. Am. Spec. Pap. 203:1–21 [Google Scholar]
  65. Mack GH, James WC, Monger HC. 1993. Classification of paleosols. Geol. Soc. Am. Bull. 105:129–36 [Google Scholar]
  66. Mack GH, Tabor NJ, Zollinger HJ. 2010. Palaeosols and sequence stratigraphy of the Lower Permian Abo Member, south-central New Mexico, USA. Sedimentology 57:1566 [Google Scholar]
  67. Marion GM, Schlesinger WH, Fonteyn PJ. 1985. CALDEP: a regional model for soil CaCO3 (caliche) deposition in southwestern deserts. Soil Sci. 139:468–81 [Google Scholar]
  68. Marriott SB, Wright VP. 1993. Palaeosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. J. Geol. Soc. Lond. 150:1109–20 [Google Scholar]
  69. Maynard JB. 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J. Geol. 100:279–89 [Google Scholar]
  70. McCarthy PJ, Martini IP, Leckie DA. 1998. Use of micromorphology for palaeoenvironmental interpretation of complex alluvial palaeosols: an example from the Mill Creek Formation (Albian), southwestern Alberta, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143:87–110 [Google Scholar]
  71. McFadden LD, Amundson RG, Chadwick OA. 1991. Numerical modeling, chemical, and isotopic studies of carbonate accumulation in soils of arid regions. Soil Sci. Soc. Am. Spec. Publ. 26:17–35 [Google Scholar]
  72. McFadden LD, McDonald EV, Wells SG, Anderson K, Quade J, Forman SL. 1998. The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change. Geomorphology 24:101–45 [Google Scholar]
  73. McFadden LD, Tinsley JC. 1985. Rate and depth of pedogenic carbonate accumulation in soils: formulation and testing of a compartment model. Geol. Soc. Am. Spec. Pap. 203:23–41 [Google Scholar]
  74. Mermut AR, Dasog GS, Dowuona GN. 1996a. Soil morphology. Dev. Soil. Sci. 24:89–114 [Google Scholar]
  75. Mermut AR, Padmanabham E, Eswaran H, Dasog GS. 1996b. Pedogenesis. Dev. Soil. Sci. 24:43–61 [Google Scholar]
  76. Michel LA, Driese SG, Nordt LC, Breecker DO, Labotka DM, Dworkin SI. 2013. Stable-isotope geochemistry of Vertisols formed on marine limestone and implications for deep-time paleoenvironmental reconstructions. J. Sediment. Res. 83:300–8 [Google Scholar]
  77. Montañez IP. 2013. Modern soil system constraints on reconstructing deep-time atmospheric CO2. Geochim. Cosmochim. Acta 101:57–75 [Google Scholar]
  78. Montañez IP, Tabor NJ, Niemeier D, DiMichele WA, Frank TD. et al. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315:87–91 [Google Scholar]
  79. Myers TS, Tabor NJ, Jacobs LL. 2011. Late Jurassic paleoclimate of Central Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 311:111–25 [Google Scholar]
  80. Myers TS, Tabor NJ, Jacobs LL, Mateus O. 2012a. Estimating soil pCO2 using paleosol carbonates: implications for the relationship between primary productivity and faunal richness in ancient terrestrial ecosystems. Paleobiology 38:585–604 [Google Scholar]
  81. Myers TS, Tabor NJ, Jacobs LL, Mateus O. 2012b. Palaeoclimate of the Late Jurassic of Portugal: comparison with the Western United States. Sedimentology 59:1695–717 [Google Scholar]
  82. Myers TS, Tabor NJ, Rosenau NA. 2014. Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States). Geol. Soc. Am. Bull. 126:1105–16 [Google Scholar]
  83. Nesbitt HW, Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–17 [Google Scholar]
  84. Nettleton WD, Olson CG, Wysocki DA. 2000. Paleosol classification: problems and solutions. Catena 41:61–92 [Google Scholar]
  85. Nordt LC, Driese SD. 2010. New weathering index improves paleorainfall estimates from Vertisols. Geology 38:407–10 [Google Scholar]
  86. Nordt LC, Driese SD. 2014. Application of the critical zone concept to the deep-time sedimentary record. Sediment. Rec. 11:4–9 [Google Scholar]
  87. Nordt LC, Orosz M, Driese S, Tubbs J. 2006. Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates. J. Geol. 114:501–10 [Google Scholar]
  88. Nordt LC, Wilding LP, Lynn WC, Crawford CC. 2004. Vertisol genesis in a humid climate of the coastal plain of Texas, U. S.A. Geoderma 122:83–102 [Google Scholar]
  89. Passey BH, Levin NE, Cerling TE, Brown FH, Eiler JM. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. PNAS 107:11245–49 [Google Scholar]
  90. Passey SR. 2014. The habit and origin of siderite spherules in the Eocene coal-bearing Prestfjall Formation, Faroe Islands. Int. J. Coal Geol. 122:76–90 [Google Scholar]
  91. Poulsen CJ, Pollar D, White TS. 2007. General circulation model simulation of the δ18O content of continental precipitation in the middle Cretaceous: a model-proxy comparison. Geology 35:199–202 [Google Scholar]
  92. Prochnow SJ, Nordt LC, Atchley SC, Hudec MR. 2006. Multi-proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232:53–72 [Google Scholar]
  93. Pye K, Dickson JAD, Schiavon N, Coleman ML, Cox M. 1990. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 37:325–43 [Google Scholar]
  94. Quade J, Eiler J, Daëron M, Achyuthan H. 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochim. Cosmochim. Acta 105:92–107 [Google Scholar]
  95. Quade J, Garzione C, Eiler J. 2007. Paleoelevation reconstruction using pedogenic carbonates. Rev. Mineral. Geochem. 66:53–87 [Google Scholar]
  96. Rasbury ET, Cole JM. 2009. Directly dating geological events: U-Pb dating of carbonates. Rev. Geophys. 47:1–27 [Google Scholar]
  97. Rasbury ET, Hanson GN, Meyers WJ, Holt WE, Goldstein RH, Saller AH. 1998. U-Pb dates of paleosols: constraints on late Paleozoic cycle durations and boundary ages. Geology 26:403–6 [Google Scholar]
  98. Rasbury ET, Meyers WJ, Hanson GN, Goldstein RH, Saller A. 2000. Relationship of Uranium to petrography of caliche paleosols with application to precisely dating the time of sedimentation. J. Sediment. Res. 70:604–18 [Google Scholar]
  99. Rasmussen C, Southard RJ, Horwath WR. 2005. Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Sci. Soc. Am. J. 69:1266–74 [Google Scholar]
  100. Retallack GJ. 1986. The fossil record of soils. Paleosols: Their Recognition and Interpretation PV Wright 1–57 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  101. Retallack GJ. 1988. Field recognition of paleosols. Geol. Soc. Am. Spec. Pap. 216:1–20 [Google Scholar]
  102. Retallack GJ. 1991. Untangling the effects of burial alteration and ancient soil formation. Annu. Rev. Earth Planet. Sci. 19:183–206 [Google Scholar]
  103. Retallack GJ. 1994a. The environmental factor approach to the interpretation of paleosols. Soil Sci. Soc. Am. Spec. Publ. 33:31–63 [Google Scholar]
  104. Retallack GJ. 1994b. A pedotype approach to latest Cretaceous and earliest Tertiary paleosols in eastern Montana. Geol. Soc. Am. Bull. 106:1377–97 [Google Scholar]
  105. Retallack GJ. 2000. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Comment and reply: comment. Geology 28:572 [Google Scholar]
  106. Retallack GJ. 2001. Soils of the Past: An Introduction to Paleopedology Oxford, UK: Blackwell Sci
  107. Retallack GJ. 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33:333–36 [Google Scholar]
  108. Retallack GJ. 2008. Cool-climate or warm-spike lateritic bauxites at high latitudes?. J. Geol. 116:558–70 [Google Scholar]
  109. Retallack GJ. 2009. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281:57–65 [Google Scholar]
  110. Retallack GJ, Huang C. 2010. Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology 38:403–6 [Google Scholar]
  111. Retallack GJ, Smith RMH, Ward PD. 2003. Vertebrate extinction across the Permian-Triassic boundary in the Karoo Basin of South Africa. Geol. Soc. Am. Bull. 115:1133–52 [Google Scholar]
  112. Rosenau NA, Tabor NJ. 2013. Oxygen and hydrogen isotope compositions of paleosol phyllosilicates: differential burial histories and determination of Middle–Late Pennsylvanian low-latitude terrestrial paleotemperatures. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392:382–97 [Google Scholar]
  113. Rosenau NA, Tabor NJ, Elrick SD, Nelson WJ. 2013a. Polygenetic history of paleosols in Middle-Upper Pennsylvanian cyclothems of the Illinois Basin, USA. Part I: Characterization of paleosol types and interpretations of pedogenic processes. J. Sediment. Res. 83:606–36 [Google Scholar]
  114. Rosenau NA, Tabor NJ, Elrick SD, Nelson WJ. 2013b. Polygenetic history of paleosols in Middle-Upper Pennsylvanian cyclothems of the Illinois Basin, USA. Part II: The impacts of geomorphology, climate, and glacioeustasy. J. Sediment. Res. 83:637–68 [Google Scholar]
  115. Royer DL. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator. Geology 27:1123–26 [Google Scholar]
  116. Royer DL. 2000. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Comment and reply: reply. Geology 28:572–73 [Google Scholar]
  117. Sheldon ND. 2006. Quaternary glacial-interglacial climate cycles in Hawaii. J. Geol. 114:367–76 [Google Scholar]
  118. Sheldon ND, Retallack GJ. 2004. Regional paleoprecipitation records from the late Eocene and Oligocene of North America. J. Geol. 112:487–94 [Google Scholar]
  119. Sheldon ND, Retallack GJ, Tanaka S. 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J. Geol. 110:687–96 [Google Scholar]
  120. Sheldon ND, Tabor NJ. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev. 95:1–52 [Google Scholar]
  121. Sheppard SMF, Gilg HA. 1996. Stable isotope geochemistry of clay minerals. Clay Miner. 31:1–24 [Google Scholar]
  122. Singer A. 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth Sci. Rev. 15:303–26 [Google Scholar]
  123. Singer A, Wieder M, Gvirtzman G. 1994. Paleoclimate deduced from some early Jurassic basalt-derived paleosols from northern Israel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 111:73–82 [Google Scholar]
  124. Snell KE, Thrasher BL, Eiler JM, Koch PL, Sloan LC. et al. 2013. Hot summers and modern thermal seasonality in the Bighorn Basin during the early Paleogene greenhouse. Geology 41:55–58 [Google Scholar]
  125. Soil Surv. Staff 2010. Keys to Soil Taxonomy. Washington, DC: Nat. Resour. Conserv. Serv.
  126. Southard AR, Miller RW. 1966. Parent material-clay relations in some northern Utah soils. Soil Sci. Soc. Am. J. 30:97–101 [Google Scholar]
  127. Spier CA, Vasconcelos PM, Oliviera AMB. 2006. 40Ar/39Ar geochronology constraints on the evolution of lateritic iron deposits in the Quadilatero Ferrifero, Minas Gerais, Brazil. Chem. Geol. 254:79–104 [Google Scholar]
  128. Stiles CA, Mora CI, Driese SG. 2001. Pedogenic iron-manganese nodules in Vertisols: a new proxy for paleoprecipitation?. Geology 29:943–46 [Google Scholar]
  129. Suarez MB, Gonzalez LA, Ludvigson GA. 2011a. Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: the mid-Cretaceous water bearer revisited. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307:301–12 [Google Scholar]
  130. Suarez MB, Passey BH, Kaakinen A. 2011b. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene. Geology 39:1151–54 [Google Scholar]
  131. Tabor NJ. 2007. Permo-Pennsylvanian palaeotemperatures from Fe-oxide and phyllosilicate δ18O values. Earth Planet. Sci. Lett. 253:159–71 [Google Scholar]
  132. Tabor NJ, Montañez IP. 2005. Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: development of modern surface domain arrays and implications for paleotemperature reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 223:127–46 [Google Scholar]
  133. Tabor NJ, Montañez IP, Kelso KA, Currie B, Shipman T, Colombi C. 2006. A Late Triassic soil catena: landscape and climate controls on paleosol morphology and chemistry across the Carnian-age Ischigualasto-Villa Union basin, northwestern Argentina. Geol. Soc. Am. Spec. Pap. 416:17–41 [Google Scholar]
  134. Tabor NJ, Myers TS, Gulbranson E, Rasmussen C, Sheldon ND. 2013. Carbon stable isotope composition of modern calcareous soil profiles in California: implications of CO2 reconstructions from calcareous paleosols. SEPM Spec. Publ. 104:17–34 [Google Scholar]
  135. Tabor NJ, Smith RMH, Steyer S, Sidor CA, Poulsen CJ. 2011. The Permian Moradi Formation of northern Niger: paleosol morphology, petrography and mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299:200–13 [Google Scholar]
  136. Tabor NJ, Yapp CJ. 2005. Coexisting goethite and gibbsite from a high-paleolatitude (55°N) Late Paleocene laterite: concentration and 13C/12C ratios of occluded CO2 and associated organic matter. Geochim. Cosmochim. Acta 69:5495–510 [Google Scholar]
  137. Tabor NJ, Yapp CJ, Montañez IP. 2004. Goethite, calcite, and organic matter from Permian and Triassic soils: carbon isotopes and CO2 concentrations. Geochim. Cosmochim. Acta 68:1503–17 [Google Scholar]
  138. Therrien F. 2005. Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: insights from fluvial deposits and paleosols of the Transylvanian and Haţeg basins. Palaeogeogr. Palaeoclimatol. Palaeoecol. 218:15–56 [Google Scholar]
  139. Thomas SG, Tabor NJ, Yang W, Myers TS, Yang Y, Wang D. 2011. Palaeosol stratigraphy across the Permian–Triassic boundary, Bogda Mountains, NW China: implications for palaeoenvironmental transition through Earth's largest mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308:41–64 [Google Scholar]
  140. Vadivelu S, Challa O. 1985. Depth of slickenside occurrence in Vertisols. J. Indian Soc. Soil Sci. 33:452–54 [Google Scholar]
  141. Vasconcelos PM, Renne PR, Brimhall GH, Becker TA. 1994. Direct dating of weathering phenomena by 40Ar/39Ar and D-Ar analysis of supergene K-Mn oxides. Geochim. Cosmochim. Acta 58:1635–65 [Google Scholar]
  142. Wang ZS, Rasbury ET, Hanson GN, Meyers WJ. 1998. Using the U-Pb system of calcretes to date the time of sedimentation of clastic sedimentary rocks. Geochim. Cosmochim. Acta 62:2823–35 [Google Scholar]
  143. Weissman GS, Hartley AJ, Nichols GJ, Scuderi LA, Olsen M. et al. 2010. Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology 38:39–42 [Google Scholar]
  144. Weissman GS, Hartley AJ, Scuderi SA, Nichols GJ, Davidson SK. et al. 2013. Prograding distributive fluvial systems—geomorphic models and ancient examples. SEPM Spec. Publ. 104:131–48 [Google Scholar]
  145. White EM. 1972. Soil-desiccation features in South Dakota depressions. J. Geol. 80:106–11 [Google Scholar]
  146. Wilding LP, Tessier D. 1988. Genesis of Vertisols: shrink-swell phenomena. Vertisols: Their Distribution, Properties, Classification and Management LP Wilding, R Puentes 55–81 College Station: Texas A&M Univ. Print. Cent. [Google Scholar]
  147. Wright VP, Platt NH, Wimbledon WA. 1988. Biogenic laminar calcretes: evidence of calcified root-mat horizons in paleosols. Sedimentology 35:603–20 [Google Scholar]
  148. Yapp CJ. 1993. The stable isotope geochemistry of low temperature Fe(III) and Al “oxides” with implications for continental paleoclimates. Geophys. Monogr. 78:285–94 [Google Scholar]
  149. Yapp CJ. 2000. Climatic implications of surface domains in arrays of δD and δ18O from hydroxyl minerals: goethite as an example. Geochim. Cosmochim. Acta 64:2009–25 [Google Scholar]
  150. Yapp CJ. 2008. 18O/16O and D/H in goethite from a North American Oxisol of the Early Eocene climatic optimum. Geochim. Cosmochim. Acta 72:5838–51 [Google Scholar]
  151. Yapp CJ, Poths H. 1992. Ancient atmospheric CO2 pressures inferred from natural goethites. Nature 355:342–43 [Google Scholar]
  152. Yapp CJ, Poths H. 1996. Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet. Sci. Lett. 137:71–82 [Google Scholar]
  153. Yapp CJ, Shuster DL. 2011. Environmental memory and a possible seasonal bias in the stable isotope composition of (U-Th)/He-dated goethite from the Canadian Arctic. Geochim. Cosmochim. Acta 75:4194–215 [Google Scholar]
  154. Zein el Abedine A, Robinson GH. 1971. A study on cracking in some Vertisols of the Sudan. Geoderma 5:229–41 [Google Scholar]
  155. Zhou Y, Retallack GJ, Chengmin H. 2015. Early Eocene paleosol developed from basalt in southeastern Australia: implications for paleoclimate. Arab. J. Geosci. 81281–90
/content/journals/10.1146/annurev-earth-060614-105355
Loading
/content/journals/10.1146/annurev-earth-060614-105355
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error