1932

Abstract

The evolutionary trajectory of early complex life on Earth is interpreted largely from the fossils of the Precambrian soft-bodied Ediacara Biota, which appeared and evolved during a time of dynamic biogeochemical and environmental fluctuation in the global ocean. The Ediacara Biota is historically divided into three successive Assemblages—the Avalon, the White Sea, and the Nama—which are marked by the appearance of novel biological traits and ecological strategies. In particular, the younger White Sea and Nama Assemblages record a “second wave” of ecological innovations, which included not only the development of uniquely Ediacaran body plans and ecologies, such as matground adaptations, but also the dual emergence of bilaterian-grade animals and Phanerozoic-style ecological innovations, including spatial heterogeneity, complex reproductive strategies, ecospace utilization, motility, and substrate competition. The late Ediacaran was an evolutionarily dynamic time characterized by strong environmental control over the distribution of taxa in time and space.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-015645
2017-08-30
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-015645.html?itemId=/content/journals/10.1146/annurev-earth-063016-015645&mimeType=html&fmt=ahah

Literature Cited

  1. Amthor JE, Grotzinger JP, Schröder S, Bowring SA, Ramezani J. et al. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31:5431–34 [Google Scholar]
  2. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. Part II 49:219–36 [Google Scholar]
  3. Bennett SA, Statham PJ, Green DRH, Le Bris N, McDermott JM. et al. 2011. Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N. Deep-Sea Res. Part I 58:922–31 [Google Scholar]
  4. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64 [Google Scholar]
  5. Boag TH, Darroch SAF, Laflamme M. 2016. Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42:574–94 [Google Scholar]
  6. Bottjer DJ, Hagadorn JW, Dornbos SQ. 2000. The Cambrian substrate revolution. GSA Today 10:91–7 [Google Scholar]
  7. Bouougri EH, Porada H. 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. J. Afr. Earth Sci. 48:38–48 [Google Scholar]
  8. Brasier MD, Liu AG, Menon L, Matthews JJ, McIlroy D, Wacey D. 2013a. Explaining the exceptional preservation of Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland: a hydraulic model. Precambrian Res 231:122–35 [Google Scholar]
  9. Brasier MD, McIlroy D, Liu AG, Antcliffe JB, Menon LR. 2013b. The oldest evidence of bioturbation on Earth: comment. Geology 41:5e289 [Google Scholar]
  10. Budd GE, Jensen S. 2015. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 92:446–73 [Google Scholar]
  11. Butterfield NJ. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology 23:2247–62 [Google Scholar]
  12. Butterfield NJ. 2009. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7 [Google Scholar]
  13. Cai Y, Schiffbauer JD, Hua H, Xiao S. 2011. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China. Precambrian Res 191:46–57 [Google Scholar]
  14. Callow RHT, Brasier MD. 2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth-Sci Rev 96:207–19 [Google Scholar]
  15. Canfield DE, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS 106:208123–27 [Google Scholar]
  16. Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321:949–52 [Google Scholar]
  17. Canfield DE, Poulton SW, Narbonne GM. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95 [Google Scholar]
  18. Catalá TS, Reche I, Fuentes-Lema A, Romera-Castillo C, Nieto-Cid M. et al. 2015. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat. Commun. 6:5986 [Google Scholar]
  19. Chen Z, Zhou C, Xiao S, Wang W, Guan C. et al. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci. Rep. 4:4180 [Google Scholar]
  20. Clapham ME, Narbonne GM. 2002. Ediacaran epifaunal tiering. Geology 30:7627–30 [Google Scholar]
  21. Clapham ME, Narbonne GM, Gehling JG. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:4527–44 [Google Scholar]
  22. Clites EC, Droser ML, Gehling JG. 2012. The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology 40:4307–10 [Google Scholar]
  23. Cohen PA, Bradley A, Knoll AH, Grotzinger JP, Jensen S. et al. 2009. Tubular compression fossils from the Ediacaran Nama Group, Namibia. J. Paleontol. 83:1110–22 [Google Scholar]
  24. Cole DB, Reinhard CT, Wang X, Gueguen B, Halverson GP. et al. 2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44:7555–58 [Google Scholar]
  25. Cui H, Grazhdankin DV, Xiao S, Peek S, Rogov VI. et al. 2016. Redox-dependent distribution of early macro-organisms: evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461:122–39 [Google Scholar]
  26. Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC. et al. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS 107:4217911–15 [Google Scholar]
  27. Darroch SAF, Boag TH, Racicot RA, Tweedt S, Mason SJ. et al. 2016. A mixed Ediacaran-metazoan assemblage from the Zaris Sub-Basin, Namibia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459:198–208 [Google Scholar]
  28. Darroch SAF, Laflamme M, Clapham ME. 2013. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology 39:4591–608 [Google Scholar]
  29. Darroch SAF, Sperling EA, Boag TH, Racicot RA, Mason SJ. et al. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proc. R. Soc. B 282:181420151003 [Google Scholar]
  30. Davies NS, Liu AG, Gibling MR, Miller RF. 2016. Resolving MISS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Sci. Rev. 154:201–46 [Google Scholar]
  31. Derry LA. 2015. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42:8538–46 [Google Scholar]
  32. Dilling L, Alldredge AL. 2000. Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep-Sea Res. Part I 47:1227–45 [Google Scholar]
  33. Droser ML, Gehling JG. 2008. Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science 319:58701660–62 [Google Scholar]
  34. Droser ML, Gehling JG. 2015. The advent of animals: the view from the Ediacaran. PNAS 112:164865–70 [Google Scholar]
  35. Droser ML, Gehling JG, Jensen SR. 2006. Assemblage palaeoecology of the Ediacara biota: the unabridged edition. ? Palaeogeogr. Palaeoclimatol. Palaeoecol. 232:2131–47 [Google Scholar]
  36. Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24:191–224 [Google Scholar]
  37. Elliott DA, Vickers-Rich P, Trusler P, Hall M. 2011. New evidence on the taphonomic context of the Ediacaran Pteridinium. Acta Palaeontol. Pol. 56:3641–50 [Google Scholar]
  38. Erwin DH. 2015. Early metazoan life: divergence, environment and ecology. Philos. Trans. R. Soc. B 370:168420150036 [Google Scholar]
  39. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:60591091–97 [Google Scholar]
  40. Erwin DH, Tweedt S. 2011. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol. Ecol. 26:2417–33 [Google Scholar]
  41. Evans SD, Droser ML, Gehling JG. 2014. Does size really matter?: Body size distribution and growth of Dickinsonia costata from Nilpena, South Australia. Geol. Soc. Am. Abstr. Progr. 46:6335 [Google Scholar]
  42. Evans SD, Droser ML, Gehling JG. 2015. Dickinsonia liftoff: evidence of current derived morphologies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434:28–33 [Google Scholar]
  43. Fedonkin MA. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontol. Res. 7:19–41 [Google Scholar]
  44. Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia Baltimore, MD: Johns Hopkins Univ. Press
  45. Fedonkin MA, Waggoner BM. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:6645868–71 [Google Scholar]
  46. Fischer G, Karakaş G. 2009. Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean. Biogeosciences 6:85–102 [Google Scholar]
  47. Fischer G, Karakaş G, Blaas M, Ratmeyer V, Nowald N. et al. 2009. Mineral ballast and particle settling rates in the coastal upwelling system off NW Africa and the South Atlantic. Int. J. Earth Sci. (Geol. Rundsch.) 98:281–98 [Google Scholar]
  48. Gaucher C, Poiré DG, Bossi J, Sánchez Bettucci L, Beri A. 2013. Comment on “Bilaterian burrows and grazing behavior at >585 million years ago.”. Science 339:906 [Google Scholar]
  49. Gehling JG. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:140–57 [Google Scholar]
  50. Gehling JG, Droser ML. 2009. Textured organic surfaces associated with the Ediacara Biota in South Australia. Earth-Sci. Rev. 96:3196–206 [Google Scholar]
  51. Gehling JG, Droser ML. 2013. How well do fossil assemblages of the Ediacara Biota tell time. ? Geology 41:4447–50 [Google Scholar]
  52. Gehling JG, Droser ML, Jensen S, Runnegar BN. 2005. Ediacara organisms: relating form to function. Evolving Form and Function: Fossils and Development DEG Briggs 43–66 New Haven, CT: Yale Univ. Press [Google Scholar]
  53. Gehling JG, Narbonne GM, Anderson MM. 2000. The first named Ediacaran body fossil. Aspidella terranovica. Palaeontology 43:3427–56 [Google Scholar]
  54. Gehling JG, Rigby JK. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleontol. 70:2185–95 [Google Scholar]
  55. Gehling JG, Runnegar BN, Droser ML. 2014. Scratch traces of large Ediacara bilaterian animals. J. Paleontol. 88:2284–98 [Google Scholar]
  56. German CR, Legendre LL, Sander SG, Niquil N, Luther GW III. et al. 2015. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments. Earth Planet. Sci. Lett. 419:143–53 [Google Scholar]
  57. Germs GJB. 1972. New shelly fossils from Nama Group, South West Africa. Am. J. Sci. 272:752–61 [Google Scholar]
  58. Ghisalberti M, Gold DA, Laflamme M, Clapham ME, Narbonne GM. et al. 2014. Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes. Curr. Biol. 24:3305–9 [Google Scholar]
  59. Gill BC, Lyons TW, Saltzman MR. 2007. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256:156–73 [Google Scholar]
  60. Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature 469:80–83 [Google Scholar]
  61. Glaessner MF. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2:4369–93 [Google Scholar]
  62. Glaessner MF. 1984. The Dawn of Animal Life: A Biohistorical Study Cambridge, UK: Cambridge Univ. Press
  63. Grazhdankin D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:2203–21 [Google Scholar]
  64. Grazhdankin D. 2014. Patterns of evolution of the Ediacaran soft-bodied biota. J. Paleontol. 88:2269–83 [Google Scholar]
  65. Grazhdankin DV, Maslov AV, Krupenin MT. 2009. Structure and depositional history of the Vendian Sylvitsa Group in the western flank of the Central Urals. Stratigr. Geol. Correl. 17:5476–92 [Google Scholar]
  66. Grazhdankin DV, Maslov AV, Mustill TMR, Krupenin MT. 2005. The Ediacaran White Sea biota in the Central Urals. Doklady Earth Sci 401:3382–85 [Google Scholar]
  67. Grotzinger J, Adams EW, Schröder S. 2005. Microbial-metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geol. Mag. 142:5499–517 [Google Scholar]
  68. Grotzinger JP, Bowring SA, Saylor BZ, Kaufman AJ. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:5236598–604 [Google Scholar]
  69. Hagadorn JW, Fedo CM, Waggoner BM. 2000. Early Cambrian Ediacaran-type fossils from California. J. Paleontol. 74:4731–40 [Google Scholar]
  70. Hall CMS, Droser ML, Gehling JG, Dzaugis ME. 2015. Paleoecology of the enigmatic Tribrachidium: new data from the Ediacaran of South Australia. Precambrian Res 269:183–94 [Google Scholar]
  71. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22:4202–11 [Google Scholar]
  72. Hofmann HJ, O'Brien SJ, King AF. 2008. Ediacaran Biota on Bonavista Peninsula, Newfoundland, Canada. J. Paleontol. 82:11–36 [Google Scholar]
  73. Ivantsov AYU, Fedonkin MA. 2002. Conulariid-like fossil from the Vendian of Russia: a metazoan clade across the Proterozoic/Palaeozoic boundary. Palaeontology 45:61219–29 [Google Scholar]
  74. Ivantsov AYU, Malakhovskaya YE. 2002. Giant traces of Vendian animals. Doklady Earth Sci 385:618–22 [Google Scholar]
  75. Jensen SR. 2003. The Proterozoic and earliest Cambrian trace fossil record: patterns, problems, and perspectives. Integr. Comp. Biol. 43:219–28 [Google Scholar]
  76. Jensen S, Droser ML, Gehling JG. 2006. A critical look at the Ediacaran trace fossil record. Neoproterozoic Geobiology and Paleobiology S Xiao, AJ Kaufman 115–57 Dordrecht, Neth.: Springer [Google Scholar]
  77. Jensen SR, Gehling JG, Droser ML. 1998. Ediacara-type fossils in Cambrian sediments. Nature 393:567–69 [Google Scholar]
  78. Johnston DT, Poulton SW, Goldberg T, Sergeev VN, Podkovyrov V. et al. 2012. Late Ediacaran redox stability and metazoan evolution. Earth Planet. Sci. Lett. 335–336:25–35 [Google Scholar]
  79. Laakso TA, Schrag DP. 2014. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388:81–91 [Google Scholar]
  80. Laflamme M, Darroch SAF, Tweedt SM, Peterson KJ, Erwin DH. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat?. Gondwana Res 23:2558–73 [Google Scholar]
  81. Laflamme M, Narbonne GM. 2008. Ediacaran fronds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258:162–79 [Google Scholar]
  82. Laflamme M, Schiffbauer JD, Narbonne GM. 2012. Deep-water microbially induced sedimentary structures (MISS) in deep time: the Ediacaran fossil Ivesheadia. SEPM Spec. Publ. 101:111–23 [Google Scholar]
  83. Laflamme M, Xiao S, Kowalewski M. 2009. Osmotrophy in modular Ediacara organisms. PNAS 106:3414438–43 [Google Scholar]
  84. Lang SQ, Butterfield DA, Lilley MD, Johnson HP, Hedges JI. 2006. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70:3830–42 [Google Scholar]
  85. Li C, Planavsky NJ, Shi W, Zhang Z, Zhou C. 2015. Ediacaran marine redox heterogeneity and early animal ecosystems. Sci. Rep. 5:17097 [Google Scholar]
  86. Liu AG. 2016. Framboidal pyrite shroud confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms. Palaios 31:259–74 [Google Scholar]
  87. Liu AG, Brasier MD, Bogolepova OK, Raevskaya EG, Gubanov AP. 2013. First report of a newly discovered Ediacaran biota from the Irkineeva Uplift, East Siberia. Newsl. Stratigr. 46:295–110 [Google Scholar]
  88. Liu AG, Kenchington CG, Mitchell EG. 2015. Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Res 27:41355–80 [Google Scholar]
  89. Liu AG, Matthews JJ, Menon LR, McIlroy D, Brasier MD. 2014. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 281:179320141202 [Google Scholar]
  90. Liu AG, McIlroy D, Antcliffe JB, Brasier MD. 2011. Effaced preservation in the Ediacara biota of Avalonia and its implications for the early macrofossil record. Palaeontology 54:607–30 [Google Scholar]
  91. Liu AG, McIlroy D, Brasier MD. 2010. First evidence for locomotion in the Ediacara biota from the 656 Ma Mistaken Point Formation, Newfoundland. Geology 38:2123–26 [Google Scholar]
  92. Logan GA, Hayes JM, Hieshima GB, Summons RE. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56 [Google Scholar]
  93. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP. et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:7230718–21 [Google Scholar]
  94. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  95. Macdonald FA, Strauss JV, Sperling EA, Halverson GP, Narbonne GM. et al. 2013. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chem. Geol. 362:250–72 [Google Scholar]
  96. Mason SJ, Narbonne GM, Dalrymple RW, O'Brien SJ. 2013. Paleoenvironmental analysis of Ediacaran strata in the Catalina Dome, Bonavista Peninsula, Newfoundland. Can. J. Earth Sci. 50:2197–212 [Google Scholar]
  97. McIlroy D, Jenkins RJF, Walter MR. 1997. The nature of the Proterozoic-Cambrian transition in the northern Amadeus Basin, central Australia. Precambrian Res 86:93–113 [Google Scholar]
  98. McMenamin M. 1993. Osmotrophy in fossil protoctists and early animals. Invertebr. Reprod. Dev. 23:2–3165–66 [Google Scholar]
  99. Meyer M, Elliott D, Schiffbauer JD, Hall M, Hoffman KH. et al. 2014. Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. J. Paleontol. 88:2240–52 [Google Scholar]
  100. Mills DB, Ward LM, Jones C, Sweeten B, Forth M. et al. 2014. Oxygen requirements of the earliest animals. PNAS 111:114168–72 [Google Scholar]
  101. Mitchell EG, Kenchington CG, Liu AG, Matthews JJ, Butterfield NJ. 2015. Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature 524:7565343–46 [Google Scholar]
  102. Narbonne GM. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33:421–42 [Google Scholar]
  103. Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW, Greentree C. 2014. Deep-water Ediacaran fossils from Northwestern Canada: taphonomy, ecology, and evolution. J. Paleontol. 88:2207–23 [Google Scholar]
  104. Narbonne GM, Saylor BZ, Grotzinger JP. 1997. The youngest Ediacaran fossils from Southern Africa. J. Paleontol. 71:6953–67 [Google Scholar]
  105. Noffke N, Knoll AH, Grotzinger JP. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios 17:533–44 [Google Scholar]
  106. Paterson JR, Gehling JG, Droser ML, Bicknell RDC. 2017. Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia. Sci. Rep. 7:45539 [Google Scholar]
  107. Pecoits E, Konhauser JO, Aubet NR, Heaman LM, Veroslavsky G. et al. 2012. Bilaterian burrows and grazing behavior at >585 million years ago. Science 336:60891693–96 [Google Scholar]
  108. Pecoits E, Konhauser JO, Aubet NR, Heaman LM, Veroslavsky G. et al. 2013. Response to comment on “Bilaterian burrows and grazing behavior at >585 million years ago.”. Science 339:6122906 [Google Scholar]
  109. Penny AM, Wood R, Curtis A, Bowyer F, Tostevin R, Hoffman K-H. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344:15041504–6 [Google Scholar]
  110. Peterson KJ, Waggoner B, Hagadorn JW. 2003. A fungal analog for Newfoundland Ediacaran fossils. ? Integr. Comp. Biol. 43:1127–36 [Google Scholar]
  111. Pflüger F, Gresse PG. 1996. Microbial sand chips—a non-actualistic sedimentary structure. Sediment. Geol. 102:263–74 [Google Scholar]
  112. Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P. et al. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:6209635–38 [Google Scholar]
  113. Planavsky NJ, Tarhan LG, Bellefroid EJ, Evans DAD, Reinhard CT. et al. 2015. Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life. Paleontol. Soc. Pap. 21:47–82 [Google Scholar]
  114. Pu JP, Bowring SA, Ramezani J, Myrow P, Raub TD. et al. 2016. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44:955–58 [Google Scholar]
  115. Reinhard CT, Planavsky NJ, Olson SL, Lyons TW, Erwin DH. 2016. Earth's oxygen cycle and the evolution of animal life. PNAS 113:8933–38 [Google Scholar]
  116. Retallack GJ. 1994. Were the Ediacaran fossils lichens. ? Paleobiology 20:4523–44 [Google Scholar]
  117. Rogov V, Marusin V, Bykova N, Goy Y, Nagovitsin K. et al. 2012. The oldest evidence of bioturbation on Earth. Geology 40:5395–98 [Google Scholar]
  118. Rothman DH, Hayes JM, Summons RE. 2003. Dynamics of the Neoproterozoic carbon cycle. PNAS 100:148124–29 [Google Scholar]
  119. Sahoo SK, Planavsky NJ, Kendall B, Wang X, Shi X. et al. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–49 [Google Scholar]
  120. Saltzman MR, Edwards CT, Adrain JM, Westrop SR. 2015. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43:9807–10 [Google Scholar]
  121. Sappenfield A, Droser ML, Gehling JG. 2011. Problematica, trace fossils, and tubes within the Ediacara Member (South Australia): redefining the Ediacaran trace fossil record one tube at a time. J. Paleontol. 85:2256–65 [Google Scholar]
  122. Seilacher A. 1984. Late Precambrian and Early Cambrian metazoa: preservational or real extinctions?. Patterns of Change in Earth Evolution HD Holland, AF Trendal 159–68 Berlin: Springer [Google Scholar]
  123. Seilacher A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J. Geol. Soc. 149:4607–13 [Google Scholar]
  124. Seilacher A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14:186–93 [Google Scholar]
  125. Seilacher A, Buatois LA, Mangáno MG. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227:4323–56 [Google Scholar]
  126. Seilacher A, Pflüger F. 1994. From biomats to benthic agriculture: a biohistoric revolution. Biostabilization of Sediments WE Krumbein, DM Paterson, LJ Stal 97–105 Oldenburg, Ger: Bib. Inf.-Syst. Carl von Ossietzky Univ. Oldenburg [Google Scholar]
  127. Sepkoski JJ Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:136–53 [Google Scholar]
  128. Shen Y, Zhang T, Hoffman PF. 2008. On the coevolution of Ediacaran oceans and animals. PNAS 105:217376–81 [Google Scholar]
  129. Sperling EA, Frieder CA, Raman AV, Girguis PR, Levin LA, Knoll AH. 2013. Oxygen, ecology, and the Cambrian radiation of animals. PNAS 110:3313446–51 [Google Scholar]
  130. Sperling EA, Knoll AH, Girguis PR. 2015a. The ecological physiology of Earth's second oxygen revolution. Annu. Rev. Ecol. Evol. Syst. 46:215–35 [Google Scholar]
  131. Sperling EA, Peterson KJ, Laflamme M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9:24–33 [Google Scholar]
  132. Sperling EA, Pisani D, Peterson KJ. 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology. Geol. Soc. Lond. Spec. Publ. 286:355–68 [Google Scholar]
  133. Sperling EA, Vinther J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol. Devol. 12:2201–9 [Google Scholar]
  134. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M. et al. 2015b. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–54 [Google Scholar]
  135. Steiner M, Reitner J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology 29:121119–22 [Google Scholar]
  136. Tarhan LG, Droser ML, Gehling JG. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25:12823–30 [Google Scholar]
  137. Tarhan LG, Droser ML, Gehling JG. 2014a. Puckered, woven and grooved: the importance of substrate for Ediacara paleoecology, paleoenvironment and taphonomy. Annu. Meet. Paleontol. Assoc.—Progr. Abstr. AGM Pap. Abstr. 48
  138. Tarhan LG, Droser ML, Gehling JG, Dzaugis MP. 2015a. Taphonomy and morphology of the Ediacara form genus Aspidella. . Precambrian Res. 257:124–36 [Google Scholar]
  139. Tarhan LG, Droser ML, Gehling JG, Dzaugis MP. 2017. Microbial mat sandwiches and other anactualistic sedimentary features of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for interpretation of the Ediacaran sedimentary record. Palaios 32:181–194 [Google Scholar]
  140. Tarhan LG, Droser ML, Planavsky NJ, Johnston DT. 2015b. Protracted development of bioturbation through the early Paleozoic Era. Nat. Geosci. 8:865–69 [Google Scholar]
  141. Tarhan LG, Hood AvS, Droser ML, Gehling JG, Briggs DEG. 2016. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans. Geology 44:951–954 [Google Scholar]
  142. Tarhan LG, Hughes NC, Myrow PM, Bhargava ON, Ahluwalia AD, Kudryavtsev AB. 2014b. Precambrian-Cambrian boundary interval occurrence and form of the enigmatic tubular body fossil Shaanxilithes ningquiangensis from the Lesser Himalaya of India. Palaeontology 57:2283–98 [Google Scholar]
  143. Turner JT. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol. 27:57–102 [Google Scholar]
  144. Waggoner B. 2003. The Ediacaran biotas in space and time. Integr. Comp. Biol. 43:1104–13 [Google Scholar]
  145. Wilby PR, Carney JN, Howe MPA. 2011. A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean. Geology 39:7655–58 [Google Scholar]
  146. Wilby PR, Kenchington CG, Wilby RL. 2015. Role of low intensity environmental disturbance in structuring the earliest (Ediacaran) macrobenthic tiered communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434:14–27 [Google Scholar]
  147. Wood DA, Dalrymple RW, Narbonne GM, Gehling JG, Clapham ME. 2003. Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Can. J. Earth Sci. 40:101375–91 [Google Scholar]
  148. Wood R, Curtis A. 2015. Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology 13:2112–22 [Google Scholar]
  149. Wood RA, Grotzinger JP, Dickson JAD. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:55772283–86 [Google Scholar]
  150. Wood RA, Poulton SW, Prave AR, Hoffman K-H, Clarkson MO. et al. 2015. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Res 261:252–71 [Google Scholar]
  151. Xiao S, Droser ML, Gehling JG, Hughes IV, Wan B. et al. 2013. Affirming the life aquatic for the Ediacara biota in China and Australia. Geology 41:101095–98 [Google Scholar]
  152. Xiao S, Laflamme M. 2009. On the eve of animal radiation: phylogeny, ecology, and evolution of the Ediacara biota. Trends Ecol. Evol. 24:131–40 [Google Scholar]
  153. Zakrevskaya M. 2014. Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 410:27–38 [Google Scholar]
  154. Zhuravlev AYU. 1993. Were Ediacaran Vendobionta multicellulars?. Neues Jahrb. Geol. Palaontologie-Abh. 190:2299–314 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-015645
Loading
/content/journals/10.1146/annurev-earth-063016-015645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error