1932

Abstract

Understanding climate change, its effect on terrestrial and marine ecosystems, and possible ways to prevent future climate disasters is a major challenge for society, involving specialists in climate science, terrestrial and marine ecology, paleontology, and sedimentary geology. One approach is to study the deep-time record, especially when the time involved in a particular climatic change can be calibrated. Cyclostratigraphy is a useful tool for this. Throughout Earth's history, different scales of orbital cycles have had significant impacts on atmosphere-ocean dynamics; these impacts are preserved in the ecological and sedimentary record. Most characterizations of these cycles are based on the sedimentary record. But fossil records of past biota, corresponding to individual organisms and communities, have proven very useful in cyclostratigraphic research: From semidiurnal cycles mainly recorded in fossil skeletons to million-year-scale cycles involving mass extinctions, various cases illustrate their worth. This article reviews the use of the fossil record to recognize several cycles, from ecological timescales (≤1.0 yr to 10 kyr cycles; calendar and solar bands) to geological timescales (>10 kyr cycles; Milankovitch and galactic bands).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-120412-145922
2014-05-30
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-120412-145922.html?itemId=/content/journals/10.1146/annurev-earth-120412-145922&mimeType=html&fmt=ahah

Literature Cited

  1. Ali OE. 1984. Sclerochronology and carbonate production in some Upper Jurassic reef corals. Paleontology 27:537–48 [Google Scholar]
  2. Allen RJ. 2000. ENSO and climatic variability in the past 150 years. El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts HF Diaz, V Markgraf 3–55 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT. et al. 2008. Phanerozoic trends in the diversity of marine invertebrates. Science 321:97–100 [Google Scholar]
  4. Ammons AW, Frits WJ, Ammons RB. 1987. Cross-identification of ring signatures in Eocene trees (Sequoia magnifica) from the Specimen Ridge locality of the Yellowstone fossil forests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 60:97–108 [Google Scholar]
  5. Ampel L, Wohlfarth B, Risberg J, Veres D. 2008. Paleolimnological response to millennial and centennial scale climate variability during MIS 3 and 2 as suggested by the diatom record in Les Échets, France. Quat. Sci. Rev. 27:1493–504 [Google Scholar]
  6. Anderson RY, Soutar A, Johnson TC. 1992. Long-term changes in El Niño/Southern Oscillation: evidence from marine and lacustrine sediments. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation419–33 New York: Cambridge Univ. Press [Google Scholar]
  7. Andreasson FP, Schmitz B. 1996. Winter and summer temperatures of the early middle Eocene of France from Turritella δ18O profiles. Geology 24:1067–70 [Google Scholar]
  8. Andreasson FP, Schmitz B. 2000. Temperature seasonality in the early middle Eocene North Atlantic region: evidence from stable isotope profiles of marine gastropod shells. Geol. Soc. Am. Bull. 112:628–40 [Google Scholar]
  9. Antoine L, Quemerais-Pencreach D. 1980. Stries et rythmes de croissance chez la patelle Patella vulgata. C. R. Acad. Sci. D 290:1127–30 [Google Scholar]
  10. Aswan, Ozawa T. 2006. Milankovitch 41 000-year cycles in lithofacies and molluscan content in the tropical Middle Miocene Nyalindung Formation, Jawa, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 235:382–405 [Google Scholar]
  11. Baas JH, Schönfeld J, Zahn R. 1998. Mid-depth oxygen drawdown during Heinrich events: evidence from benthic foraminiferal community structure, trace fossil tiering, and benthic δ13C at the Portuguese Margin. Mar. Geol. 152:25–55 [Google Scholar]
  12. Badawi A, Schmiedl G, Hemleben C. 2005. Impact of late Quaternary environmental changes on deep-sea benthic foraminifera faunas of the Red Sea. Mar. Micropaleontol. 58:13–30 [Google Scholar]
  13. Badgley C, Barry JC, Morgan ME, Nelson SV, Behrensmayer AK. et al. 2008. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proc. Natl. Acad. Sci. USA 105:12145–49 [Google Scholar]
  14. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55 [Google Scholar]
  15. Bard E. 2002. Climate shock: abrupt changes over millennial time scales. Phys. Today 55:32–38 [Google Scholar]
  16. Beaufort L, Aubry M-P. 1990. Fluctuations in the composition of Late Miocene calcareous nannofossil assemblages as a response to orbital forcing. Paleoceanography 5:845–65 [Google Scholar]
  17. Becker J, Lourens LJ, Hilgen FJ, van der Laan E, Kouwenhoven TJ, Reichart GJ. 2005. Late Pliocene climate variability on Milankovitch to millennial time scales: a high-resolution study of MIS100 from the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 228:338–60 [Google Scholar]
  18. Behl RJ. 1995. Sedimentary facies and sedimentology of the Late Quaternary Santa Barbara Basin, site 893. . In Santa Barbara Basin Site 893 JP Kennett, JG Baldauf, M Lyle Proc. Ocean Drill. Program Sci. Results 146Part 2295–308 College Station, TX: Ocean Drill. Program [Google Scholar]
  19. Behl RJ, Kennett JP. 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379:243–46 [Google Scholar]
  20. Bennett KD. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:11–21 [Google Scholar]
  21. Bennett KD. 2004. Continuing the debate on the role of Quaternary environmental change for macroevolution. Philos. Trans. R. Soc. B 359:295–303 [Google Scholar]
  22. Benton MJ. 1993. The Fossil Record 2 London: Chapman & Hall845
  23. Benton MJ. 1995. Diversification and extinction in the history of life. Science 268:52–58 [Google Scholar]
  24. Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L. et al. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–47 [Google Scholar]
  25. Bond G, Lotti R. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–10 [Google Scholar]
  26. Bond G, Showers W, Cheseby M, Lotti R, Almasi P. et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–66 [Google Scholar]
  27. Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D. et al. 2009. Dendroclimatological reconstructions in South America: a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281:210–28 [Google Scholar]
  28. Broecker WS. 2006. Abrupt climate change revisited. Glob. Planet. Change 54:211–15 [Google Scholar]
  29. Bull D, Kemp AES, Weedon GP. 2000. A 160-k.y.-old record of El Niño–Southern Oscillation in marine production and coastal runoff from Santa Barbara Basin, California, USA. Geology 28:1007–10 [Google Scholar]
  30. Cacho I, Grimalt JO, Sierro FJ, Shackleton N, Canals M. 2000. Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings. Earth Planet. Sci. Lett. 183:417–29 [Google Scholar]
  31. Campana SE, Neilson JD. 1985. Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci. 42:1014–32 [Google Scholar]
  32. Campisano CJ. 2012. Milankovitch cycles, paleoclimatic change, and hominin evolution. Nat. Educ. Knowl. 4:5 [Google Scholar]
  33. Cannariato KG, Kennett JP, Behl RJ. 1999. Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: ecological and evolutionary implications. Geology 27:63–66 [Google Scholar]
  34. Cao R. 1991. Origin and order of cyclic growth patterns in matministromatolite bioherms from the Proterozoic Wumishan formation, North China. Precambr. Res. 52:167–78 [Google Scholar]
  35. Chang YP, Wang WL, Yokoyama Y, Matsuzaki H, Kawahata H, Chen MT. 2008. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough). Terr. Atmos. Ocean. Sci. 19:389–401 [Google Scholar]
  36. Chen M, Wand R, Tang R, Han J, Lu J. 2003. Development of east Asian summer monsoon environments in the late Miocene: radiolarian evidence from Site 1143 of ODP Leg 184. Mar. Geol. 201:169–77 [Google Scholar]
  37. Christie DA, Lara A, Barichivich J, Villalba R, Morales MS, Cuq E. 2009. El Niño–Southern Oscillation signal in the world's highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281:309–19 [Google Scholar]
  38. Claps M, Erba E, Masetti D, Melchiorri F. 1995. Milankovitch-type cycles recorded in Toarcian black shales from the Belluno Trough (Southern Alps, Italy). Mem. Sci. Geol. 47:179–88 [Google Scholar]
  39. Cohen AL, Sohn RA. 2004. Tidal modulation of Sr/Ca ratios in a Pacific reef coral. Geophys. Res. Lett. 31:L16310 [Google Scholar]
  40. Colmenero-Hidalgo E, Flores JA, Sierro FJ, Bárcena MA, Löwemark L. et al. 2004. Ocean surface water response to short-term climate changes revealed by coccolithophores from the Gulf of Cadiz (NE Atlantic) and Alboran Sea (W Mediterranean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 205:317–36 [Google Scholar]
  41. Cornette JL. 2007. Gauss-Vaníček and Fourier transform spectral analyses of marine diversity. Comput. Sci. Eng. 9:61–63 [Google Scholar]
  42. Correa-Metrio A, Bush MB, Hodell DA, Brenner M, Escobar J, Guilderson T. 2011. The influence of abrupt climate change on the ice-age vegetation of the Central American lowlands. J. Biogeogr. 39:497–509 [Google Scholar]
  43. Corrège T, Delcroix T, Récy J, Beck W, Cabioch G, Le Cornec F. 2000. Evidence for stronger El Niño–Southern Oscillation (ENSO) events in a mid-Holocene massive coral. Paleoceanography 15:465–70 [Google Scholar]
  44. Cortese G, Abelmann A. 2002. Radiolarian-based paleotemperatures during the last 160 kyr at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 182:259–86 [Google Scholar]
  45. Coughenour CL, Archer AW, Lacovara KJ. 2009. Tides, tidalites, and secular changes in the Earth-Moon system. Earth-Sci. Rev. 97:59–79 [Google Scholar]
  46. Creber GT, Francis JE. 1999. Fossil tree-ring analysis: paleodendrology. Fossil Plants and Spores: Modern Techniques TP Jones, NP Rowe 245–50 London: Geol. Soc. [Google Scholar]
  47. Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SJ. et al. 1982. A new Greenland deep ice core. Science 218:1273–77 [Google Scholar]
  48. D'Argenio B, Fischer AG, Premoli Silva I, Weissert H, Ferreri V. 2004. Cyclostratigraphy: Approaches and Case Histories. SEPM Spec. Publ. 26305
  49. Davis M, Hut P, Muller RA. 1984. Extinction of species by periodic comet showers. Nature 308:715–17 [Google Scholar]
  50. de Vernal A, Hillaire-Marcel C, Turon JL, Matthiessen J. 2000. Reconstruction of sea-surface temperature, salinity, and sea-ice cover in the northern North Atlantic during the last glacial maximum based on dinocyst assemblages. Can. J. Earth Sci. 37:725–50 [Google Scholar]
  51. Dean JM, Kemp AES. 2004. A 2100 year BP record of the Pacific Decadal Oscillation, El Niño Southern Oscillation and Quasi-Biennial Oscillation in marine production and fluvial input from Saanich Inlet, British Columbia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213:207–29 [Google Scholar]
  52. deMenocal PB. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220:3–24 [Google Scholar]
  53. Doguzhaeva L. 1982. Rhythms of ammonoid shell secretion. Lethaia 15:385–94 [Google Scholar]
  54. Donders TH, Wagner-Cremer F, Visscher H. 2008. Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability. Quat. Sci. Rev. 27:571–79 [Google Scholar]
  55. Ekarante SUK, Crisp DJ. 1982. Tidal micro-growth bands in intertidal gastropod shells, with an evolution of band-dating techniques. Proc. R. Soc. B 214:305–23 [Google Scholar]
  56. Erba E, Castradori D, Guasti G, Ripepe M. 1992. Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeogr. Palaeoclimatol. Palaeoecol. 93:47–69 [Google Scholar]
  57. Erba E, Premoli Silva I. 1994. Orbitally driven cycles in trace-fossil distribution from the Piobbico core (late Albian, central Italy). Orbital Forcing and Cyclic Sequences PL de Boer, DG Smith Spec. Publ. Int. Assoc. Sedimentol. 19211–25 Oxford, UK: Blackwell [Google Scholar]
  58. Erwin DH. 2006. Dates and rates: temporal resolution in the deep time stratigraphic record. Annu. Rev. Earth Planet. Sci. 34:569–90 [Google Scholar]
  59. Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, deMenocal PB. et al. 2006. The Pliocene paradox (mechanisms for a permanent El Niño). Science 312:1485–89 [Google Scholar]
  60. Fischer AG. 1986. Climatic rhythms recorded in strata. Annu. Rev. Earth Planet. Sci. 14:351–76 [Google Scholar]
  61. Fischer AG, Arthur MA. 1977. Secular variations in the pelagic realm. Deep-Water Carbonate Environments HE Cook, P Enos SEPM Spec. Publ. 2518–50 Tulsa, OK: SEPM [Google Scholar]
  62. Fischer AG, Bottjer DJ. 1991. Orbital forcing and sedimentary sequences. J. Sediment. Petrol. 61:1063–69 [Google Scholar]
  63. Fischer AG, D'Argenio B, Premoli Silva I, Weissert H, Ferreri V. 2004. Cyclostratigraphic approach to Earth's history: an introduction. See D'Argenio et al. 2004 5–13
  64. Fischer AG, Herbert TD. 1986. Stratification rhythms: Italo-American studies in the Umbria facies. Mem. Soc. Geol. Ital. 31:45–51 [Google Scholar]
  65. Fischer AG, Herbert TD, Napoleone G, Premoli Silva I, Ripepe M. 1991. Albian pelagic rhythms (Piobbico core). J. Sediment. Res. 61:1164–72 [Google Scholar]
  66. Fischer AG, Hilgen FJ, Garrison RE. 2009. Mediterranean contributions to cyclostratigraphy and astrochronology. Sedimentology 56:63–94 [Google Scholar]
  67. Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A. et al. 2006. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:219–27 [Google Scholar]
  68. Francis JE, Poole I. 2002. Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182:47–64 [Google Scholar]
  69. Francis JE, Woolfe KJ, Arnot MJ, Barrett PJ. 1994. Permian climates of the southern margins of Pangea: evidence from fossil wood in Antarctica. Pangea: Global Environments and Resources AF Embry, B Beauchamp, DJ Glass Can. Soc. Pet. Geol. Mem. 17275–82 Calgary: Can. Soc. Pet. Geol. [Google Scholar]
  70. Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M. et al. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe; a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1111–22 [Google Scholar]
  71. Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM. et al. 2000. New views of tropical paleoclimates from corals. Quat. Sci. Rev. 19:45–64 [Google Scholar]
  72. Galeotti S. 1998. Planktic and benthic foraminiferal distribution patterns as a response to changes in surface fertility and ocean circulation: a case study from the Late Albian ‘Amadeus Segment’ (Central Italy). J. Micropalaeontol. 17:87–96 [Google Scholar]
  73. Gibbs S, Shackleton N, Young J. 2004. Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Mar. Micropaleontol. 51:39–56 [Google Scholar]
  74. Gillman M, Erenler H. 2008. The galactic cycle of extinction. Int. J. Astrobiol. 7:17–26 [Google Scholar]
  75. Gorbarenko SA, Wang P, Wang R, Cheng X. 2010. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286:97–106 [Google Scholar]
  76. Gould SJ. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:2–12 [Google Scholar]
  77. Gradstein FM, Ogg JG, Smith AG. 2005. A Geologic Time Scale 2004 Cambridge, UK: Cambridge Univ. Press610
  78. Grelaud M, Beaufort L, Cuven S, Buchet N. 2009. Glacial to interglacial primary production and El Niño–Southern Oscillation dynamics inferred from coccolithophores of the Santa Barbara Basin. Paleoceanography 24:PA1203 [Google Scholar]
  79. Grippo A, Fischer AG, Hinnov LA, Herbert T, Premoli Silva I. 2004. Cyclostratigraphy and chronology of the Albian Stage (Piobbico core, Italy). See D'Argenio et al. 2004 57–81
  80. Gupta SM. 2003. Orbital frequencies in radiolarian assemblages of the central Indian Ocean: implications on the Indian summer monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197:97–112 [Google Scholar]
  81. Haveles AW, Ivany LC. 2010. Rapid growth explains large size of mollusks in the Eocene Gosport Sand, United States Gulf Coast. Palaios 25:550–64 [Google Scholar]
  82. Hays JD, Imbrie J, Shackleton NT. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194:1121–32 [Google Scholar]
  83. Heard TG, Pickering KT, Robinson SA. 2008. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth Planet. Sci. Lett. 272:130–38 [Google Scholar]
  84. Heinrich H. 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29:142–52 [Google Scholar]
  85. Helama S, Schöne BR, Black BA, Dunca E. 2006. Constructing long-term proxy series for aquatic environments with absolute dating control using a sclerochronological approach: introduction and advanced applications. Mar. Freshw. Res. 57:591–99 [Google Scholar]
  86. Hemming SR. 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42:RG1005 [Google Scholar]
  87. Heusser LE, Sirocko F. 1997. Millennial pulsing of environmental change in southern California from the past 24 k.y.: a record of Indo-Pacific ENSO events?. Geology 25:243–46 [Google Scholar]
  88. Hilgen F, Schwarzacher W, Strasser A. 2004. Appendix: concept and definitions in cyclostratigraphy (second report of the cyclostratigraphic working group): approaches and case histories. See D'Argenio et al. 2004 303–5
  89. Hinnov LA. 2000. New perspectives on orbitally forced stratigraphy. Annu. Rev. Earth Planet. Sci. 28:419–75 [Google Scholar]
  90. Hoffman A. 1985. Patterns of family extinction depend on definition and geological timescale. Nature 315:659–62 [Google Scholar]
  91. Hooghiemstra H, Melice JL. 1994. Pleistocene evolution of orbital periodicities in the high-resolution pollen record Funza I, Eastern Cordillera, Colombia. Orbital Forcing and Cyclic Sequences PL de Boer, DG Smith Spec. Publ. Int. Assoc. Sedimentol. 19117–26 Oxford, UK: Blackwell [Google Scholar]
  92. House MR. 1995. Orbital forcing timescales: an introduction. Orbital Forcing Timescales and Cyclostratigraphy MR House, AS Gale Geol. Soc. Lond. Spec. Publ. 851–18 London: Geol. Soc. [Google Scholar]
  93. House MR, Farrow GE. 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature 219:1384–86 [Google Scholar]
  94. Huber M, Caballero R. 2003. Eocene El Niño: evidence for robust tropical dynamics in the “hothouse.”. Science 299:877–81 [Google Scholar]
  95. Hughes WW, Maddigan PJ, Runcorn SK. 1980. Nautiloid shell growth rhythms? Data from British Museum (Natural History) specimens. Geol. Soc. Am. Abstr. Programs 12:7452 [Google Scholar]
  96. Imbrie J. 1985. A theoretical framework for the Pleistocene ice ages: William Smith Lecture. J. Geol. Soc. 142:417–32 [Google Scholar]
  97. Insalaco E. 1996. The use of Late Jurassic coral growth bands as palaeoenvironmental indicators. Palaeontology 39:413–31 [Google Scholar]
  98. Jahren AH, Sternberg LSL. 2008. Annual patterns within tree rings of the Arctic middle Eocene (ca. 45 Ma): isotopic signatures of precipitation, relative humidity, and deciduousness. Geology 36:99–102 [Google Scholar]
  99. Jefferson TH. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology 25:681–708 [Google Scholar]
  100. Jiménez-Moreno G, Abdul Aziz H, Rodríguez-Tovar FJ, Pardo-Igúzquiza E, Suc JP. 2007. Palynological evidence for astronomical forcing in Early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 252:601–16 [Google Scholar]
  101. Jiménez-Moreno G, Rodríguez-Tovar FJ, Pardo-Igúzquiza E, Fauquette S, Suc JP, Müller P. 2005. High-resolution palynological analysis in late early–middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216:73–97 [Google Scholar]
  102. Jones CR. 1981. Periodicities in stromatolite lamination from the Early Proterozoic Hearne Formation, Great Slave Lake, Canada. Palaeontology 24:231–50 [Google Scholar]
  103. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD. et al. 2009. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49 [Google Scholar]
  104. Kahn PGK, Pompea SM. 1978. Nautiloid growth rhythms and dynamical evolution of the Earth-Moon system. Nature 275:606–11 [Google Scholar]
  105. Kemp AES. 1996a. Laminated sediments as palaeo-indicators. See Kemp 1996b vii–xii
  106. Kemp AES. 1996b. Palaeoclimatology and Palaeoceanography from Laminated Sediments Geol. Soc. Lond. Spec. Publ. 116 London: Geol. Soc258
  107. Kilbourne TH, Quinn TM, Guilderson TP, Webb RS, Taylor FW. 2007. Decadal- to interannual-scale source water variations in the Caribbean Sea recorded by Puerto Rican coral radiocarbon. Clim. Dyn. 29:51–62 [Google Scholar]
  108. Kingston JD. 2005. Orbital controls on seasonality. Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates DK Brockman, CP van Schaik 519–42 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  109. Kitamura A. 2004. Effects of seasonality forced by orbital-insolation cycles on offshore molluscan faunal change during rapid warming in the Sea of Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203:169–78 [Google Scholar]
  110. Koutavas A, deMenocal PB, Olive GC, Lynch-Stieglitz J. 2006. Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34:993–96 [Google Scholar]
  111. Landman NH. 1983. Ammonoid growth rhythms. Lethaia 16:248 [Google Scholar]
  112. Lartaud F, de Rafelis M, Ropert M, Emmanuel L, Geairon P, Renard M. 2010. Mn labelling of living oysters: artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300:206–17 [Google Scholar]
  113. Lauridsen BW, Gale AS, Surlyk F. 2009. Benthic macrofauna variations and community structure in Cenomanian cyclic chalk-marl from Southerham Grey Pit, SE England. J. Geol. Soc. 166:115–27 [Google Scholar]
  114. Leary PN, Hart MB. 1992. The benthonic foraminiferal response to changing substrate in Cenomanian (Cretaceous) rhythms induced by orbitally-forced surface water productivity. J. Micropalaeontol. 11:107–11 [Google Scholar]
  115. Legge HL, Mutterlose J, Arz HW, Pätzold J. 2008. Nannoplankton successions in the northern Red Sea during the last glaciation (60 to 14.5 ka BP): reactions to climate change. Earth Planet. Sci. Lett. 270:271–79 [Google Scholar]
  116. Lenz OK, Wilde V, Riegel W, Harms FJ. 2010. A 600 k.y. record of El Niño–Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 8:627–30 [Google Scholar]
  117. Leuschner DC, Sirocko F. 2000. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich events. Quat. Sci. Rev. 19:243–54 [Google Scholar]
  118. Lewis DFV, Dorne JLCM. 2006. The astronomical pulse of global extinction events. Sci. World J. 6:718–26 [Google Scholar]
  119. Lieberman BS, Melott AL. 2007. Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS ONE 2:e759 [Google Scholar]
  120. Lough JM. 2010. Climate records from corals. Wiley Interdiscip. Rev. Clim. Change 1:318–31 [Google Scholar]
  121. Mackay AW. 2007. The paleoclimatology of Lake Baikal: a diatom synthesis and prospectus. Earth-Sci. Rev. 82:181–215 [Google Scholar]
  122. MacKinnon DI, Williams A. 1974. Shell structure of terebratulid brachiopods. Palaeontology 17:179–202 [Google Scholar]
  123. MacLeod KG, Huber BT, Pletsch T, Röhl U, Kucera M. 2001. Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch timescales. Paleoceanography 16:133–54 [Google Scholar]
  124. Marchito TM Jr, Jones GA, Goodfriend GA, Weidman CR. 2000. Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat. Res. 53:236–46 [Google Scholar]
  125. Marino M, Maiorano P, Lirer F, Pelosi N. 2009. Response of calcareous nannofossil assemblages to paleoenvironmental changes through the mid-Pleistocene revolution at Site 1090 (Southern Ocean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 280:333–49 [Google Scholar]
  126. Mazumder R, Arima M. 2005. Tidal rhythmites and their implications. Earth-Sci. Rev. 69:79–95 [Google Scholar]
  127. Mazzullo SJ. 1971. Length of the year during the Silurian and Devonian periods: new values. Geol. Soc. Am. Bull. 82:1085–86 [Google Scholar]
  128. Medvedev MV, Melott AL. 2007. Do extragalactic cosmic rays induce cycles in fossil diversity?. Astrophys. J. 664:879–89 [Google Scholar]
  129. Melott AL. 2008. Long-term cycles in the history of life: periodic biodiversity in the Paleobiology Database. PLoS ONE 3:e4044 [Google Scholar]
  130. Melott AL, Bambach RK. 2010. Nemesis reconsidered. Mon. Not. R. Astron. Soc. Lett. 407:L99–102 [Google Scholar]
  131. Melott AL, Bambach RK. 2011. A ubiquitous ∼62 Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37:383–408 [Google Scholar]
  132. Melott AL, Krejci AJ, Thomas BC, Medvedev MV, Murray MJ, Wilson GV. 2008. Atmospheric consequences of cosmic ray variability in the extragalactic shock model. J. Geophys. Res. 113:E10007 [Google Scholar]
  133. Mertens KN, González C, Delusina I, Louwye S. 2009. 30 000 years of productivity and salinity variations in the late Quaternary Cariaco Basin revealed by dinoflagellate cysts. Boreas 38:647–62 [Google Scholar]
  134. Mitchell JM. 1976. An overview of climatic variability and its causal mechanisms. Quat. Res. 6:481–93 [Google Scholar]
  135. Molfino B, Heusser LH, Woillard GM. 1984. Frequency components of a Grand Pile problem record: evidence of precessional orbital forcing. Milankovitch and Climate: Understanding the Response to Astronomical Forcing AL Berger, J Imbrie, J Hays, G Kukla, B Saltzman NATO Sci. Ser. B 126391–404 Dordrecht, Neth: Kluwer Acad896 [Google Scholar]
  136. Molinie AJ, Ogg JG. 1992. Milankovitch cycles in Upper Jurassic and Lower Cretaceous radiolarites of the equatorial Pacific: spectral analysis and sedimentation rate curves. Old Crust Pacific Sites 800–802 RL Larson, Y Lancelot Proc. Ocean Drill. Program Sci. Results 129529–47 College Station, TX: Ocean Drill. Program [Google Scholar]
  137. Mutterlose J, Ruffell A. 1999. Milankovitch-scale palaeoclimate changes in pale-dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154:133–60 [Google Scholar]
  138. Natl. Res. Counc 2010. Understanding Climate's Influence on Human Evolution. Washington, DC: Natl. Acad. Press
  139. Natl. Res. Counc 2011. Understanding Earth's Deep Past: Lessons for Our Climate Future. Washington, DC: Natl. Acad. Press
  140. Nova Southeast. Univ. Oceanogr. Cent 2011. Coral X-Radiograph Densitometry System. Dania Beach, FL: Nova Southeast. Univ. Oceanogr. Cent http://www.nova.edu/ocean/coralxds/
  141. Oeschger H, Stauffer B, Finkel R, Langway CC Jr. 1985. Variations of the CO2 concentration of occluded air and of anions and dust in polar ice cores. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sundquist, WS Broecker Geophys. Monogr. Ser. 32132–42 Washington, DC: AGU [Google Scholar]
  142. Ohno T. 1989. Palaeotidal characteristics determined by microgrowth patterns in bivalves. Palaeontology 32:237–63 [Google Scholar]
  143. Ohno T, Takenouchi K. 1984. Tidal growth patterns in recent Monodonta labio (Linnaeus, 1758) (Gastropoda, Trochidae). News Osaka Micropaleontol. 12:51–56 [Google Scholar]
  144. Ortiz JD, O'Connell SB, DelViscio J, Dean W, Carriquiry JD. et al. 2004. Enhanced marine productivity off western North America during warm climatic intervals of the past 52 k.y. Geology 32:521–24 [Google Scholar]
  145. Ozalas K, Savrda CE, Fullerton R. 1994. Bioturbated oxygenation-event beds in siliceous facies: Monterey Formation (Miocene), California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 112:63–83 [Google Scholar]
  146. Paillard D. 2001. Glacial cycles: toward a new paradigm. Rev. Geophys. 39:325–46 [Google Scholar]
  147. Panfili J, de Pontual H, Troadec H, Wright PJ. 2002. Manual of Fish Sclerochronology Brest, Fr.: Ifremer464
  148. Pannella G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science 17:1124–27 [Google Scholar]
  149. Pannella G. 1972. Paleontological evidence on the Earth's rotational history since the Early Precambrian. Astrophys. Space Sci. 16:212–37 [Google Scholar]
  150. Pannella G. 1976. Geophysical inferences from stromatolite lamination. Stromatolites MR Walter Dev. Sedimentol. 20673–85 Amsterdam: Elsevier [Google Scholar]
  151. Pannella G, MacClintock C. 1968. Biological and environmental rhythms reflected in molluscan shell growth. J. Paleontol. 42:64–80 [Google Scholar]
  152. Patterson C, Smith AB. 1989. Periodicity in extinction: the role of systematics. Ecology 70:802–11 [Google Scholar]
  153. Penaud A, Eynaud F, Sánchez-Goñi M, Malaizé B, Turon JL, Rossignol L. 2011. Contrasting sea-surface responses between the western Mediterranean Sea and eastern subtropical latitudes of the North Atlantic during abrupt climatic events of MIS 3. Mar. Micropaleontol. 80:1–17 [Google Scholar]
  154. Pérez-Folgado M, Sierro FJ, Flores JA, Cacho I, Grimalt JO. et al. 2003. Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr. Mar. Micropaleontol. 48:49–70 [Google Scholar]
  155. Peters SE, Foote M. 2002. Determinants of extinction in the fossil record. Nature 416:420–24 [Google Scholar]
  156. Pielou EC. 2008. Plankton, from the last ice age to the year 3007. ICES J. Mar. Sci. 65:296–301 [Google Scholar]
  157. Pisias NG, Mix AC, Heusser L. 2001. Millennial scale climate variability of the northeast Pacific Ocean and northwest North America based on radiolaria and pollen. Quat. Sci. Rev. 20:1561–76 [Google Scholar]
  158. Poletti L, Premoli Silva I, Masetti D, Pipan M, Claps M. 2004. Orbitally driven fertility cycles in the Palaeocene pelagic sequences of the southern Alps (northern Italy). Sediment. Geol. 164:35–54 [Google Scholar]
  159. Pompea SM, Kahn PGK. 1979. Nautiloid growth rhythms and lunar dynamics. Nature 279:452–56 [Google Scholar]
  160. Pope JK. 1976. Comparative morphology and shell histology of the Ordovician Strophomenacea (Brachiopoda). Palaeontogr. Am. 8:129–213 [Google Scholar]
  161. Popescu SM, Suc JP, Loutre MF. 2006. Early Pliocene vegetation changes forced by eccentricity-precession. Example from southwestern Romania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:340–48 [Google Scholar]
  162. Postigo-Mijarra JM, Gómez Manzaneque F, Morla Juaristi C, Zazo C. 2010. Palaeoecological significance of Late Pleistocene pine macrofossils in the lower Guadalquivir Basin (Doñana Natural Park, southwestern Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 295:332–43 [Google Scholar]
  163. Quinn JF. 1987. On the statistical detection of cycles in extinctions in the marine fossil record. Paleobiology 13:465–78 [Google Scholar]
  164. Rampino MR, Stothers RB. 1984. Geological rhythms and cometary impacts. Science 226:1427–31 [Google Scholar]
  165. Rampino MR, Stothers RB. 1988. Flood basalt volcanism during the past 250 million years. Science 241:663–68 [Google Scholar]
  166. Rasmussen TL, Oppo DW, Thomsen E, Lehman SJ. 2003. Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18:1018 [Google Scholar]
  167. Raup DM, Sepkoski JJ Jr. 1982. Mass extinctions in the marine fossil record. Science 215:1501–3 [Google Scholar]
  168. Raup DM, Sepkoski JJ Jr. 1986. Periodic extinction of families and genera. Science 231:833–36 [Google Scholar]
  169. Retallack GJ, Wynn JG, Fremd TJ. 2004. Glacial-interglacial–scale palaeoclimatic change without large ice sheets in the Oligocene of central Oregon. Geology 32:297–300 [Google Scholar]
  170. Reuter M, Brachert TC, Kroeger KF. 2005. Diagenesis of growth bands in fossil scleractinian corals: identification and modes of preservation. Facies 51:146–59 [Google Scholar]
  171. Richardson CA. 2001. Molluscs as archives of environmental change. Oceanogr. Mar. Biol. Annu. Rev. 39:103–64 [Google Scholar]
  172. Rochon A, Eynaud F, de Vernal A. 2008. Dinocysts as tracers of hydrographical conditions and productivity along the ocean margins: introduction. Mar. Micropaleontol. 68:1–5 [Google Scholar]
  173. Rodríguez-Tovar FJ, Löwemark L, Pardo-Igúzquiza E. 2011. Zoophycos cyclicity during the last 425 ka in the northeastern South China Sea: evidence for monsoon fluctuation at the Milankovitch scale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305:256–63 [Google Scholar]
  174. Rodríguez-Tovar FJ, Reolid M, Pardo-Igúzquiza E. 2010. Planktonic versus benthic foraminifera response to Milankovitch forcing (Late Jurassic, Betic Cordillera): testing methods for cyclostratigraphic analysis. Facies 56:450–70 [Google Scholar]
  175. Rohde RA, Muller RA. 2005. Cycles in fossil diversity. Nature 434:208–10 [Google Scholar]
  176. Rosenberg GD. 1982. Growth rhythms in the brachiopod Rafinesquina alternata from the Late Ordovician of southeastern Indiana. Paleobiology 8:389–401 [Google Scholar]
  177. Sánchez Goñi MF, Harrison SP. 2010. Vegetation Response to Millennial-Scale Variability During the Last Glacial. Quat. Sci. Rev.29. Amsterdam: Elsevier.158 [Google Scholar]
  178. Sánchez Goñi MF, Turon JL, Eynaud F, Gendreau S. 2000. European climatic response to millennial-scale changes in the atmosphere-ocean system during the last glacial period. Quat. Res. 54:394–403 [Google Scholar]
  179. Santarelli A, Brinkhuis H, Hilgen FJ, Lourens LJ, Versteegh GJM, Vusscher H. 1998. Orbital signatures in a Late Miocene dinoflagellate record from Crete (Greece). Mar. Micropaleontol. 33:273–97 [Google Scholar]
  180. Schöne BR, Rodland DL, Fiebig J, Oschmann W, Goodwin D. et al. 2006. Reliability of multitaxon, multiproxy reconstructions of environmental conditions from accretionary biogenic skeletons. J. Geol. 114:267–85 [Google Scholar]
  181. Schöne BR, Wanamaker AD Jr, Fiebig J, Thébault J, Kreutz K. 2011. Annually resolved δ13C shell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302:31–42 [Google Scholar]
  182. Schulz H, von Rad U, von Stackelberg U. 1996. Laminated sediments from the oxygen-minimum zone of the northeastern Arabian Sea. See Kemp 1996b 185–207
  183. Schwartz RD, James PB. 1984. Periodic mass extinctions and the Sun's oscillation about the galactic plane. Nature 308:712–13 [Google Scholar]
  184. Scroxton N, Bongam SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM. 2011. Persistent El Niño–Southern Oscillation variation during the Pliocene epoch. Paleoceanography 26:PA2215 [Google Scholar]
  185. Scrutton CT. 1964. Periodicity in Devonian coral growth. Palaeontology 7:552–58 [Google Scholar]
  186. Sepkoski JJ Jr. 2002. A Compendium of Fossil Marine Animal Genera, ed. D Jablonski, M Foote.. Bull. Am. Paleontol. 363. Ithaca, NY: Paleontol. Res. Inst. 560 pp.
  187. Sepkoski JJ Jr, Raup DM. 1986. Was there 26-Myr periodicity of extinction?. Nature 321:533 [Google Scholar]
  188. Sluijs A, Pross J, Brinkhuis H. 2005. From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Sci. Rev. 68:281–315 [Google Scholar]
  189. Smith AB, McGowan AJ. 2005. Cyclicity in the fossil record mirrors rock outcrop area. Biol. Lett. 1:443–45 [Google Scholar]
  190. Stein R, Hefter J, Grützner J, Voelker A, Naafs BDA. 2009. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: biomarker and XRD records from IODP Site U1313 (MIS 16–9). Paleoceanography 24:PA2203 [Google Scholar]
  191. Strasser A, Hilgen FJ, Heckel PH. 2006. Cyclostratigraphy—concepts, definitions, and applications. Newsl. Stratigr. 42:75–114 [Google Scholar]
  192. Strom A, Francis RC, Mantua NJ, Miles EL, Peterson DL. 2004. North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophys. Res. Lett. 31:L06206 [Google Scholar]
  193. Thomas E, Booth L, Maslin M, Shackleton NJ. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography 10:545–62 [Google Scholar]
  194. Tojo B, Ohno T. 1999. Continuous growth-line sequences in gastropod shells. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145:183–91 [Google Scholar]
  195. Tribovillard NP, Gorin GE. 1991. Organic facies of the early Albian Niveau Paquier, a key black shales horizon of the Marnes Bleues formation in the Vocontian Trough (Subalpine Ranges, SE France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 85:227–37 [Google Scholar]
  196. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chapell J. et al. 2001. Variability in the El Niño–Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–17 [Google Scholar]
  197. van Dam JA, Abdul Aziz H, Álvarez Sierra MA, Hilgen FJ, van den Hoek Ostende LW. et al. 2006. Long-period astronomical forcing of mammal turnover. Nature 443:687–91 [Google Scholar]
  198. van Geel B, Bos JAA, van Huissteden J, Pals JP, Schatz H. et al. 2010. Palaeoecological study of a Weichselian wetland site in the Netherlands suggests a link with Dansgaard-Oeschger climate oscillation. Neth. J. Geosci. 89:87–201 [Google Scholar]
  199. Versteegh GJM. 1994. Recognition of cyclic and non-cyclic environmental changes in the Mediterranean Pliocene: a palynological approach. Mar. Micropaleontol. 23:147–83 [Google Scholar]
  200. von Rad U, Schulz H, Riech V, den Dulk M, Berner U, Sirocko F. 1999. Multiple monsoon-controlled breakdown of oxygen minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152:129–61 [Google Scholar]
  201. Wanamaker AD Jr, Baker A, Butler PG, Richardson CA, Scourse JD. et al. 2009. A novel method for imaging internal growth patterns in marine mollusks: a fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica (Linnaeus). Limnol. Oceanogr. Methods 7:673–81 [Google Scholar]
  202. Waterhouse HK. 1999. Orbital forcing of palynofacies in the Jurassic of France and the United Kingdom. Geology 27:511–14 [Google Scholar]
  203. Weedon GP. 2003. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles Cambridge, UK: Cambridge Univ. Press259
  204. Wells JW. 1963. Coral growth and geochronometry. Nature 197:948–50 [Google Scholar]
  205. Whitmire DP, Jackson AA. 1984. Are periodic mass extinctions driven by a distant solar companion?. Nature 308:713–15 [Google Scholar]
  206. Whitmire DP, Matese JJ. 1985. Periodic comet showers and planet X. Nature 313:36–38 [Google Scholar]
  207. Willis KJ, Niklas KJ. 2004. The role of Quaternary environmental change in plant macroevolution: the exception or the rule?. Philos. Trans. R. Soc. B 359:159–72 [Google Scholar]
  208. Witbaard R, Duineveld GCA, De Wilde PAWJ. 1997. A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from the Fladen Ground (northern North Sea). J. Mar. Biol. Assoc. UK 77:801–16 [Google Scholar]
  209. Woodhouse C, Bauer B. 2009. Tree rings: ancient chronicles of environmental change. NOAA Paleoclimatology Program Educational Slide Project Boulder, CO: NOAA http://www.ncdc.noaa.gov/paleo/slideset/tree_rings.html [Google Scholar]
  210. Woydack A, Morales-Nin B. 2001. Growth patterns and biological information in fossil fish otoliths. Paleobiology 27:369–78 [Google Scholar]
  211. Yasuhara M, Cronin TM. 2008. Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology 89:S53–65 [Google Scholar]
  212. Zhao Z, Zhou Y, Guosheng J. 2007. The periodic growth increments of biological shells and the orbital parameters of Earth-Moon system. Environ. Geol. 51:1271–77 [Google Scholar]
/content/journals/10.1146/annurev-earth-120412-145922
Loading
/content/journals/10.1146/annurev-earth-120412-145922
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error