1932

Abstract

Nervous systems are among the most spectacular products of evolution. Their provenance and evolution have been of interest and often the subjects of intense debate since the late nineteenth century. The genomics era has provided researchers with a new set of tools with which to study the early evolution of neurons, and recent progress on the molecular evolution of the first neurons has been both exciting and frustrating. It has become increasingly obvious that genomic data are often insufficient to reconstruct complex phenotypes in deep evolutionary time because too little is known about how gene function evolves over deep time. Therefore, additional functional data across the animal tree are a prerequisite to a fuller understanding of cell evolution. To this end, we review the functional modules of neurons and the evolution of their molecular components, and we introduce the idea of hierarchical molecular evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-023048
2017-11-02
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-110316-023048.html?itemId=/content/journals/10.1146/annurev-ecolsys-110316-023048&mimeType=html&fmt=ahah

Literature Cited

  1. Abedin M, King N. 2010. Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:12734–42 [Google Scholar]
  2. Achim K, Arendt D. 2014. Structural evolution of cell types by step-wise assembly of cellular modules. Curr. Opin. Genet. Dev. 27:102–8 [Google Scholar]
  3. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C. et al. 2016. The origin and evolution of cell types. Nat. Rev. Gen. 17:12744–57 [Google Scholar]
  4. Ackermann F, Waites CL, Garner CC. 2015. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 16:8923–38 [Google Scholar]
  5. Adams EDM, Goss GG, Leys SP. 2010. Freshwater sponges have functional, sealing epithelia with high transepithelial resistance and negative transepithelial potential. PLOS ONE 5:11e15040 [Google Scholar]
  6. Alberstein R, Grey R, Zimmet A, Simmons DK, Mayer ML. 2015. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes. PNAS 112:44E6048–57 [Google Scholar]
  7. Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR. et al. 2015. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:7564220–24 [Google Scholar]
  8. Anderson PA. 1985. Physiology of a bidirectional, excitatory, chemical synapse. J. Neurophysiol. 53:3821–35 [Google Scholar]
  9. Arcila D, Ortí G, Vari R, Armbruster JW, Stiassny MLJ. et al. 2017. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1:0020 [Google Scholar]
  10. Assmann M, Kuhn A, Dürrnagel S, Holstein TW, Gründer S. 2014. The comprehensive analysis of DEG/ENaC subunits in Hydra reveals a large variety of peptide-gated channels, potentially involved in neuromuscular transmission. BMC Biol 12:184 [Google Scholar]
  11. Babonis LS, Martindale MQ. 2017. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Phil. Trans. R. Soc. B 372:171320150477 [Google Scholar]
  12. Barrero-Gil J, Garciadeblás B, Benito B. 2005. Sodium, potassium-ATPases in algae and Oomycetes. J. Bioenerg. Biomembr. 37:4269–78 [Google Scholar]
  13. Bauknecht P, Jékely G. 2017. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 15:6 [Google Scholar]
  14. Becker B, Melkonian M. 1996. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol. Mol. Biol. Rev. 60:4697–721 [Google Scholar]
  15. Bianchi L, Driscoll M. 2002. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34:3337–40 [Google Scholar]
  16. Bilbaut A, Hernandez-Nicaise M-L, Meech RW. 1989. Ionic currents in ctenophore muscle cells. Evolution of the First Nervous Systems PAV Anderson 299–314 New York: Springer [Google Scholar]
  17. Bishop GH. 1956. Natural history of the nerve impulse. Physiol. Rev. 36:3376–99 [Google Scholar]
  18. Bode HR. 1996. The interstitial cell lineage of Hydra: a stem cell system that arose early in evolution. J. Cell Sci. 109:61155–64 [Google Scholar]
  19. Burkhardt P, Grønborg M, McDonald K, Sulur T, Wang Q, King N. 2014. Evolutionary insights into Premetazoan functions of the neuronal protein Homer. Mol. Biol. Evol. 31:92342–55 [Google Scholar]
  20. Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C. et al. 2011. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. PNAS 108:3715264–69 [Google Scholar]
  21. Cai X, Clapham DE. 2012. Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol. Biol. Evol. 29:191–100 [Google Scholar]
  22. Cai X, Lytton J. 2004. The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21:91692–703 [Google Scholar]
  23. Castelfranco AM, Hartline DK. 2016. Evolution of rapid nerve conduction. Brain Res 1641:Part A11–33 [Google Scholar]
  24. Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G. 1999. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol. Biol. Evol. 16:6826–38 [Google Scholar]
  25. Conaco C, Bassett DS, Zhou H, Arcila ML, Degnan SM. et al. 2012. Functionalization of a protosynaptic gene expression network. PNAS 109:Suppl. 110612–18 [Google Scholar]
  26. Croset V, Rytz R, Cummins SF, Budd A, Brawand D. et al. 2010. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLOS Genet 6:8e1001064 [Google Scholar]
  27. Cunningham JA, Liu AG, Bengtson S, Donoghue PCJ. 2017. The origin of animals: Can molecular clocks and the fossil record be reconciled. BioEssays 39:11600120 [Google Scholar]
  28. Dalton RP, Lomvardas S. 2015. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38:331–49 [Google Scholar]
  29. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA. et al. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357:173–82 [Google Scholar]
  30. de Wit J, Ghosh A. 2016. Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 17:122–35 [Google Scholar]
  31. dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z. 2015. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25:222939–50 [Google Scholar]
  32. Dunn CW, Giribet G, Edgecombe GD, Hejnol A. 2014. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45:1371–95 [Google Scholar]
  33. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE. et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:7188745–49 [Google Scholar]
  34. Dunn CW, Leys SP, Haddock SHD. 2015. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30:5282–91 [Google Scholar]
  35. Edwards DH, Heitler WJ, Krasne FB. 1999. Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends Neurosci 22:4153–61 [Google Scholar]
  36. Elliott GRD, Leys SP. 2010. Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae). J. Exp. Biol. 213:Part 132310–21 [Google Scholar]
  37. Emes RD, Grant SGN. 2012. Evolution of synapse complexity and diversity. Annu. Rev. Neurosci. 35:1111–31 [Google Scholar]
  38. Febvre-Chevalier C, Bilbaut A, Bone Q, Febvre J. 1986. Sodium–calcium action potential associated with contraction in the heliozoan Actinocoryne contractilis. J. Exp. Biol. 122:1177–92 [Google Scholar]
  39. Gould SJ, Vrba ES. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:14–15 [Google Scholar]
  40. Grimson MJ, Coates JC, Reynolds JP, Shipman M, Blanton RL, Harwood AJ. 2000. Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism. Nature 408:6813727–31 [Google Scholar]
  41. Gruhl A, Okamura B. 2015. Tissue characteristics and development in Myxozoa. Myxozoan Evolution, Ecology and Development B Okamura, A Gruhl, JL Bartholomew 155–74 New York: Springer [Google Scholar]
  42. Gur Barzilai M, Reitzel AM, Kraus JEM, Gordon D, Technau U. et al. 2012. Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. Cell Rep 2:2242–48 [Google Scholar]
  43. Harden N, Wang SJH, Krieger C. 2016. Making the connection—shared molecular machinery and evolutionary links underlie the formation and plasticity of occluding junctions and synapses. J. Cell Sci. 129:163067–76 [Google Scholar]
  44. Hartenstein V, Stollewerk A. 2015. The evolution of early neurogenesis. Dev. Cell 32:4390–407 [Google Scholar]
  45. Hejnol A, Lowe CJ. 2015. Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Phil. Trans. R. Soc. B 370:168420150045 [Google Scholar]
  46. Hernandez-Nicaise M-L. 1973. The nervous system of ctenophores III. Ultrastructure of synapses. J. Neurocytol. 2:3249–63 [Google Scholar]
  47. Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer. , 3rd ed..
  48. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SGN. 2000. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nat. Neurosci. 3:7661–69 [Google Scholar]
  49. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. 2004. Evolution of cell–cell signaling in animals: Did late horizontal gene transfer from bacteria have a role?. Trends Genet 20:7292–99 [Google Scholar]
  50. Jager M, Chiori R, Alié A, Dayraud C, Quéinnec E, Manuel M. 2011. New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (Müller, 1776).. J. Exp. Zoolog. B Mol. Dev. Evol. 316B:3171–87 [Google Scholar]
  51. Jaiteh M, Taly A, Hénin J. 2016. Evolution of pentameric ligand–gated ion channels: pro-loop receptors. PLOS ONE 11:3e0151934 [Google Scholar]
  52. Jan LY, Jan YN. 1976. l-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J. Physiol. 262:1215–36 [Google Scholar]
  53. Jekely G, Paps J, Nielsen C. 2015. The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo 6:11 [Google Scholar]
  54. Julius D, Nathans J. 2012. Signaling by sensory receptors. Cold Spring Harb. Perspect. Biol. 4:1a005991 [Google Scholar]
  55. Kass-Simon G, Pierobon P. 2007. Cnidarian chemical neurotransmission, an updated overview. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146:19–25 [Google Scholar]
  56. Katz PS. 2016. Phylogenetic plasticity in the evolution of molluscan neural circuits. Curr. Opin. Neurobiol. 41:8–16 [Google Scholar]
  57. Kehoe J, Buldakova S, Acher F, Dent J, Bregestovski P, Bradley J. 2009. Aplysia cys-loop glutamate-gated chloride channels reveal convergent evolution of ligand specificity. J. Mol. Evol. 69:2125–41 [Google Scholar]
  58. Kloepper TH, Kienle CN, Fasshauer D. 2007. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18:93463–71 [Google Scholar]
  59. Kostadinov D, Sanes JR. 2015. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4:e08964 [Google Scholar]
  60. Lartillot N, Poujol R. 2011. A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol. Biol. Evol. 28:1729–44 [Google Scholar]
  61. Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. 1998. The metabolic cost of neural information. Nat. Neurosci. 1:136–41 [Google Scholar]
  62. Leys SP. 2003. The significance of syncytial tissues for the position of the Hexactinellida in the Metazoa. Integr. Comp. Biol. 43:119–27 [Google Scholar]
  63. Leys SP, Mackie G, Meech R. 1999. Impulse conduction in a sponge. J. Exp. Biol. 202:Part 91139–50 [Google Scholar]
  64. Li X, Liu H, Luo JC, Rhodes SA, Trigg LM. et al. 2015. Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans. PNAS 112:9E1010–19 [Google Scholar]
  65. Liebeskind BJ, Hillis DM, Zakon HH. 2011. Evolution of sodium channels predates the origin of nervous systems in animals. PNAS 108:229154–59 [Google Scholar]
  66. Liebeskind BJ, Hillis DM, Zakon HH. 2012. Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade. Mol. Biol. Evol. 29:123613–16 [Google Scholar]
  67. Liebeskind BJ, Hillis DM, Zakon HH. 2015. Convergence of ion channel genome content in early animal evolution. PNAS 112:8E846–51 [Google Scholar]
  68. Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA. 2016. Complex homology and the evolution of nervous systems. Trends Ecol. Evol. 31:2127–35 [Google Scholar]
  69. Liegertová M, Pergner J, Kozmiková I, Fabian P, Pombinho AR. et al. 2015. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci. Rep. 5:11885 [Google Scholar]
  70. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung J-J, Clapham DE. 2012. The control of male fertility by spermatozoan ion channels. Annu. Rev. Physiol. 74:1453–75 [Google Scholar]
  71. Lynagh T, Beech RN, Lalande MJ, Keller K, Cromer BA. et al. 2015. Molecular basis for convergent evolution of glutamate recognition by pentameric ligand–gated ion channels. Sci. Rep. 5:8558 [Google Scholar]
  72. Mackie GO. 1989. Evolution of cnidarian giant axons. Evolution of the First Nervous Systems PAV Anderson 395–407 New York: Springer [Google Scholar]
  73. Mackie GO. 1990. The elementary nervous system revisited. Am. Zool. 30:4907–20 [Google Scholar]
  74. Mackie GO, Mills CE, Singla CL. 1992. Giant axons and escape swimming in Euplokamis dunlapae (Ctenophora: Cydippida). Biol. Bull. 182:2248–56 [Google Scholar]
  75. Martindale MQ, Henry JQ. 2015. Ctenophora. Evolutionary Developmental Biology of Invertebrates 1 A Wanninger 179–201 Vienna: Springer [Google Scholar]
  76. Martinson AS, van Rossum DB, Diatta FH, Layden MJ, Rhodes SA. et al. 2014. Functional evolution of Erg potassium channel gating reveals an ancient origin for Iκr. PNAS 111:155712–17 [Google Scholar]
  77. Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA. 2009. Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 39:3343–49 [Google Scholar]
  78. Moroz LL. 2009. On the independent origins of complex brains and neurons. Brain Behav. Evol. 74:3177–90 [Google Scholar]
  79. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP. et al. 2014. The ctenophore genome and the evolutionary origins of neural systems. Nature 510:7503109–14 [Google Scholar]
  80. Moroz LL, Kohn AB. 2016. Independent origins of neurons and synapses: insights from ctenophores. Phil. Trans. R. Soc. B 371:168520150041 [Google Scholar]
  81. Nakanishi N, Stoupin D, Degnan SM, Degnan BM. 2015. Sensory flask cells in sponge larvae regulate metamorphosis via calcium signaling. Integr. Comp. Biol. 55:61018–27 [Google Scholar]
  82. Nei M, Rooney AP. 2005. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39:121–52 [Google Scholar]
  83. Niimura Y. 2012. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr. Genom. 13:2103–14 [Google Scholar]
  84. Nishikawa KC. 2002. Evolutionary convergence in nervous systems: insights from comparative phylogenetic studies. Brain. Behav. Evol. 59:5/6240 [Google Scholar]
  85. Oakley TH, Plachetzki DC, Rivera AS. 2007. Furcation, field-splitting, and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Struct. Dev. 36:4386–400 [Google Scholar]
  86. Oami K, Naitoh Y, Sibaoka T. 1995. Voltage-gated ion conductances corresponding to regenerative positive and negative spikes in the dinoflagellate Noctiluca miliaris. J. Comp. Physiol. A 176:5625–33 [Google Scholar]
  87. O'Connell LA, Hofmann HA. 2011. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol. 519:183599–639 [Google Scholar]
  88. Oren M, Brikner I, Appelbaum L, Levy O. 2014. Fast neurotransmission related genes are expressed in non nervous endoderm in the sea anemone Nematostella vectensis. PLOS ONE 9:4e93832 [Google Scholar]
  89. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O. et al. 2015. Genomic data do not support comb jellies as the sister group to all other animals. PNAS 112:5015402–7 [Google Scholar]
  90. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM. 2015. Ion channels enable electrical communication in bacterial communities. Nature 527:59–63 [Google Scholar]
  91. Ren D. 2011. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72:6899–911 [Google Scholar]
  92. Richter DJ, King N. 2013. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47:1509–37 [Google Scholar]
  93. Rink JC. 2013. Stem cell systems and regeneration in planaria. Dev. Genes Evol. 223:1–267–84 [Google Scholar]
  94. Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM. et al. 2012. Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. J. Exp. Biol. 215:81278–86 [Google Scholar]
  95. Roshchina VV. 2010. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health M Lyte, PPE Freestone 17–52 New York: Springer [Google Scholar]
  96. Ruggieri RD, Pierobon P, Kass-Simon G. 2004. Pacemaker activity in hydra is modulated by glycine receptor ligands. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 138:2193–202 [Google Scholar]
  97. Ryan JF. 2014. Did the ctenophore nervous system evolve independently?. Zoology 117:4225–26 [Google Scholar]
  98. Ryan JF, Pang K, Schnitzler CE, Nguyen A-D, Moreland RT. et al. 2013. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:61641242592 [Google Scholar]
  99. Saimi Y, Kung C. 1987. Behavioral genetics of Paramecium. Annu. Rev. Genet. 21:47–65 [Google Scholar]
  100. Saina M, Busengdal H, Sinigaglia C, Petrone L, Oliveri P. et al. 2015. A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nat. Commun. 6:6243 [Google Scholar]
  101. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang I-F. et al. 2007. A post-synaptic scaffold at the origin of the animal kingdom. PLOS ONE 2:6e506 [Google Scholar]
  102. Sakarya O, Kosik KS, Oakley TH. 2008. Reconstructing ancestral genome content based on symmetrical best alignments and Dollo parsimony. Bioinformatics 24:5606–12 [Google Scholar]
  103. Schmitz F, Königstorfer A, Südhof TC. 2000. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28:3857–72 [Google Scholar]
  104. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J. et al. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:6671–84 [Google Scholar]
  105. Senatore A, Monteil A, van Minnen J, Smit AB, Spafford JD. 2013. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels. PLOS ONE 8:1e55088 [Google Scholar]
  106. Shubin N, Tabin C, Carroll S. 1997. Fossils, genes and the evolution of animal limbs. Nature 388:6643639–48 [Google Scholar]
  107. Silbering AF, Benton R. 2010. Ionotropic and metabotropic mechanisms in chemoreception: “chance or design”?. EMBO Rep 11:3173–79 [Google Scholar]
  108. Simion P, Philippe H, Baurain D, Jager M, Richter DJ. et al. 2017. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27:7958–67 [Google Scholar]
  109. Simmons DK, Pang K, Martindale MQ. 2012. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification. EvoDevo 3:2 [Google Scholar]
  110. Simons PJ. 1981. The role of electricity in plant movements. New Phytol 87:111–37 [Google Scholar]
  111. Smith CL, Abdallah S, Wong YY, Le P, Harracksingh AN. et al. 2017. Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue. J. Gen. Physiol. 149:4483–510 [Google Scholar]
  112. Smith CL, Reese TS. 2016. Adherens junctions modulate diffusion between epithelial cells in Trichoplax adhaerens. Biol. Bull. 231:3216–24 [Google Scholar]
  113. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B. et al. 2014. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24:141565–72 [Google Scholar]
  114. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U. et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:7207955–60 [Google Scholar]
  115. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA. et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:7307720–26 [Google Scholar]
  116. Stolzer M, Siewert K, Lai H, Xu M, Durand D. 2015. Event inference in multidomain families with phylogenetic reconciliation. BMC Bioinform 16:Suppl. 14S8 [Google Scholar]
  117. Thever MD, Saier MH. 2009. Bioinformatic characterization of P-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J. Membr. Biol. 229:3115–30 [Google Scholar]
  118. Thompson A, Vo D, Comfort C, Zakon HH. 2014. Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene. Mol. Biol. Evol. 31:81941–55 [Google Scholar]
  119. Touhara K, Vosshall LB. 2009. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 71:1307–32 [Google Scholar]
  120. True JR, Haag ES. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3:2109–19 [Google Scholar]
  121. van Leewenhoeck A. 1677. Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9th of Octob. 1676. Here English'd: concerning little animals by him observed in rain-well-sea- and snow water; as also in water wherein pepper had lain infused. Philos. Trans 12:821–31 [Google Scholar]
  122. Wei Z, Angerer RC, Angerer LM. 2011. Direct development of neurons within foregut endoderm of sea urchin embryos. PNAS 108:229143–47 [Google Scholar]
  123. Whelan NV, Kocot KM, Moroz LL, Halanych KM. 2015. Error, signal, and the placement of Ctenophora sister to all other animals. PNAS 112:185773–78 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-023048
Loading
/content/journals/10.1146/annurev-ecolsys-110316-023048
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error