1932

Abstract

Ecological processes in arid lands are often described by the pulse-reserve paradigm, in which rain events drive biological activity until moisture is depleted, leaving a reserve. This paradigm is frequently applied to processes stimulated by one or a few precipitation events within a growing season. Here we expand the original framework in time and space and include other pulses that interact with rainfall. This new hierarchical pulse-dynamics framework integrates space and time through pulse-driven exchanges, interactions, transitions, and transfers that occur across individual to multiple pulses extending from micro to watershed scales. Climate change will likely alter the size, frequency, and intensity of precipitation pulses in the future, and arid-land ecosystems are known to be highly sensitive to climate variability. Thus, a more comprehensive understanding of arid-land pulse dynamics is needed to determine how these ecosystems will respond to, and be shaped by, increased climate variability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091650
2014-11-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-120213-091650.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091650&mimeType=html&fmt=ahah

Literature Cited

  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD. et al. 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. USA 106:7063–66 [Google Scholar]
  2. Anderson-Teixeira KJ, Delong JP, Fox AM, Brese DA, Litvak ME. 2011. Differential responses of production and respiration to temperature and moisture drive carbon balance across a climatic gradient in New Mexico. Glob. Change Biol. 17:410–24 [Google Scholar]
  3. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A. et al. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35 [Google Scholar]
  4. Badia D, Marti C. 2008. Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Res. Manag. 22:93–108 [Google Scholar]
  5. Báez S, Collins SL, Pockman WT, Johnson JE, Small EE. 2013. Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia 172:1117–27 [Google Scholar]
  6. Barger NN, Herrick JE, Van Zee J, Belnap J. 2006. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77:247–63 [Google Scholar]
  7. Belnap J, Hawkes CV, Firestone MK. 2003. Boundaries in miniature: two examples from soil. BioScience 53:739–49 [Google Scholar]
  8. Belnap J, Welter JR, Grimm NB, Barger B, Ludwig JA. 2005. Linkages between microbial and hydrological processes in arid and semiarid watersheds. Ecology 86:298–307 [Google Scholar]
  9. Benavides-Solorio J, MacDonald LH. 2001. Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrol. Process. 15:2931–52 [Google Scholar]
  10. Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ. et al. 2012. Analysis of abrupt transitions in ecological systems. Ecosphere 2:129 [Google Scholar]
  11. Boeken B, Shachak M. 1994. Desert plant communities in human-made patches—implications for management. Ecol. Appl. 4:702–16 [Google Scholar]
  12. Bond WJ. 2008. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39:641–59 [Google Scholar]
  13. Breecker DO, McFadden LD, Sharp ZD, Martinez M, Litvak ME. 2012. Deep autotrophic soil respiration in shrubland and woodland ecosystems in central New Mexico. Ecosystems 15:83–96 [Google Scholar]
  14. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD. et al. 2005. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 102:15144–48 [Google Scholar]
  15. Briske DD, Fuhlendorf SD, Smeins FE. 2005. State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives. Rangel. Ecol. Manag. 58:1–10 [Google Scholar]
  16. Cable JM, Ogle K, Williams DC, Weltzin JF, Huxman TE. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–79 [Google Scholar]
  17. Cai W, Borlace S, Lengaigne M, Van Rensch P, Collins M. et al. 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4:111–16 [Google Scholar]
  18. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA. et al. 2011. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:1079–82 [Google Scholar]
  19. Cates RC. 1980. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: the effect of resource abundance and plant chemistry. Oecologia 46:22–31 [Google Scholar]
  20. Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A. et al. 2008. Pulse dynamics and microbial processes in arid ecosystems. J. Ecol. 96:413–20 [Google Scholar]
  21. Collins SL, Xia Y. 2015. Long-term dynamics and hot spots of change in a desert grassland plant community. Am. Nat. In press
  22. Cook BI, Seager R. 2013. The response of the North American Monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos. 118:1690–99 [Google Scholar]
  23. Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wellenstein MD. et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–76 [Google Scholar]
  24. Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC. 2012. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial plant processes temporally asynchronous?. Oecologia 170:799–808 [Google Scholar]
  25. D'Odorico P, Fuentes JD, Pockman WT, Collins SL, He Y. et al. 2010. Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan Desert. Ecosphere 1:17 [Google Scholar]
  26. D'Odorico P, Okin GS, Bestelmeyer BT. 2012. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–30 [Google Scholar]
  27. D'Odorico P, Ridolfi L, Porporato A, Rodriguez-Iturbe I. 2000. Preferential states of seasonal soil moisture: the impact of climate fluctuations. Water Resour. Res. 36:2209–19 [Google Scholar]
  28. Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consort. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  29. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B. et al. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5:459–62 [Google Scholar]
  30. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14:709–22 [Google Scholar]
  31. Engel S, Lease HM, McDowell NG, Corbett AH, Wolf BO. 2009. The use of tunable diode laser absorption spectroscopy for rapid measurements of the δ13C of animal breath for physiological and ecological studies. Rapid Commun. Mass Spectrom. 23:1281–86 [Google Scholar]
  32. Fan J, Jones SB, Qi LB, Wang QJ, Huang MB. 2012. Effects of precipitation pulses on water and carbon dioxide fluxes in two semiarid ecosystems: measurement and modeling. Environ. Earth Sci. 67:2315–24 [Google Scholar]
  33. Fernandez-Illescas CP, Rodriguez-Iturbe I. 2004. The impact of interannual rainfall variability on the spatial and temporal patterns of vegetation in a water-limited ecosystem. Adv. Water Res. 27:83–95 [Google Scholar]
  34. Field JP, Belnap J, Breshears DD, Neff JC, Okin GS. et al. 2010. The ecology of dust. Front. Ecol. Environ. 8:423–30 [Google Scholar]
  35. Field JP, Breshears DD, Whicker JJ, Zou CB. 2012. Sediment capture by vegetation patches: implications for desertification and increased resource redistribution. J. Geophys. Res. 117:G01033 [Google Scholar]
  36. Freier N, Schimel JP. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Biol. Biochem. 67:798–805 [Google Scholar]
  37. Gadd GM. 1993. Tansley Review No. 47. Interactions of fungi with toxic metals. New Phytol. 124:25–60 [Google Scholar]
  38. Garcia-Pichel F, Belnap J. 1996. Microenvironments and microscale productivity of cyanobacterial crusts. J. Phycol. 32:774–82 [Google Scholar]
  39. Ghimire SR, Charlton NC, Bell JD, Krishnamurthy YP, Craven KD. 2011. Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers. 47:19–27 [Google Scholar]
  40. Green LE, Porras-Alfaro A, Sinsabaugh RL. 2008. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J. Ecol. 96:413–20 [Google Scholar]
  41. Gutzler DS, Robbins TO. 2011. Climate variability and projected change in the western United States: regional downscaling and drought statistics. Clim. Dyn. 37:835–49 [Google Scholar]
  42. Harms TK, Grimm NB. 2012. Responses of trace gases to hydrologic pulses in desert floodplains. J. Geophys. Res. Biogeosci. 117:G01035 [Google Scholar]
  43. Harms TK, Wentz EA, Grimm NB. 2009. Spatial heterogeneity of denitrification in semi-arid floodplains. Ecosystems 12:129–43 [Google Scholar]
  44. Hartnett DC, Wilson GWT. 1999. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–95 [Google Scholar]
  45. Heisler-White JL, Knapp AK, Kelly EK. 2008. Increasing precipitation event size increases aboveground primary productivity in a semi-arid grassland. Oecologia 158:129–40 [Google Scholar]
  46. Herrera J, Poudel R, Nebel KA, Collins SL. 2011. Precipitation increases the abundance of some groups of root-associated fungal endophytes in a semiarid grassland. Ecosphere 2:50 [Google Scholar]
  47. Higgens SI, Scheiter S. 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488:209–13 [Google Scholar]
  48. Holt RD. 2008. Theoretical perspectives on resource pulses. Ecology 89:671–81 [Google Scholar]
  49. Huxman TE, Cable JM, Ignace DD, Eilts JA, English NB. et al. 2004a. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semiarid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305 [Google Scholar]
  50. Huxman TE, Tissue D, Snyder K, Leffler J, Ogle K. et al. 2004b. Precipitation pulses and carbon fluxes in semi-arid and arid ecosystems. Oecologia 141:254–68 [Google Scholar]
  51. Ignace DD, Huxman TE, Weltzin JF, Williams DG. 2009. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert. Oecologia 152:401–13 [Google Scholar]
  52. Jaksic FM, Lima M. 2003. Myths and facts on ratadas: bamboo blooms, rainfall peaks and rodent outbreaks in South America. Australas. Ecol. 28:237–51 [Google Scholar]
  53. Jaksic FM, Silva SI, Meserve PL, Gutiérrez JR. 1997. A long-term study of vertebrate predator responses to an El Niño (ENSO) disturbance in western South America.. Oikos 78:341–54 [Google Scholar]
  54. Jenerette GD, Scott RL, Huxman TE. 2008. Whole ecosystem metabolic pulses following precipitation events. Funct. Ecol. 22:924–30 [Google Scholar]
  55. Jones EI, Bronstein JL, Ferrière R. 2012. The fundamental role of competition in the ecology and evolution of mutualisms. Ann. N.Y. Acad. Sci. 1256:66–88 [Google Scholar]
  56. Kefi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP. et al. 2007. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–17 [Google Scholar]
  57. Khidir HH, Eudy DM, Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL. 2010. A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J. Arid Environ. 74:35–42 [Google Scholar]
  58. Kidron GJ, Büdel B. 2014. Contrasting hydrological response of coastal and desert biocrusts. Hydrol. Process. 28:361–71 [Google Scholar]
  59. Kivlin SN, Emery SM, Rudgers JA. 2013. Fungal symbionts alter plant responses to global change. Am. J. Bot. 100:1445–57 [Google Scholar]
  60. Klausmeier CA. 1999. Regular and irregular patterns in semiarid vegetation. Science 284:1826–28 [Google Scholar]
  61. Knapp AK, Beier C, Briske DD, Classen AT, Luo Y. et al. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58:811–21 [Google Scholar]
  62. Knapp DG, Pintye A, Kovács GM. 2012. The dark side is not fastidious—dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLOS ONE 7:e32570 [Google Scholar]
  63. Kotler BP, Dickman CR, Brown JS. 1998. The effects of water on patch use by two Simpson Desert granivores (Corvus coronoides and Pseudomys hermannsburgensis). Aust. J. Ecol. 23:574–78 [Google Scholar]
  64. Kurc SA, Small EE. 2007. Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resour. Res. 43:W06416 [Google Scholar]
  65. Lange OL. 2003. Photosynthesis of soil-crust biota as dependent on environmental factors. Biological Soil Crusts: Structure, Function, and Management J Belnap, OL Lange 217–40 Berlin: Springer-Verlag [Google Scholar]
  66. Lauenroth WK, Bradford JB. 2012. Ecohydrology of dry regions of the United States: water balance consequences of small precipitation events. Ecohydrology 5:46–53 [Google Scholar]
  67. Leopold LB, Wolman GM, Miller JP. 1964. Fluvial Processes in Geomorphology San Francisco: Freeman
  68. Li F, Zhao W, Liu H. 2013. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China. PLOS ONE 8:e73003 [Google Scholar]
  69. Loro M, Valero-Jimenez CA, Nozawa S, Marquez LM. 2012. Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. J. Arid Environ. 85:46–55 [Google Scholar]
  70. Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC. 2005. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86:288–97 [Google Scholar]
  71. Maestre FT, Salguero-Gómez R, Quero JL. 2012. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos. Trans. R. Soc. B 367:3062–75 [Google Scholar]
  72. Mandyam K, Jumpponen A. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol. 53:173–89 [Google Scholar]
  73. Martinez-Vilalta J, Piñol J, Beven K. 2002. A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol. Model. 155:127–47 [Google Scholar]
  74. Marusenko Y, Huber DP, Hall SJ. 2013. Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biol. Biochem. 63:24–36 [Google Scholar]
  75. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB. et al. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12 [Google Scholar]
  76. McCluney KE, Belnap J, Collins SL, González AL, Hagen EM. et al. 2012. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87:563–82 [Google Scholar]
  77. McCluney KE, Sabo JL. 2009. Water availability directly determines per capita consumption at two trophic levels. Ecology 90:1463–69 [Google Scholar]
  78. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N. et al. 2008. Mechanisms of plant survival and mortality during drought. New Phytol. 178:719–39 [Google Scholar]
  79. McKechnie AE, Wolf BO. 2010. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6:253–56 [Google Scholar]
  80. McLain JET, Martens DA. 2006. N2O production by heterotrophic N transformations in a semiarid soil. Appl. Soil Ecol. 32:253–63 [Google Scholar]
  81. Michaelides K, Lister D, Wainwright J, Parsons AJ. 2012. Linking runoff and erosion dynamics to nutrient fluxes in a degrading dryland landscape. J. Geophys. Res. Biogeosci. 117:G00N15 [Google Scholar]
  82. Monger HC, Bestelmeyer BT. 2006. The soil-geomorphic template and biotic change in arid and semiarid systems. J. Arid Environ. 65:207–18 [Google Scholar]
  83. Munson SM, Benton TJ, Lauenroth WK, Burke IC. 2010. Soil carbon flux following pulse precipitation events in the shortgrass steppe. Ecol. Res. 25:205–11 [Google Scholar]
  84. Nowlin WH, Vanni MJ, Yang LH. 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–59 [Google Scholar]
  85. Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4:25–51 [Google Scholar]
  86. Noy-Meir I. 1974. Desert ecosystems: higher trophic levels. Annu. Rev. Ecol. Syst. 5:195–214 [Google Scholar]
  87. Okin GS, Herrick JE, Gillette DA. 2006. Multiscale controls on and consequences of aeolian processes in landscape change in arid and semiarid environments. J. Arid Environ. 65:253–75 [Google Scholar]
  88. Painter TH, Deems JS, Belnap J, Hamlet AF, Landry CC, Udall B. 2010. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA 107:17125–30 [Google Scholar]
  89. Peters DPC, Pielke RA Sr, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM. 2004. Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc. Natl. Acad. Sci. USA 101:15130–35 [Google Scholar]
  90. Peters DPC, Yao J, Browning D, Rango A. 2014. Mechanisms of grass response in grasslands and shrublands during dry or wet periods. Oecologia 174:1323–34 [Google Scholar]
  91. Petrie MD, Collins SL, Gutzler DS, Moore DM. 2014. Regional trends and local variability in monsoon precipitation in the northern Chihuahuan Desert, USA. J. Arid Environ. 103:63–70 [Google Scholar]
  92. Plaut JA, Wadsworth WD, Pangle R, Yepez EA, McDowell NG, Pockman WT. 2013. Reduced response to precipitation pulses precede mortality in a five-year rainfall manipulation experiment. New Phytol. 200:375–87 [Google Scholar]
  93. Pockman WT, Small EE. 2010. The influence of spatial patterns of soil moisture on the grass and shrub responses to a summer rainstorm in a Chihuahuan Desert ecotone. Ecosystems 13:511–25 [Google Scholar]
  94. Pointing SB, Belnap J. 2012. Microbial colonization and controls in dryland systems. Nat. Geosci. 10:551–62 [Google Scholar]
  95. Potts DL, Huxman TE, Cable JM, English NB, Ignace DD. et al. 2006. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol. 170:849–60 [Google Scholar]
  96. Rachal DM, Monger HC, Okin GS, Peters DC. 2012. Landform influences on the resistance of grasslands to shrub encroachment, Northern Chihuahuan Desert, USA. J. Maps 8:507–13 [Google Scholar]
  97. Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J. 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Change 2:752–55 [Google Scholar]
  98. Reynolds JF, Kemp PR, Ogle K, Fernández RJ. 2004. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water and plant responses. Oecologia 141:194–210 [Google Scholar]
  99. Reynolds JF, Smith DMS, Lambin EF, Turner BL II, Mortimore M. et al. 2007. Global desertification: building a science for dryland development. Science 316:847–51 [Google Scholar]
  100. Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F. 2001. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc. Natl. Acad. Sci. USA 98:7123–27 [Google Scholar]
  101. Rietkerk M, Van de Koppel J. 1997. Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79:69–76 [Google Scholar]
  102. Sala OE, Lauenroth WK. 1982. Small rain events: an ecological role in semiarid regions. Oecologia 53:301–4 [Google Scholar]
  103. Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa I. 2012. Non-systemic fungal endophytes of grasses. Fungal Ecol. 5:289–97 [Google Scholar]
  104. Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I. 2007. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–13 [Google Scholar]
  105. Schwinning S, Sala OE. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–20 [Google Scholar]
  106. Schwinning S, Starr BI, Ehleringer JR. 2003. Dominant cold desert plants do not partition warm season precipitation by event size. Oecologia 136:252–60 [Google Scholar]
  107. Shakesby RA, Doerr SH. 2006. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 74:269–307 [Google Scholar]
  108. Sinsabaugh RL, Carreiro MM, Alvarez S. 2002. Enzyme and microbial dynamics during litter decomposition. Enzymes in the Environment R Burns 249–66 New York: Marcel Dekker [Google Scholar]
  109. Smith HG, Sheridan GJ, Lane PN, Nyman P, Haydon S. 2011. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396:170–92 [Google Scholar]
  110. Sponseller RA. 2007. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob. Change Biol. 13:426–36 [Google Scholar]
  111. Sponseller RA, Fisher SG. 2008. The influence of drainage networks on patterns of soil respiration in a desert catchment. Ecology 89:1089–100 [Google Scholar]
  112. Stocker TF, Dahe Q, Plattner G-K. 2013. Climate change 2013: the physical science basis. Work. Group I Contrib. Fifth Assess. Rep., IPCC, Geneva
  113. Stursova M, Sinsabaugh RL. 2008. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol. Biochem. 40:550–53 [Google Scholar]
  114. Thomey ML, Collins SL, Friggens MT, Brown RF, Pockman WT. 2014. Effects of monsoon precipitation variability on the physiological response of two dominant C4 grasses across a semiarid ecotone. Oecologia In press. doi: 10.1007/s00442-014-3052-1
  115. Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF. et al. 2011. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob. Change Biol. 17:1505–15 [Google Scholar]
  116. Throop HL, Reichmann LG, Sala OE, Archer SR. 2012. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169:373–83 [Google Scholar]
  117. Turnbull LJ, Wainwright J, Brazier RE. 2010. Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrol. Process. 24:393–414 [Google Scholar]
  118. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11:1351–63 [Google Scholar]
  119. Van Auken OW. 2000. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 31:197–215 [Google Scholar]
  120. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB. et al. 2013. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101:265–76 [Google Scholar]
  121. Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF. Van et al. 2009. Widespread increase of tree mortality rates in the western United States. Science 323:521–24 [Google Scholar]
  122. Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF. et al. 2012. Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Glob. Change Biol. 18:1401–11 [Google Scholar]
  123. Walter H. 1971. Ecology of Tropical and Subtropical Vegetation Edinburgh: Oliver & Boyd
  124. Walther G-R. 2010. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 365:2019–24 [Google Scholar]
  125. Ward D. 2009. The Biology of Deserts London: Oxford Univ. Press.339
  126. Ward D, Wiegand K, Getzin S. 2013. Walter's two-layer hypothesis revisited: back to the roots. ! Oecologia 172:617–30 [Google Scholar]
  127. Warne RW, Pershall AD, Wolf BO. 2010. Linking precipitation and C3:C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91:1628–38 [Google Scholar]
  128. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–43 [Google Scholar]
  129. Wilcox BP, Breshears DD, Allen CD. 2003. Ecohydrology of a resource-conserving semiarid woodland: effects of scaling and disturbance. Ecol. Monogr. 73:223–39 [Google Scholar]
  130. Williams CA, Hanan N, Scholes RJ, Kutsch W. 2009. Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Oecologia 161:469–80 [Google Scholar]
  131. Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from resource pulses?. Ecology 89:621–34 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091650
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error