1932

Abstract

The extraordinary species richness of freshwater fishes has attracted much research on mechanisms and modes of speciation. We here review research on speciation in freshwater fishes in light of speciation theory, and place this in a context of broad-scale diversity patterns in freshwater fishes. We discuss several major repeated themes in freshwater fish speciation and the speciation mechanisms they are frequently associated with. These include transitions between marine and freshwater habitats, transitions between discrete freshwater habitats, and ecological transitions within habitats, as well as speciation without distinct niche shifts. Major research directions in the years to come include understanding the transition from extrinsic environment-dependent to intrinsic reproductive isolation and its influences on species persistence and understanding the extrinsic and intrinsic constraints to speciation and how these relate to broad-scale diversification patterns through time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-120213-091818
2014-11-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-120213-091818.html?itemId=/content/journals/10.1146/annurev-ecolsys-120213-091818&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE. et al. 2013. Hybridization and speciation. J. Evol. Biol. 26:229–46 [Google Scholar]
  2. Albert AYK, Schluter D. 2004. Reproductive character displacement of male stickleback mate preference: reinforcement or direct selection?. Evolution 58:1099–107 [Google Scholar]
  3. Albert JS, Reis ER. 2011. Historical Biogeography of Neotropical Freshwater Fishes Berkeley, Los Angeles, London: Univ. Calif. Press
  4. Alfaro ME, Bolnick DI, Wainwright PC. 2005. Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. Am. Nat. 165:E140–54 [Google Scholar]
  5. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A. et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA 106:13410–14 [Google Scholar]
  6. April J, Hanner RH, Dion-Cote A-M, Bernatchez L. 2013. Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. Mol. Ecol. 22:409–22 [Google Scholar]
  7. Barel CDN. 1983. Toward a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth. J. Zool. 33:357–424 [Google Scholar]
  8. Barluenga M, Stolting KN, Salzburger W, Muschick M, Meyer A. 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719–23 [Google Scholar]
  9. Barton NH. 1983. Multilocus clines. Evolution 37:454–71 [Google Scholar]
  10. Bentzen P, McPhail JD. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): specialization for alternative trophic niches in the Enos Lake species pair. Can. J. Zool.-Rev. Can. Zool. 62:2280–86 [Google Scholar]
  11. Bentzen P, Ridgway MS, McPhail JD. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): spatial segregation and seasonal habitat shifts in the Enos Lake species pair. Can. J. Zool.-Rev. Can. Zool. 62:2436–39 [Google Scholar]
  12. Berdan EL, Fuller RC. 2012. A test for environmental effects on behavioral isolation in two species of killifish. Evolution 66:3224–37 [Google Scholar]
  13. Berner D, Adams DC, Grandchamp AC, Hendry AP. 2008. Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J. Evol. Biol. 21:1653–65 [Google Scholar]
  14. Berner D, Grandchamp A-C, Hendry AP. 2009. Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63:1740–53 [Google Scholar]
  15. Bloom DD, Weir JT, Piller KR, Lovejoy NR. 2013. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of new world silversides (Atherinopsidae). Evolution 67:2040–57 [Google Scholar]
  16. Bolnick DI, Fitzpatrick BM. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38:459–87 [Google Scholar]
  17. Bolnick DI, Lau OL. 2008. Predictable patterns of disruptive selection in stickleback in postglacial lakes. Am. Nat. 172:1–11 [Google Scholar]
  18. Bolnick DI, Near TJ. 2005. Tempo of hybrid inviability in centrarchid fishes (Teleostei: Centrarchidae). Evolution 59:1754–67 [Google Scholar]
  19. Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, Lau OL. 2009. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63:2004–16 [Google Scholar]
  20. Bossu CM, Near TJ. 2013. Characterization of a contemporaneous hybrid zone between two darter species (Etheostoma bison and E. caeruleum) in the Buffalo River System. Genetica 141:75–88 [Google Scholar]
  21. Boughman JW. 2001. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411:944–48 [Google Scholar]
  22. Boughman JW. 2002. How sensory drive can promote speciation. Trends Ecol. Evol. 17:571–77 [Google Scholar]
  23. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I. et al. 2014. The genomic substrate for adaptive radiation: genomes of five African cichlid fish. Nature 513375–81
  24. Bush GL. 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6:339–64 [Google Scholar]
  25. Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME. 2011. Brain evolution triggers increased diversification of electric fishes. Science 332:583–86 [Google Scholar]
  26. Carson HL, Templeton AR. 1984. Genetic revolution in relation to speciation phenomena—the founding of new populations. Annu. Rev. Ecol. Syst. 15:97–131 [Google Scholar]
  27. Cheviron ZA, Brumfield RT. 2009. Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous-collared sparrows (Zonotrichia capensis) along an elevational gradient. Evolution 63:1593–605 [Google Scholar]
  28. Chunco AJ, McKinnon JS, Servedio MR. 2007. Microhabitat variation and sexual selection can maintain male color polymorphisms. Evolution 61:2504–15 [Google Scholar]
  29. Cooke GM, Chao NL, Beheregaray LB. 2012. Divergent natural selection with gene flow along major environmental gradients in Amazonia: insights from genome scans, population genetics and phylogeography of the characin fish Triportheus albus. Mol. Ecol. 21:2410–27 [Google Scholar]
  30. Costa WJEM. 2009. Trophic radiation in the South American annual killifish genus Austrolebias (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 20:179–91 [Google Scholar]
  31. Coyne J, Orr H. 2004. Speciation Sunderland, MA: Sinauer Assoc.
  32. Crespi B, Nosil P. 2013. Conflictual speciation: species formation via genomic conflict. Trends Ecol. Evol. 28:48–57 [Google Scholar]
  33. Culumber ZW, Fisher HS, Tobler M, Mateos M, Barber PH. et al. 2011. Replicated hybrid zones of Xiphophorus swordtails along an elevational gradient. Mol. Ecol. 20:342–56 [Google Scholar]
  34. Danley PD, Kocher TD. 2001. Speciation in rapidly diverging systems: lessons from Lake Malawi. Mol. Ecol. 10:1075–86 [Google Scholar]
  35. de Graaf M, Dejen E, Osse JWM, Sibbing FA. 2008. Adaptive radiation of Lake Tana's (Ethiopia) Labeobarbus species flock (Pisces, Cyprinidae). Mar. Freshw. Res. 59:391–407 [Google Scholar]
  36. Deagle BE, Jones FC, Absher DM, Kingsley DM, Reimchen TE. 2013. Phylogeography and adaptation genetics of stickleback from the Haida Gwaii archipelago revealed using genome-wide single nucleotide polymorphism genotyping. Mol. Ecol. 22:1917–32 [Google Scholar]
  37. Deagle BE, Jones FC, Chan YGF, Absher DM, Kingsley DM, Reimchen TE. 2012. Population genomics of parallel phenotypic evolution in stickleback across stream-lake ecological transitions. Proc. R. Soc. B-Biol. Sci. 279:1277–86 [Google Scholar]
  38. Dias MS, Cornu J-F, Oberdorff T, Lasso CA, Tedesco PA. 2013. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36:683–89 [Google Scholar]
  39. Dieckmann U, Doebeli M, Metz JAJ, Tautz D. 2004. Adaptive Speciation Cambridge, UK: Cambridge Univ. Press
  40. Dobzhansky T. 1937. Genetics and the Origin of Species New York and London: Columbia Univ. Press364
  41. Doebeli M, Dieckmann U. 2003. Speciation along environmental gradients. Nature 421:259–64 [Google Scholar]
  42. Echelle AA, Kornfield I. 1984. Evolution of Fish Species Flocks Orono, ME: Univ. Maine Press
  43. Edelaar P, Siepielski AM, Clobert J. 2008. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–72 [Google Scholar]
  44. Egger B, Sefc KM, Makasa L, Sturmbauer C, Salzburger W. 2012. Introgressive hybridization between color morphs in a population of cichlid fishes twelve years after human-induced secondary admixis. J. Hered. 103:515–22 [Google Scholar]
  45. Eizaguirre C, Lenz TL, Kalbe M, Milinski M. 2012. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol. Lett. 15:723–31 [Google Scholar]
  46. Endler JA. 1977. Geographic Variation, Speciation, and Clines Princeton, NJ: Princeton Univ. Press
  47. Faria R, Weiss S, Alexandrino P. 2006. A molecular phylogenetic perspective on the evolutionary history of Alosa spp. (Clupeidae). Mol. Phylogenet. Evol. 40:298–304 [Google Scholar]
  48. Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution 35:124–38 [Google Scholar]
  49. Ferguson A, Taggart JB. 1991. Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland. Biol. J. Linn. Soc. 43:221–37 [Google Scholar]
  50. Fischer RA. 1930. The Genetical Theory of Natural Selection Oxford: Clarendon Press
  51. Froese R, Pauly D. 2014. FishBase. World Wide Web electronic publication. http://www.fishbase.org
  52. Fuller RC, McGhee KE, Schrader M. 2007. Speciation in killifish and the role of salt tolerance. J. Evol. Biol. 20:1962–75 [Google Scholar]
  53. Gagnaire P-A, Pavey SA, Normandeau E, Bernatchez L. 2013. The genetic architecture of reproductive isolation during speciation-with-gene-flow in lake whitefish pairs assessed by RAD-sequencing. Evolution 67:2483–97 [Google Scholar]
  54. Galis F, Metz JAJ. 1998. Why are there so many cichlid species?. Trends Ecol. Evol. 13:1–2 [Google Scholar]
  55. Garduno-Paz MV, Adams CE, Verspoor E, Knox D, Harrod C. 2012. Convergent evolutionary processes driven by foraging opportunity in two sympatric morph pairs of Arctic charr with contrasting post-glacial origins. Biol. J. Linn. Soc. 106:794–806 [Google Scholar]
  56. Garrigos YE, Hugueny B, Koerner K, Ibanez C, Bonillo C. et al. 2013. Non-invasive ancient DNA protocol for fluid-preserved specimens and phylogenetic systematics of the genus Orestias (Teleostei: Cyprinodontidae). Zootaxa 3640:373–94 [Google Scholar]
  57. Gavrilets S. 2004. Fitness Landscapes and the Origin of Species Princeton, NJ: Princeton Univ. Press
  58. Gavrilets S, Losos JB. 2009. Adaptive radiation: contrasting theory with data. Science 323:732–37 [Google Scholar]
  59. Genner MJ, Seehausen O, Cleary DFR, Knight ME, Michel E, Turner GF. 2004. How does the taxonomic status of allopatric populations influence species richness within African cichlid fish assemblages?. J. Biogeogr. 31:93–102 [Google Scholar]
  60. Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394–407 [Google Scholar]
  61. Gislason D, Ferguson M, Skulason S, Snorrason SS. 1999. Rapid and coupled phenotypic and genetic divergence in Icelandic Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 56:2229–34 [Google Scholar]
  62. Giuffra E, Guyomard R, Forneris G. 1996. Phylogenetic relationships and introgression patterns between incipient parapatric species of Italian brown trout (Salmo trutta L. complex). Mol. Ecol. 5:207–20 [Google Scholar]
  63. Gompert Z, Fordyce JA, Forister ML, Shapiro AM, Nice CC. 2006. Homoploid hybrid speciation in an extreme habitat. Science 314:1923–25 [Google Scholar]
  64. Gosline WA. 1948. Speciation in the fishes of the genus Menidia. Evolution 2:306–13 [Google Scholar]
  65. Gregorio O, Berdan EL, Kozak GM, Fuller RC. 2012. Reinforcement of male mate preferences in sympatric killifish species Lucania goodei and Lucania parva. Behav. Ecol. Sociobiol. 66:1429–36 [Google Scholar]
  66. Griffiths D. 1994. The size structure of lacustrine arctic charr (Pisces, Salmonidae) populations. Biol. J. Linn. Soc. 51:337–57 [Google Scholar]
  67. Grosberg RK, Vermeij GJ, Wainwright PC. 2012. Biodiversity in water and on land. Curr. Biol. 22:R900–3 [Google Scholar]
  68. Harrington RC, Benavides E, Near TJ. 2013. Phylogenetic inference of nuptial trait evolution in the context of asymmetrical introgression in North American darters (teleostei). Evolution 67:388–402 [Google Scholar]
  69. Hendry AP, Peichel CL, Matthews B, Boughman JW, Nosil P. 2013. Stickleback research: the now and the next. Evol. Ecol. Res. 15:111–41 [Google Scholar]
  70. Hendry AP, Taylor EB, McPhail JD. 2002. Adaptive divergence and the balance between selection and gene flow: lake and stream stickleback in the misty system. Evolution 56:1199–216 [Google Scholar]
  71. Hendry AP, Wenburg JK, Bentzen P, Volk EC, Quinn TP. 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290:516–18 [Google Scholar]
  72. Herre AWCT. 1933. The fishes of Lake Lanao: a problem in evolution. Am. Nat. 67:154–62 [Google Scholar]
  73. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. 2010. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLOS Genet. 6:e1000862 [Google Scholar]
  74. Hollingsworth PR Jr, Simons AM, Fordyce JA, Hulsey CD. 2013. Explosive diversification following a benthic to pelagic shift in freshwater fishes. BMC Evol. Biol. 13:272 [Google Scholar]
  75. Holzman R, Collar DC, Price SA, Hulsey CD, Thomson RC, Wainwright PC. 2012. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes. Proc. R. Soc. B-Biol. Sci. 279:1287–92 [Google Scholar]
  76. Horstkotte J, Strecker U. 2005. Trophic differentiation in the phylogenetically young Cyprinodon species flock (Cyprinodontidae, Teleostei) from Laguna Chichancanab (Mexico). Biol. J. Linn. Soc. 85:125–34 [Google Scholar]
  77. Hudson AG, Vonlanthen P, Seehausen O. 2010. Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc. R. Soc. B-Biol. Sci. 278:58–66 [Google Scholar]
  78. Hulsey CD, Garcia-de-Leon FJ. 2013. Introgressive hybridization in a trophically polymorphic cichlid. Ecol. Evol. 3:4536–47 [Google Scholar]
  79. Hutchinson GE. 1959. Homage to Santa Rosalia or Why Are There So Many Kinds of Animals. Am. Nat. 93:145–59 [Google Scholar]
  80. Ingram T. 2011. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B-Biol. Sci. 278:613–18 [Google Scholar]
  81. Ingram T, Hudson AG, Vonlanthen P, Seehausen O. 2012. Does water depth or diet divergence predict progress towards ecological speciation in whitefish radiations?. Evol. Ecol. Res. 14:487–502 [Google Scholar]
  82. Ishikawa A, Takeuchi N, Kusakabe M, Kume M, Mori S. et al. 2013. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. J. Evol. Biol. 26:1417–30 [Google Scholar]
  83. Jones FC, Brown C, Braithwaite VA. 2008. Lack of assortative mating between incipient species of stickleback from a hybrid zone. Behaviour 145:463–84 [Google Scholar]
  84. Jones FC, Brown C, Pemberton JM, Braithwaite VA. 2006. Reproductive isolation in a threespine stickleback hybrid zone. J. Evol. Biol. 19:1531–44 [Google Scholar]
  85. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E. et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61 [Google Scholar]
  86. Joyce DA, Lunt DH, Bills R, Turner GF, Katongo C. et al. 2005. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435:90–95 [Google Scholar]
  87. Kaeuffer R, Peichel CL, Bolnick DI, Hendry AP. 2012. Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 66:402–18 [Google Scholar]
  88. Kirkpatrick M, Ravigne V. 2002. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159:S22–35 [Google Scholar]
  89. Kisel Y, Barraclough TG. 2010. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175:316–34 [Google Scholar]
  90. Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N. et al. 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish 12:1–59 [Google Scholar]
  91. Knight ME, Turner GF. 2004. Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 271:675–80 [Google Scholar]
  92. Kocher TD. 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nat. Rev. Genet. 5:288–98 [Google Scholar]
  93. Kodric-Brown A, West RJD. 2014. Asymmetries in premating isolating mechanisms in a sympatric species flock of pupfish (Cyprinodon). Behav. Ecol. 25:69–75 [Google Scholar]
  94. Kolm N, Amcoff M, Mann RP, Arnqvist G. 2012. Diversification of a food-mimicking male ornament via sensory drive. Curr. Biol. 22:1440–43 [Google Scholar]
  95. Komiya T, Fujita S, Watanabe K. 2011. A novel resource polymorphism in fish, driven by differential bottom environments: an example from an ancient lake in Japan. PLOS ONE 6:e17430 [Google Scholar]
  96. Konow N, Bellwood DR, Wainwright PC, Kerr AM. 2008. Evolution of novel jaw joints promote trophic diversity in coral reef fishes. Biol. J. Linn. Soc. 93:545–55 [Google Scholar]
  97. Kontula T, Kirilchik SV, Vainola R. 2003. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Mol. Phylogenet. Evol. 27:143–55 [Google Scholar]
  98. Kozak GM, Reid BS, Berdan EL, Fuller RC, Whitehead A. 2014. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 68:63–80 [Google Scholar]
  99. Lamboj A. 2004. The Cichlid Fishes of Western Africa Bornheim, Ger: Birgit Schmettkamp Verlag
  100. Lande R. 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78:63721–25 [Google Scholar]
  101. Lande R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22:1435–46 [Google Scholar]
  102. Langerhans RB. 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integr. Comp. Biol. 48:750–68 [Google Scholar]
  103. Langerhans RB. 2009. Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis. J. Evol. Biol. 22:1057–75 [Google Scholar]
  104. Langerhans RB, Gifford ME, Joseph EO. 2007. Ecological speciation in Gambusia fishes. Evolution 61:2056–74 [Google Scholar]
  105. Langerhans RB, Makowicz AM. 2013. Sexual selection paves the road to sexual isolation during ecological speciation. Evol. Ecol. Res. 15:633–51 [Google Scholar]
  106. Lavin PA, McPhail JD. 1986. Adaptive divergence of trophic phenotype among fresh-water populations of the threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aquat. Sci. 43:2455–63 [Google Scholar]
  107. Lee CE, Bell MA. 1999. Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol. Evol. 14:284–88 [Google Scholar]
  108. Leveque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA. 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595:545–67 [Google Scholar]
  109. Liem KF, Summers AP. 2000. Integration of versatile functional design, population ecology, ontogeny and phylogeny. Neth. J. Zool. 50:245–59 [Google Scholar]
  110. Loh EY, Bezault E, Muenzel FM, Roberts RB, Swofford R. et al. 2013. Origins of shared genetic variation in African cichlids. Mol. Biol. Evol. 30:4906–17 [Google Scholar]
  111. Losos JB. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles Berkeley, CA: Univ. Calif. Press
  112. Louisy P. 2002. Poissons Marin d'Europe Paris: Les Editions Eugen Ulmer
  113. Lucek K, Sivasundar A, Kristjansson BK, Skulason S, Seehausen O. 2014. Quick divergence but slow convergence during parallel ecotype evolution in lake and stream stickleback pairs of variable age. J. Evol. Biol. 27:1878–92 [Google Scholar]
  114. Lucek K, Sivasundar A, Roy D, Seehausen O. 2013. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake-stream divergence in parapatric Swiss stickleback. J. Evol. Biol. 26:2691–709 [Google Scholar]
  115. Lucek K, Sivasundar A, Seehausen O. 2012. Evidence of adaptive evolutionary divergence during biological invasion. PLOS ONE 7:e49377 [Google Scholar]
  116. Maan ME, Seehausen O. 2011. Ecology, sexual selection and speciation. Ecol. Lett. 14:591–602 [Google Scholar]
  117. Magalhaes IS, Lundsgaard-Hansen B, Mwaiko S, Seehausen O. 2012. Evolutionary divergence in replicate pairs of ecotypes of Lake Victoria cichlid fish. Evol. Ecol. Res. 14:381–401 [Google Scholar]
  118. Mani GS, Clarke BC. 1990. Mutational order: a major stochastic process in evolution. Proc. R. Soc. Lond. B 240:29–37 [Google Scholar]
  119. Martin CH, Feinstein LC. 2014. Novel trophic niches drive variable progress toward ecological speciation within an adaptive radiation of pupfishes. Mol. Ecol. 23:71846–62 [Google Scholar]
  120. Mattersdorfer K, Koblmueller S, Sefc KM. 2012. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish. Mol. Ecol. 21:3531–44 [Google Scholar]
  121. Mayr E. 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist New York: Columbia Univ. Press
  122. Mayr E. 1954. Change of genetic environment and evolution. Evolution as a Process J Huxley, AC Hardy, EB Ford 157–80 London: Allen & Unwin [Google Scholar]
  123. Mayr E. 1984. Evolution of fish species flocks: a commentary. Evolution of Fish Species Flocks AA Echelle, I Kornfield 3–11 Orono, ME: Univ. Maine, Orono Press [Google Scholar]
  124. McCune AR. 1987. Lakes as laboratories of evolution endemic fishes and environmental cyclicity. Palaios 2:446–54 [Google Scholar]
  125. McCune AR. 1997. How fast is speciation: molecular, geological and phylogenetic evidence from adaptive radiations of fishes. Molecular Evolution and Adaptive Radiation T Givnish, K Sytsma 585–610 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  126. McGee MD, Wainwright PC. 2013. Convergent evolution as a generator of phenotypic diversity in threespine stickleback. Evolution 67:1204–8 [Google Scholar]
  127. McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM. et al. 2004. Evidence for ecology's role in speciation. Nature 429:294–98 [Google Scholar]
  128. McKinnon JS, Rundle HD. 2002. Speciation in nature: the threespine stickleback model systems. Trends Ecol. Evol. 17:480–88 [Google Scholar]
  129. Mendelson TC. 2003. Sexual isolation evolves faster than hybrid inviability in a diverse and sexually dimorphic genus of fish (Percidae: Etheostoma). Evolution 57:317–27 [Google Scholar]
  130. Moodie GEE. 1972a. Morphology, life-history, and ecology of an unusual stickleback (Gasterosteus aculeatus) in Queen Charlotte Islands, Canada. Can. J. Zool. 50:721–32 [Google Scholar]
  131. Moodie GEE. 1972b. Predation, natural selection and adaptation in an unusual 3 spine stickleback. Heredity 28:155–67 [Google Scholar]
  132. Muller HJ. 1940. Bearings of the Drosophila work on systematics. The New Systematics J Huxley 185–268 New York: Oxford Univ. Press [Google Scholar]
  133. Nagylaki T. 1975. Conditions for existence of clines. Genetics 80:595–615 [Google Scholar]
  134. Near TJ, Benard MF. 2004. Rapid allopatric speciation in logperch darters (Percidae: Percina). Evolution 58:2798–808 [Google Scholar]
  135. Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL. et al. 2013. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc. Natl. Acad. Sci. USA 110:12738–43 [Google Scholar]
  136. Neilson ME, Stepien CA. 2009a. Escape from the Ponto-Caspian: evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei). Mol. Phylogenet. Evol. 52:84–102 [Google Scholar]
  137. Neilson ME, Stepien CA. 2009b. Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species. Biol. J. Linn. Soc. 96:664–84 [Google Scholar]
  138. Nosil P. 2012. Ecological Speciation304 Oxford and New York: Oxford Univ. Press
  139. Nosil P, Harmon LJ, Seehausen O. 2009. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. 24:145–56 [Google Scholar]
  140. Ohlberger J, Brannstrom A, Dieckmann U. 2013. Adaptive phenotypic diversification along a temperature-depth gradient. Am. Nat. 182:359–73 [Google Scholar]
  141. Palacios M, Arias-Rodriguez L, Plath M, Eifert C, Lerp H. et al. 2013. The rediscovery of a long described species reveals additional complexity in speciation patterns of poeciliid fishes in sulfide springs. PLOS ONE 8:e71069 [Google Scholar]
  142. Parnell NF, Hulsey CD, Streelman JT. 2008. Hybridization produces novelty when the mapping of form to function is many to one. BMC Evol. Biol. 8:122 [Google Scholar]
  143. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. 2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25:459–67 [Google Scholar]
  144. Pialek L, Rican O, Casciotta J, Almiron A, Zrzavy J. 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Mol. Phylogenet. Evol. 62:46–61 [Google Scholar]
  145. Plath M, Pfenninger M, Lerp H, Riesch R, Eschenbrenner C. et al. 2013. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments. Evolution 67:2647–61 [Google Scholar]
  146. Plath M, Riesch R, Oranth A, Dzienko J, Karau N. et al. 2010. Complementary effect of natural and sexual selection against immigrants maintains differentiation between locally adapted fish. Naturwissenschaften 97:769–74 [Google Scholar]
  147. Plaut I. 1998. Comparison of salinity tolerance and osmoregulation in two closely related species of blennies from different habitats. Fish Physiol. Biochem. 19:181–88 [Google Scholar]
  148. Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11:175–80 [Google Scholar]
  149. Price T. 2008. Speciation in Birds Greenwood Village, CO: Roberts
  150. Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B. et al. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4:1958 [Google Scholar]
  151. Rasanen K, Delcourt M, Chapman LJ, Hendry AP. 2012. Divergent selection and then what not: the conundrum of missing reproductive isolation in Misty Lake and stream stickleback. Int. J. Ecol. 2012:902438 [Google Scholar]
  152. Ready JS, Sampao I, Schneider H, Vinson C, Dos Santos T, Turner GF. 2006. Colour forms of Amazonian cichlid fish represent reproductively isolated species. J. Evol. Biol. 19:1139–48 [Google Scholar]
  153. Reimchen TE. 1988. Inefficient predators and prey injuries in a population of giant stickleback. Can. J. Zool.-Rev. Can. Zool. 66:2036–44 [Google Scholar]
  154. Reimchen TE. 1989. Loss of nuptial color in threespine sticklebacks (Gasterosteus aculeatus). Evolution 43:450–60 [Google Scholar]
  155. Reimchen TE, Stinson EM, Nelson JS. 1985. Multivariate differentiation of parapatric and allopatric populations of threespine stickleback in the Sangan river watershed, Queen Charlotte Islands. Can. J. Zool.-Rev. Can. Zool. 63:2944–51 [Google Scholar]
  156. Renaut S, Maillet N, Normandeau E, Sauvage C, Derome N. et al. 2012. Genome-wide patterns of divergence during speciation: the lake whitefish case study. Philos. Trans. R. Soc. B-Biol. Sci. 367:354–63 [Google Scholar]
  157. Rico C, Turner GF. 2002. Extreme microallopatric divergence in a cichlid species from Lake Malawi. Mol. Ecol. 11:1585–90 [Google Scholar]
  158. Riesch R, Plath M, Schlupp I, Tobler M, Langerhans RB. 2014. Colonisation of toxic environments drives predictable life-history evolution in livebearing fishes (Poeciliidae). Ecol. Lett. 17:65–71 [Google Scholar]
  159. Ritchie MG. 2007. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 38:79–102 [Google Scholar]
  160. Robinson BW, Wilson DS. 1994. Character release and displacement in fishes—a neglected literature. Am. Nat. 144:596–627 [Google Scholar]
  161. Roesch C, Lundsgaard-Hansen B, Vonlanthen P, Taverna A, Seehausen O. 2013. Experimental evidence for trait utility of gill raker number in adaptive radiation of a north temperate fish. J. Evol. Biol. 26:1578–87 [Google Scholar]
  162. Rosenblum EB, Sarver BAJ, Brown JW, Roches SD, Hardwick KM. et al. 2012. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39:255–61 [Google Scholar]
  163. Salzburger W. 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol. Ecol. 18:169–85 [Google Scholar]
  164. Salzburger W, Mack T, Verheyen E, Meyer A. 2005. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5:17 [Google Scholar]
  165. Santini F, Harmon LJ, Carnevale G, Alfaro ME. 2009. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol. Biol. 9:194 [Google Scholar]
  166. Santini F, Nguyen MTT, Sorenson L, Waltzek TB, Lynch Alfaro JW. 2013. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J. Evol. Biol. 26:51003–18 [Google Scholar]
  167. Scarpino SV, Hunt PJ, Garcia-De-Leon FJ, Juenger TE, Schartl M, Kirkpatrick M. 2013. Evolution of a genetic incompatibility in the genus Xiphophorus. Mol. Biol. Evol. 30:2302–10 [Google Scholar]
  168. Schartl M, Walter RB, Shen Y, Garcia T, Catchen J. et al. 2013. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat. Genet. 45:567–72 [Google Scholar]
  169. Schliewen U, Klee B. 2004. Reticulate sympatric speciation in Cameroonian crater lake cichlids. Front. Zool. 1:5 [Google Scholar]
  170. Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D. 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol. Ecol. 10:1471–88 [Google Scholar]
  171. Schliewen U, Tautz D, Pääbo S. 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368:306–8 [Google Scholar]
  172. Schluter D. 1995. Adaptive radiation in sticklebacks—trade-offs in feeding performance and growth. Ecology 76:82–90 [Google Scholar]
  173. Schluter D. 1996. Ecological speciation in postglacial fishes. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 351:807–14 [Google Scholar]
  174. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press
  175. Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:737–41 [Google Scholar]
  176. Schluter D, Conte GL. 2009. Genetics and ecological speciation. Proc. Natl. Acad. Sci. USA 106:9955–62 [Google Scholar]
  177. Schwartz AK, Weese DJ, Bentzen P, Kinnison MT, Hendry AP. 2010. Both geography and ecology contribute to mating isolation in guppies. PLOS ONE 5:e15659 [Google Scholar]
  178. Schwarzer J, Herder F, Misof B, Hadiaty RK, Schliewen UK. 2008. Gene flow at the margin of Lake Matano's adaptive sailfin silverside radiation: Telmatherinidae of River Petea in Sulawesi. Hydrobiologia 615:201–13 [Google Scholar]
  179. Schwarzer J, Misof B, Schliewen UK. 2012. Speciation within genomic networks: a case study based on Steatocranus cichlids of the lower Congo rapids. J. Evol. Biol. 25:138–48 [Google Scholar]
  180. Seegers L, Sonnenberg R, Yamamoto R. 1999. Molecular analysis of the Alcolapia flock from lakes Natron and Magadi, Tanzania and Kenya (Teleostei: Cichlidae), and implications for their systematics and evolution. Ichthyol. Explor. Freshw. 10:175–99 [Google Scholar]
  181. Seehausen O, Magalhaes IS. 2010. Geographical mode and evolutionary mechanism of ecological speciation in cichlid fish. In Search of the Causes of Evolution P Grant, R Grant 282–308 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  182. Seehausen O, Takimoto G, Roy D, Jokela J. 2008a. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17:30–44 [Google Scholar]
  183. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ. et al. 2008b. Speciation through sensory drive in cichlid fish. Nature 455:620–26 [Google Scholar]
  184. Seehausen O, van Alphen JJM, Lande R. 1999. Color polymorphism and sex ratio distortion in a cichlid fish as an incipient stage in sympatric speciation by sexual selection. Ecol. Lett. 2:367–78 [Google Scholar]
  185. Seehausen O, van Alphen JJM, Witte F. 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–11 [Google Scholar]
  186. Servedio MR, Noor MAF. 2003. The role of reinforcement in speciation: theory and data. Annu. Rev. Ecol. Evol. Syst. 34:339–64 [Google Scholar]
  187. Servedio MR, van Doorn GS, Kopp M, Frame AM, Nosil P. 2011. Magic traits in speciation: ‘magic’ but not rare?. Trends Ecol. Evol. 26:389–97 [Google Scholar]
  188. Shaw PW, Turner GF, Idid MR, Robinson RL, Carvalho GR. 2000. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 267:2273–80 [Google Scholar]
  189. Simpson GG. 1953. The Major Features of Evolution New York: Columbia Univ. Press
  190. Smith PF, Konings A, Kornfield I. 2003. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity. Mol. Ecol. 12:2497–504 [Google Scholar]
  191. Smith PF, Kornfield I. 2002. Phylogeography of Lake Malawi cichlids of the genus Pseudotropheus: significance of allopatric colour variation. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 269:2495–502 [Google Scholar]
  192. Stearns SC. 1977. Evolution of life-history traits—critique of theory and a review of data. Annu. Rev. Ecol. Syst. 8:145–71 [Google Scholar]
  193. Stelkens RB, Seehausen O. 2009. Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. J. Evol. Biol. 22:1679–94 [Google Scholar]
  194. Stelkens RB, Young KA, Seehausen O. 2010. The accumulation of reproductive incompatibilities in African cichlid fish. Evolution 64:617–32 [Google Scholar]
  195. Strecker U, Hausdorf B, Wilkens H. 2012. Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol. Phylogenet. Evol. 62:62–70 [Google Scholar]
  196. Svanback R, Pineda-Krch M, Doebeli M. 2009. Fluctuating population dynamics promotes the evolution of phenotypic plasticity. Am. Nat. 174:176–89 [Google Scholar]
  197. Taylor E, Boughman J, Groenenboom M, Sniatynski M, Schluter D, Gow J. 2006. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol. Ecol. 15:343–55 [Google Scholar]
  198. Taylor EB. 1999. Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev. Fish Biol. Fish. 9:299–324 [Google Scholar]
  199. Taylor EB, Harvey S, Pollard S, Volpe J. 1997. Postglacial genetic differentiation of reproductive ecotypes of kokanee Oncorhynchus nerka in Okanagan Lake, British Columbia. Mol. Ecol. 6:503–17 [Google Scholar]
  200. Taylor EB, McPhail JD. 2000. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 267:2375–84 [Google Scholar]
  201. Telesh I, Schubert H, Skarlato S. 2013. Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar. Coast. Shelf Sci. 135:317–27 [Google Scholar]
  202. Templeton AR. 1981. Mechanisms of speciation—a population genetic approach. Annu. Rev. Ecol. Syst. 12:23–48 [Google Scholar]
  203. Thibert-Plante X, Hendry AP. 2011a. The consequences of phenotypic plasticity for ecological speciation. J. Evol. Biol. 24:326–42 [Google Scholar]
  204. Thibert-Plante X, Hendry AP. 2011b. Factors influencing progress toward sympatric speciation. J. Evol. Biol. 24:2186–96 [Google Scholar]
  205. Thompson CE, Taylor EB, McPhail JD. 1997. Parallel evolution of lake-stream pairs of threespine sticklebacks (Gasterosteus) inferred from mitochondrial DNA variation. Evolution 51:1955–65 [Google Scholar]
  206. Tobler M, Palacios M, Chapman LJ, Mitrofanov I, Bierbach D. et al. 2011. Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 65:2213–28 [Google Scholar]
  207. Tyers AM, Turner GF. 2013. Signal and preference divergence among populations of the non-endemic basal Lake Malawi cichlid fish Astatotilapia calliptera (Perciformes: Cichlidae). Biol. J. Linn. Soc. 110:180–88 [Google Scholar]
  208. Vamosi SM. 2003. The presence of other fish species affects speciation in threespine sticklebacks. Evol. Ecol. Res. 5:717–30 [Google Scholar]
  209. van Doorn GS, Edelaar P, Weissing FJ. 2009. On the origin of species by natural and sexual selection. Science 326:1704–7 [Google Scholar]
  210. Vega GC, Wiens JJ. 2012. Why are there so few fish in the sea?. Proc. R. Soc. B-Biol. Sci. 279:2323–29 [Google Scholar]
  211. Verzijden MN, ten Cate C, Servedio MR, Kozak GM, Boughman JW, Svensson EI. 2012. The impact of learning on sexual selection and speciation. Trends Ecol. Evol. 27:511–19 [Google Scholar]
  212. Vonlanthen P, Bittner D, Hudson AG, Young KA, Mueller R. et al. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–62 [Google Scholar]
  213. Vonlanthen P, Roy D, Hudson AG, Largiader CR, Bittner D, Seehausen O. 2009. Divergence along a steep ecological gradient in lake whitefish (Coregonus sp.). J. Evol. Biol. 22:3498–514 [Google Scholar]
  214. Wagner CE, Harmon LJ, Seehausen O. 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–69 [Google Scholar]
  215. Wagner CE, Harmon LJ, Seehausen O. 2014. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol. Lett. 17:5583–92 [Google Scholar]
  216. Wagner CE, McCune AR. 2009. Contrasting patterns of spatial genetic structure in sympatric rock-dwelling cichlid fishes. Evolution 63:1312–26 [Google Scholar]
  217. Wainwright PC. 2007. Functional versus morphological diversity in macroevolution. Annu. Rev. Ecol. Evol. Syst. 38:381–401 [Google Scholar]
  218. Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS. et al. 2012. The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst. Biol. 61:1001–27 [Google Scholar]
  219. Wallace AR. 1912. Influence of natural selection upon sterility and fertility. Darwinsim: An Exposition of the Theory of Natural Selection with Some of Its Applications (3rd ed.) AR Wallace 173–79 London: Macmillan [Google Scholar]
  220. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution New York: Oxford Univ. Press
  221. Wright S. 1931. Evolution in Mendelian populations. Genetics 16:0097–159 [Google Scholar]
  222. Young KA, Genner MJ, Haesler MP, Joyce DA. 2010. Sequential female assessment drives complex sexual selection on bower shape in a cichlid fish. Evolution 64:2246–53 [Google Scholar]
  223. Young KA, Whitman JM, Turner GF. 2009. Secondary contact during adaptive radiation: a community matrix for Lake Malawi cichlids. J. Evol. Biol. 22:882–89 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-120213-091818
Loading
/content/journals/10.1146/annurev-ecolsys-120213-091818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error