1932

Abstract

Infectious diseases dynamics are affected by both spatial and temporal heterogeneity in their environments. Our ability to quantify and predict how this heterogeneity impacts risks of infection and disease emergence is the key to successful disease prevention efforts. Here, we review the literature on infectious diseases from human, agricultural, and wildlife ecosystems to describe the rapid ecological and evolutionary responses in pathogens to environmental heterogeneity, with expected impacts on their epidemiology. To date, the underlying network structures through which disease transmission proceeds have been notoriously difficult to quantify because of this variation. We show that with recent advances in statistical methods and genomic approaches, it is now more feasible than ever to trace disease transmission networks, the molecular underpinning of infection, and the environmental variation relevant to disease dynamics. We end by identifying major new opportunities and challenges in understanding disease dynamics in an ever-changing world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032321
2016-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/47/1/annurev-ecolsys-121415-032321.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032321&mimeType=html&fmt=ahah

Literature Cited

  1. Alizon S. 2013. Parasite co-transmission and the evolutionary epidemiology of virulence. Evolution 67:4921–33 [Google Scholar]
  2. Alizon S, Hurford A, Mideo N, van Baalen M. 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22:2245–59 [Google Scholar]
  3. Allan BF, Keesing F, Ostfeld RS. 2003. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17:1267–72 [Google Scholar]
  4. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. 2006. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9:4467–84 [Google Scholar]
  5. Altizer S, Harvell D, Friedle E. 2003. Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol. Evol. 18:11589–96 [Google Scholar]
  6. Altzier S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. 2013. Climate change and infectious diseases: from evidence to a predictive framework. Science 341:6145514–19 [Google Scholar]
  7. Anderson RM, May RM. 1991. Infectious Diseases of Humans: Dynamics and Control Oxford, UK: Oxford Univ. Press
  8. Anttila J, Kaitala V, Laakso J, Ruokolainen L. 2015. Environmental variation generates environmental opportunist pathogen outbreaks. PLOS ONE 10:12e0145511 [Google Scholar]
  9. Archie EA, Luikart G, Ezenwa VO. 2009. Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol. Evol. 24:121–30 [Google Scholar]
  10. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A. 2009. Multiscale mobility networks and the spatial spreading of infectious diseases. PNAS 106:5121484–89 [Google Scholar]
  11. Balmer O, Tanner M. 2011. Prevalence and implications of multiple-strain infections. Lancet Infect. Dis. 11:11868–78 [Google Scholar]
  12. Berngruber TW, Lion S, Gandon S. 2015. Spatial structure, transmission modes and the evolution of viral exploitation strategies. PLOS Pathog. 11:4e1004810 [Google Scholar]
  13. Bharti N, Djibo A, Ferrari MJ, Grais RF, Tatem AJ. et al. 2010. Measles hotspots and epidemiological connectivity. Epidemiol. Infect. 138:91308–16 [Google Scholar]
  14. Bharti N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT. 2011. Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 334:60611424–27 [Google Scholar]
  15. Biek R, Drummond AJ, Poss M. 2006. A virus reveals population structure and recent demographic history of its carnivore host. Science 311:5760538–41 [Google Scholar]
  16. Biek R, Henderson JC, Waller LA, Rupprecht CE, Real LA. 2007. A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. PNAS 104:197993–98 [Google Scholar]
  17. Bjørnstad ON, Ims R, Lambin X. 1999. Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 14:11427–32 [Google Scholar]
  18. Blanford S, Thomas MB, Pugh C, Pell JK. 2003. Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment. Ecol. Lett. 6:12–5 [Google Scholar]
  19. Blanquart F, Kaltz O, Nuismer SL, Gandon S. 2013. A practical guide to measuring local adaptation. Ecol. Lett. 16:91195–205 [Google Scholar]
  20. Boots M, Hudson PJ, Sasaki A. 2004. Large shifts in pathogen virulence relate to host population structure. Science 303:5659842–44 [Google Scholar]
  21. Boots M, Mealor M. 2007. Local interactions select for lower pathogen infectivity. Science 315:58161284–86 [Google Scholar]
  22. Boots M, Sasaki A. 1999. “Small worlds” and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B 266:14321933–38 [Google Scholar]
  23. Boots M, Sasaki A. 2002. Parasite-driven extinction in spatially explicit host-parasite systems. Am. Nat. 159:6706–13 [Google Scholar]
  24. Brown JKM, Tellier A. 2011. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49:345–67 [Google Scholar]
  25. Bryner SF, Rigling D. 2011. Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. Am. Nat. 177:165–74 [Google Scholar]
  26. Buckling A, Brockhurst MA. 2008. Kin selection and the evolution of virulence. Heredity 100:5484–88 [Google Scholar]
  27. Burdon JJ, Ericson L, Muller WJ. 1995. Temporal and spatial changes in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. J. Ecol. 83:6979–89 [Google Scholar]
  28. Burdon JJ, Thrall PH. 2014. What have we learned from studies of wild plant-pathogen associations?—The dynamic interplay of time, space and life-history. Eur. J. Plant Pathol. 138:3417–29 [Google Scholar]
  29. Caillaud D, Lévréro F, Cristescu R, Gatti S, Dewas M. et al. 2006. Gorilla susceptibility to Ebola virus: the cost of sociality. Curr. Biol. 16:13R489–91 [Google Scholar]
  30. Coakley SM, Scherm H, Chakraborty S. 1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37:399–426 [Google Scholar]
  31. Comins HN, Hassell MP, May RM. 1992. The spatial dynamics of host parasitoid systems. J. Anim. Ecol. 61:3735–48 [Google Scholar]
  32. Connolly BM, Orrock JL. 2015. Climatic variation and seed persistence: freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Oecologia 179:2609–16 [Google Scholar]
  33. Craft ME, Volz E, Packer C, Meyers LA. 2011. Disease transmission in territorial populations: the small-world network of Serengeti lions. J. R. Soc. Interface 8:59776–86 [Google Scholar]
  34. Croll D, McDonald BA. 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLOS Pathog. 8:4e1002608 [Google Scholar]
  35. de Roode JC, Altzier S. 2010. Host-parasite genetic interactions and virulence-transmission relationships in natural populations of monarch butterflies. Evolution 64:2502–14 [Google Scholar]
  36. de Roode JC, Helinski MEH, Anwar MA, Read AF. 2005a. Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am. Nat. 166:5531–42 [Google Scholar]
  37. de Roode JC, Pansini R, Cheesman SJ, Helinski M, Huijben S. et al. 2005b. Virulence and competitive ability in genetically diverse malaria infections. PNAS 102:217624–28 [Google Scholar]
  38. de Roode JC, Yates AJ, Altzier S. 2008. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. PNAS 105:217489–94 [Google Scholar]
  39. Deadman ML. 2006. Epidemiological consequences of plant disease resistance. The Epidemiology of Plant Diseases BM Cooke, D Gareth Jones, B Kaye 139–57 Dordrecht, Neth.: Springer, 2nd ed.. [Google Scholar]
  40. Dhondt AA, Altzier S, Cooch EG, Davis AK, Dobson A. et al. 2005. Dynamics of a novel pathogen in an avian host: mycoplasmal conjunctivitis in house finches. Acta Trop. 94:177–93 [Google Scholar]
  41. Dhondt AA, States SL, Dhondt KV, Schat KA. 2012. Understanding the origin of seasonal epidemics of mycoplasmal conjunctivitis. J. Anim. Ecol. 81:5996–1003 [Google Scholar]
  42. Duffy MA, Ochs JH, Penczykowski RM, Civitello DJ, Klausmeier CA, Hall SR. 2012. Ecological context influences epidemic size and parasite-driven evolution. Science 335:163638 [Google Scholar]
  43. Eubank S, Guclu H, Kumar VSA, Marathe MV, Srinivasan A. et al. 2004. Modelling disease outbreaks in realistic urban social networks. Nature 429:6988180–84 [Google Scholar]
  44. Ewald PW. 1987. Transmission modes and evolution of the parasitism-mutualism continuum. Ann. N.Y. Acad. Sci. 503:295–306 [Google Scholar]
  45. Ewald PW. 1993. The evolution of virulence. Sci. Am. 268:486–93 [Google Scholar]
  46. Farkas TE, Mononen T, Comeault AA, Hanski I, Nosil P. 2013. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23:191835–43 [Google Scholar]
  47. Fels D, Kaltz O. 2006. Temperature-dependent transmission and latency of Holospora undulata, a micronucleus-specific parasite of the ciliate Paramecium caudatum. Proc. R. Soc. B 273:15891031–38 [Google Scholar]
  48. Ferguson HM, Read AF. 2002. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc. R. Soc. B 269:14971217–24 [Google Scholar]
  49. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. 2006. Strategies for mitigating an influenza pandemic. Nature 442:7101448–52 [Google Scholar]
  50. Ferrari MJ, Grais RF, Bharti N, Conlan AJK, Bjørnstad ON. et al. 2008. The dynamics of measles in sub-Saharan Africa. Nature 451:7179679–84 [Google Scholar]
  51. Flor HH. 1956. The complementary genic systems in flax and flax rust. Adv. Genet. 8:29–54 [Google Scholar]
  52. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L. et al. 2015. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. PNAS 112:3827–32 [Google Scholar]
  53. François O, Durand E. 2010. Spatially explicit Bayesian clustering models in population genetics. Mol. Ecol. Resour. 10:5773–84 [Google Scholar]
  54. Frank SA. 1996. Host-symbiont conflict over the mixing of symbiotic lineages. Proc. R. Soc. B 263:1368339–44 [Google Scholar]
  55. Gallana M, Ryser-Degiorgis MP, Wahli T, Segner H. 2013. Climate change and infectious diseases of wildlife: altered interactions between pathogens, vectors and hosts. Curr. Zool. 59:3427–37 [Google Scholar]
  56. Gandon S. 2002. Local adaptation and the geometry of host-parasite coevolution. Ecol Lett 5:2246–56 [Google Scholar]
  57. Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I. 1996. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc. R. Soc. B 263:13731003–9 [Google Scholar]
  58. Gandon S, Michalakis Y. 2002. Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J. Evol. Biol. 15:3451–62 [Google Scholar]
  59. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25:6325–31 [Google Scholar]
  60. Gómez P, Ben Ashby, Buckling A. 2015. Population mixing promotes arms race host-parasite coevolution. Proc. R. Soc. B 282:179820142297 [Google Scholar]
  61. Gomulkiewicz R, Thompson JN, Holt RD, Nuismer SL, Hochberg ME. 2000. Hot spots, cold spots, and the geographic mosaic theory of coevolution. Am. Nat. 156:2156–74 [Google Scholar]
  62. Gottdenker NL, Streicker DG, Faust CL, Carroll CR. 2014. Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:4619–32 [Google Scholar]
  63. Greischar MA, Koskella B. 2007. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10:5418–34 [Google Scholar]
  64. Grenfell BT, Bjornstad ON, Kappey J. 2001. Travelling waves and spatial hierarchies in measles epidemics. Nature 414:6865716–23 [Google Scholar]
  65. Grenfell BT, Harwood J. 1997. (Meta)population dynamics of infectious diseases. Trends Ecol. Evol. 12:10395–99 [Google Scholar]
  66. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM. et al. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:5750987–91 [Google Scholar]
  67. Hall M, Woolhouse M, Rambaut A. 2015. Epidemic reconstruction in a phylogenetics framework: transmission trees as partitions of the node set. PLOS Comput. Biol. 11:12e1004613 [Google Scholar]
  68. Hanski IA. 1998. Metapopulation dynamics. Nature 396:670641–49 [Google Scholar]
  69. Hanski IA. 2011. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. PNAS 108:3514397–404 [Google Scholar]
  70. Hanski IA, Ovaskainen O. 2000. The metapopulation capacity of a fragmented landscape. Nature 404:6779755–58 [Google Scholar]
  71. Harrison E, Laine A-L, Hietala M, Brockhurst MA. 2013. Rapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps. Proc. R. Soc. B 280:176420130937 [Google Scholar]
  72. Hellard E, Fouchet D, Vavre F, Pontier D. 2015. Parasite-parasite interactions in the wild: How to detect them?. Trends Parasitol. 31:12640–52 [Google Scholar]
  73. Hendricks MR, Lashua LP, Fischer DK, Flitter BA, Eichinger KM. et al. 2016. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. PNAS 113:61642–47 [Google Scholar]
  74. Hoeksema JD, Forde SE. 2008. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171:3275–90 [Google Scholar]
  75. James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW. et al. 2009. Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLOS Pathog. 5:5e1000458 [Google Scholar]
  76. Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG. et al. 2005. Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol. Ecol. 14:1213–24 [Google Scholar]
  77. Jeefoo P, Tripathi NK, Souris M. 2010. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int. J. Environ. Res. Public Health 2011 8:151–74 [Google Scholar]
  78. Jesse M, Ezanno P, Davis S, Heesterbeek JAP. 2008. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration. J. Theor. Biol. 254:2331–38 [Google Scholar]
  79. Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H. et al. 2014. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344:61891289–93 [Google Scholar]
  80. Karvonen A, Rellstab C, Louhi K-R, Jokela J. 2012. Synchronous attack is advantageous: mixed genotype infections lead to higher infection success in trematode parasites. Proc. R. Soc. B 279:1726171–76 [Google Scholar]
  81. Keeling MJ, Eames KTD. 2005. Networks and epidemic models. J. R. Soc. Interface 2:4295–307 [Google Scholar]
  82. King KC, Delph LF, Jokela J, Lively CM. 2011. Coevolutionary hotspots and coldspots for host sex and parasite local adaptation in a snail-trematode interaction. Oikos 120:91335–40 [Google Scholar]
  83. Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE. et al. 1999. Effects of plant species richness on invasion dynamics, disease, insect abundances and diversity. Ecol. Lett. 2:5286–93 [Google Scholar]
  84. Kraaijeveld AR, Godfray HCJ. 1999. Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am. Nat. 153:S5S61–74 [Google Scholar]
  85. Lafferty KD. 2009. The ecology of climate change and infectious diseases. Ecology 90:4888–900 [Google Scholar]
  86. Laine A-L. 2005. Spatial scale of local adaptation in a plant-pathogen metapopulation. J. Evol. Biol. 18:4930–38 [Google Scholar]
  87. Laine A-L. 2006. Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc. R. Soc. B 273:1584267–73 [Google Scholar]
  88. Laine A-L. 2008. Temperature-mediated patterns of local adaptation in a natural plant-pathogen metapopulation. Ecol. Lett. 11:4327–37 [Google Scholar]
  89. Laine A-L. 2009. Role of coevolution in generating biological diversity: spatially divergent selection trajectories. J. Exp. Bot. 60:112957–70 [Google Scholar]
  90. Laine A-L, Burdon JJ, Dodds PN, Thrall PH. 2011. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99:196–112 [Google Scholar]
  91. Laine A-L, Hanski I. 2006. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94:1217–26 [Google Scholar]
  92. Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. 2010. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 9:154 [Google Scholar]
  93. Lawson AB, Zhou H. 2005. Spatial statistical modeling of disease outbreaks with particular reference to the UK foot and mouth disease (FMD) epidemic of 2001. Prev. Vet. Med. 71:3–4141–56 [Google Scholar]
  94. Leventhal GE, Hill AL, Nowak MA, Bonhoeffer S. 2015. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nat. Commun. 6:6101 [Google Scholar]
  95. Leventhal GE, Kouyos R, Stadler T, Wyl VV, Yerly S. et al. 2012. Inferring epidemic contact structure from phylogenetic trees. PLOS Comput. Biol. 8:3e1002413 [Google Scholar]
  96. Lipsitch M, Siller S, Nowak MA. 1996. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50:51729–41 [Google Scholar]
  97. Lively CM. 1999. Migration, virulence, and the geographic mosaic of adaptation by parasites. Am. Nat. 153:S5S34–47 [Google Scholar]
  98. Lively CM. 2001. Parasite-host interactions. Evolutionary Ecology: Concepts and Case Studies CW Fox, DA Roff, DJ Fairbairn 290–302 New York: Oxford Univ. Press [Google Scholar]
  99. Lloyd AL, May RM. 1996. Spatial heterogeneity in epidemic models. J. Theor. Biol. 179:11–11 [Google Scholar]
  100. Lopez-Villavicencio M, Jonot O, Coantic A, Hood ME, Enjalbert J, Giraud T. 2007. Multiple infections by the anther smut pathogen are frequent and involve related strains. PLOS Pathog 3:111710–15 [Google Scholar]
  101. Lowen AC, Mubareka S, Steel J, Palese P. 2007. Influenza virus transmission is dependent on relative humidity and temperature. PLOS Pathog 3:10e151 [Google Scholar]
  102. Manel S, Holderegger R. 2013. Ten years of landscape genetics. Trends Ecol. Evol. 28:10614–21 [Google Scholar]
  103. May RM, Nowak MA. 1995. Coinfection and the evolution of parasite virulence. Proc. R. Soc. B 261:1361209–15 [Google Scholar]
  104. McDonald BA, Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79 [Google Scholar]
  105. Mideo N, Alizon S, Day T. 2008. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23:9511–17 [Google Scholar]
  106. Mitchell SE, Rogers ES, Little TJ, Read AF. 2005. Host-parasite and genotype-by-environment interactions: temperature modifies potential for selection by a sterilizing pathogen. Evolution 59:170–80 [Google Scholar]
  107. Mostowy R, Engelstadter J. 2011. The impact of environmental change on host-parasite coevolutionary dynamics. Proc. R. Soc. B 278:17162283–92 [Google Scholar]
  108. Nowak MA, May RM. 1994. Superinfection and the evolution of parasite virulence. Proc. R. Soc. B 255:134281–89 [Google Scholar]
  109. Nuismer SL, Thompson JN, Gomulkiewicz R. 2000. Coevolutionary clines across selection mosaics. Evolution 54:41102–15 [Google Scholar]
  110. Numminen E, Chewapreecha C, Siren J, Turner C, Turner P. et al. 2014. Two-phase importance sampling for inference about transmission trees. Proc. R. Soc. B 281:179420141324 [Google Scholar]
  111. Numminen E, Chewapreecha C, Turner C, Goldblatt D, Nosten F. et al. 2015. Climate induces seasonality in pneumococcal transmission. Sci. Rep. 5:11344 [Google Scholar]
  112. Nurhonen M, Cheng AC, Auranen K. 2013. Pneumococcal transmission and disease in silico: a microsimulation model of the indirect effects of vaccination. PLOS ONE 8:2e56079 [Google Scholar]
  113. Ostfeld R, Glass G, Keesing F. 2005. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol. Evol. 20:6328–36 [Google Scholar]
  114. Parratt SR, Laine A-L. 2016. The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J. 10:1815–22 [Google Scholar]
  115. Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M. 2006. Malaria resurgence in the East African highlands: temperature trends revisited. PNAS 103:155829–34 [Google Scholar]
  116. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ. et al. 2010. Antagonistic coevolution accelerates molecular evolution. Nature 464:7286275–78 [Google Scholar]
  117. Paull SH, Johnson P. 2011. High temperature enhances host pathology in a snail–trematode system: possible consequences of climate change for the emergence of disease. Freshw. Biol. 56:4767–78 [Google Scholar]
  118. Pelletier F, Garant D, Hendry AP. 2009. Eco-evolutionary dynamics. Philos. Trans. R. Soc. B 364:15231483–89 [Google Scholar]
  119. Penczykowski RM, Laine A-L, Koskella B. 2016. Understanding the ecology and evolution of host–parasite interactions across scales. Evol. Appl. 9:137–52 [Google Scholar]
  120. Penczykowski RM, Walker E, Soubeyrand S, Laine A-L. 2014. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. New Phytol. 205:31142–52 [Google Scholar]
  121. Read AF, Taylor LH. 2001. The ecology of genetically diverse infections. Science 292:55191099–102 [Google Scholar]
  122. Read JM, Eames KTD, Edmunds WJ. 2008. Dynamic social networks and the implications for the spread of infectious disease. J. R. Soc. Interface 5:261001–7 [Google Scholar]
  123. Real LA, Biek R. 2007. Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J. R. Soc. Interface 4:935–48 [Google Scholar]
  124. Real LA, Henderson JC, Biek R, Snaman J, Jack TL. et al. 2005. Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. PNAS 102:3412107–11 [Google Scholar]
  125. Reuter S, Corander J, de Been M, Harris S, Cheng L. et al. 2015. Directional gene flow and ecological separation in Yersinia enterocolitica. Microb. Genom. 1:3 doi: 10.1099/mgen.0.000030 [Google Scholar]
  126. Riley S. 2007. Large-scale spatial-transmission models of infectious disease. Science 316:58291298–1301 [Google Scholar]
  127. Roth O, Keller I, Landis SH, Salzburger W, Reusch TBH. 2012. Hosts are ahead in a marine host-parasite coevolutionary arms race: innate immune system adaptation in pipefish Syngnathus typhle against Vibrio phylotypes. Evolution 66:82528–39 [Google Scholar]
  128. Ryder JJ, Miller MR, White A, Knell RJ, Boots M. 2007. Host-parasite population dynamics under combined frequency- and density-dependent transmission. Oikos 116:122017–26 [Google Scholar]
  129. Sadd BM. 2011. Food-environment mediates the outcome of specific interactions between a bumblebee and its trypanosome parasite. Evolution 65:102995–3001 [Google Scholar]
  130. Salvaudon L, Giraud T, Shykoff JA. 2008. Genetic diversity in natural populations: a fundamental component of plant-microbe interactions. Curr. Opin. Plant Biol. 11:2135–43 [Google Scholar]
  131. Schoener TW. 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:6016426–29 [Google Scholar]
  132. Shaw MW. 2002. Epidemic modelling and disease forecasting. Plant Pathologist's Pocketbook JM Waller, JM Lenné, SJ Waller 252–65 Wallingford, UK: CABI, 3rd ed.. [Google Scholar]
  133. Sheppard SK, Cheng L, Méric G, de Haan CPA, Llarena A-K. et al. 2014. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol. Ecol. 23:102442–51 [Google Scholar]
  134. Shirley M, Rushtown SP, Smith GC, South AB, Lurz P. 2003. Investigating the spatial dynamics of bovine tuberculosis in badger populations: evaluating an individual-based simulation model. Ecol. Model. 167:1–2139–57 [Google Scholar]
  135. Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Ruiz Carrascal D, Pascual M. 2014. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343:61751154–58 [Google Scholar]
  136. Smith DL, Ericson L, Burdon JJ. 2011. Co-evolutionary hot and cold spots of selective pressure move in space and time. J. Ecol. 99:2634–41 [Google Scholar]
  137. Sokolow SH, Foley P, Foley JE, Hastings A, Richardson LL. 2009. Disease dynamics in marine metapopulations: modelling infectious diseases on coral reefs. J. Appl. Ecol. 46:3621–31 [Google Scholar]
  138. Stadler T, Kuehnert D, Bonhoeffer S, Drummond AJ. 2013. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS 110:1228–33 [Google Scholar]
  139. Sunnaker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. 2013. Approximate Bayesian computation. PLOS Comput. Biol. 9:1e1002803 [Google Scholar]
  140. Susi H, Barres B, Vale PF, Laine A-L. 2015. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6:5975 [Google Scholar]
  141. Suzán G, Marcé E, Giermakowski JT, Mills JN, Ceballos G. et al. 2009. Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLOS ONE 4:5e5461 [Google Scholar]
  142. Tack AJM, Horns F, Laine A-L. 2014. The impact of spatial scale and habitat configuration on patterns of trait variation and local adaptation in a wild plant parasite. Evolution 68:1176–89 [Google Scholar]
  143. Tack AJM, Laine A-L, Burdon JJ, Bissett A, Thrall PH. 2015a. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction. New Phytol 207:41159–69 [Google Scholar]
  144. Tack AJM, Thrall PH, Barrett LG, Burdon JJ, Laine A-L. 2012. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes and consequences. J. Evol. Biol. 25:101918–36 [Google Scholar]
  145. Tatem AJ, Rogers DJ, Hay SI. 2006. Global transport networks and infectious disease spread. Global Mapping of Infectious Diseases: Methods, Examples and Emerging Applications SI Hay, HA Graham, DJ Rogers 293–343 London: Academic Press [Google Scholar]
  146. Tellier A, Brown JKM. 2011. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions. BMC Evol. Biol. 11:319 [Google Scholar]
  147. Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153:S5S1–4 [Google Scholar]
  148. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  149. Thrall PH, Burdon JJ. 2002. Evolution of gene-for-gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal. Plant Pathol 51:2169–84 [Google Scholar]
  150. Thrall PH, Burdon JJ, Bever JD. 2002. Local adaptation in the Linum marginale–Melampsora lini host-pathogen interaction. Evolution 56:71340–51 [Google Scholar]
  151. Thrall PH, Burdon JJ, Bock CH. 2001. Short-term epidemic dynamics in the Cakile maritima–Alternaria brassicicola host–pathogen association. J. Ecol. 89:5723–35 [Google Scholar]
  152. Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN. et al. 2012. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15:5425–35 [Google Scholar]
  153. Tollenaere C, Pernechele B, Mäkinen HS, Parratt SR, Németh MZ. et al. 2014. A hyperparasite affects the population dynamics of a wild plant pathogen. Mol. Ecol. 23:235877–87 [Google Scholar]
  154. Tollenaere C, Susi H, Laine A-L. 2016. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21:180–90 [Google Scholar]
  155. Tollenaere C, Susi H, Nokso-Koivisto J, Koskinen P, Tack A. et al. 2012. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLOS ONE 7:12e52492 [Google Scholar]
  156. Triggs A, Knell RJ. 2012. Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella. J. Anim. Ecol. 81:2386–94 [Google Scholar]
  157. Vale PF, Little TJ. 2009. Measuring parasite fitness under genetic and thermal variation. Heredity 103:2102–9 [Google Scholar]
  158. van Baalen M. 2002. Contact networks and the evolution of virulence. Adaptive Dynamics of Infectious Disease: In Pursuit of Virulence Management U Dieckmann, JAJ Metz, MW Sabelis, K Sigmund 85–103 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  159. van Nes EH, Scheffer M. 2005. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86:71797–807 [Google Scholar]
  160. Vogwill T, Fenton A, Brockhurst MA. 2010. How does spatial dispersal network affect the evolution of parasite local adaptation?. Evolution 64:61795–801 [Google Scholar]
  161. Vogwill T, Fenton A, Buckling A, Hochberg ME, Brockhurst MA. 2009. Source populations act as coevolutionary pacemakers in experimental selection mosaics containing hotspots and coldspots. Am. Nat. 173:5E171–76 [Google Scholar]
  162. Vrancken B, Rambaut A, Suchard MA, Drummond A, Baele G. et al. 2014. The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates. PLOS Comput. Biol. 10:4e1003505 [Google Scholar]
  163. Walsh MG. 2013. The relevance of forest fragmentation on the incidence of human babesiosis: investigating the landscape epidemiology of an emerging tick-borne disease. Vector-Borne Zoonotic Dis. 13:4250–55 [Google Scholar]
  164. Walsh PD, Biek R, Real LA. 2005. Wave-like spread of Ebola Zaire. PLOS Biol 3:11e371 [Google Scholar]
  165. Wolinska J, King KC. 2009. Environment can alter selection in host-parasite interactions. Trends Parasitol 25:5236–44 [Google Scholar]
  166. Wolinska J, Petrusek A, Yin M, Koerner H, Seda J, Giessler S. 2014. Population structure of a microparasite infecting Daphnia: spatio-temporal dynamics. BMC Evol. Biol. 14:1247 [Google Scholar]
  167. Wood SN. 2010. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:73101102–4 [Google Scholar]
  168. Woolhouse M, Taylor LH, Haydon DT. 2001. Population biology of multihost pathogens. Science 292:55191109–12 [Google Scholar]
  169. Ypma RJF, Jonges M, Bataille A, Stegeman A, Koch G. et al. 2013. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza. J. Infect. Dis. 207:5730–35 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032321
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032321
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error