1932

Abstract

A large literature on the survey and detection of forest Coleoptera and their associates exists. Identification of patterns in the effect of trap types and design features among guilds and families of forest insects would facilitate the optimization and development of intercept traps for use in management programs. We reviewed the literature on trapping bark and woodboring beetles and their associates and conducted meta-analyses to examine patterns in effects across guilds and families; we observed the following general patterns: () Panel traps were superior to multiple-funnel traps, () bark beetles and woodborers were captured in higher numbers in traps treated with a surface treatment to make them slippery than untreated traps, () panel and multiple-funnel traps equipped with wet cups outperformed traps with dry cups, () black traps were superior to white and clear traps, and () purple traps were as good as or superior to green traps for spp.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023516
2017-01-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-010715-023516.html?itemId=/content/journals/10.1146/annurev-ento-010715-023516&mimeType=html&fmt=ahah

Literature Cited

  1. Adlung KG, Schicke P, O'sváth J. 1.  1986. Analyse einer Untersuchung zur Bekämpfung des Buchdruckers (Ips typographus L.) unter Einsatz von Pheromonen I. Planung und Auswertung des Versuches je Ort [Analysis of an investigation to control the spruce bark beetle (Ips typographus L.) by means of pheromones II. Planning and evaluation of the individual trial]. J. Plant Dis. Prot. 93:462–78 [Google Scholar]
  2. Adlung KG, Schicke P, O'sváth J. 2.  1986. Analyse einer Untersuchung zur Bekämpfung des Buchdruckers (Ips typographus L.) unter Einsatz von Pheromonen II. Zusammenfassung und Vergleich zweier Orte [Analysis of an investigation to control the spruce bark beetle (Ips typographus L.) by means of pheromones II. Summary and comparison of two locations]. J. Plant Dis. Prot. 93:574–84 [Google Scholar]
  3. Allison JD, Bhandari BD, McKenney JL, Millar JG. 3.  2014. Design factors that influence the performance of flight intercept traps for the capture of longhorned beetles (Coleoptera: Cerambycidae) from the subfamilies Lamiinae and Cerambycinae. PLOS ONE 9:e93203 [Google Scholar]
  4. Allison JD, Johnson CW, Meeker JR, Strom BL, Butler SM. 4.  2011. Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps. J. Econ. Entomol. 104:1258–64 [Google Scholar]
  5. Álvarez G, Etxebeste I, Gallego D, David D, Bonifacio L. 5.  et al. 2015. Optimization of traps for live trapping of Pine Wood Nematode vector Monochamus galloprovincialis. J. Appl. Entomol. 139:618–26 [Google Scholar]
  6. Baker TC, Cardé RT. 6.  1979. Analysis of pheromone-mediated behavior in male Grapholitha molesta, the Oriential fruit moth (Lepidoptera: Tortricidae). Environ. Entomol. 8:956–68 [Google Scholar]
  7. Bombosch S. 7.  1988. Some considerations on the use of bark beetle pheromones. Integrated Control of Scolytid Bark Beetles TL Payne, H Saarenmaa 263–65 Blacksburg, VA: Va. Polytech. Inst. and State Univ. Press [Google Scholar]
  8. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 8.  2009. Introduction to Meta-Analysis Chichester, UK: John Wiley and Sons, Ltd.
  9. Bouget C, Brustel H, Brin A, Noblecourt T. 9.  2008. Sampling saproxylic beetles with window flight traps: methodological insights. Rev. Ecol. 63:Suppl. 1021–32 [Google Scholar]
  10. Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. 10.  2013. The consequence of tree pests and diseases for ecosystem services. Science 342:1235773 [Google Scholar]
  11. Brady J, Gibson G, Packer MJ. 11.  1989. Odour movement, wind direction, and the problem of host-finding by tsetse flies. Physiol. Entomol. 14:369–80 [Google Scholar]
  12. Brar GS, Capinera JL, McLean S, Kendra PE, Ploetz RC, Peña JE. 12.  2012. Effect of trap size, trap height and age of lure on sampling Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and its flight periodicity and seasonality. Fla. Entomol. 95:1003–11 [Google Scholar]
  13. Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB. 13.  2013. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 301:43–50 [Google Scholar]
  14. Brockerhoff EG, Jones DC, Kimberley MO, Suckling DM, Donaldson T. 14.  2006. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. For. Ecol. Manag. 228:234–40 [Google Scholar]
  15. Brockerhoff EG, Liebhold AM, Richardson B, Suckling DM. 15.  2010. Eradication of invasive forest insects: concepts, methods, costs and benefits. N. Z. J. For. Sci. 40:S117–35 [Google Scholar]
  16. Bulman LS. 16.  2008. Pest detection surveys on high risk sites in New Zealand. Aust. For. 71:242 [Google Scholar]
  17. Bulman LS, Kimberley MO, Gadgil PD. 17.  1999. Estimation of the efficiency of pest detection surveys. N. Z. J. For. Sci. 29:102–15 [Google Scholar]
  18. Campbell SA, Borden JH. 18.  2006. Close-range, in-flight integration of olfactory and visual information by a host-seeking bark beetle. Entomol. Exp. Appl. 120:91–98 [Google Scholar]
  19. Campbell SA, Borden JH. 19.  2006. Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae). Ecol. Entomol. 31:437–49 [Google Scholar]
  20. Campbell SA, Borden JH. 20.  2009. Additive and synergistic integration of multimodal cues of both hosts and non-hosts during host selection by woodboring insects. Oikos 118:553–63 [Google Scholar]
  21. Campbell JW, Hanula JL. 21.  2007. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11:399–408 [Google Scholar]
  22. Cardé RT. 22.  2001. Use of semiochemicals for survey and detection of exotic insects: principles and constraints. Proceedings of the Plant Health Conference 2000: Detecting and Monitoring Invasive Species17–25. Raleigh, NC: U.S. Dep. Agric.
  23. Carter PCS. 23.  1989. Risk assessment and pest detection surveys for exotic pests and diseases which threaten commercial forestry in New Zealand. N. Z. J. For. Sci. 19:353–74 [Google Scholar]
  24. Chen G, Zhang Q, Wang Y, Liu G, Zhou X, Niu J, Schlyter F. 24.  2009. Catching Ips duplicatus (Sahlberg) (Coleoptera: Scolytidae) with pheromone-baited traps: optimal trap type, colour, height and distance to infestation. Pest Manag. Sci. 66:213–19 [Google Scholar]
  25. Chénier JVR, Philogène BJR. 25.  1989. Evaluation of three trap designs for the capture of conifer-feeding beetles and other forest coleoptera. Can. Entomol. 121:159–67 [Google Scholar]
  26. Clout MN, Veitch CR. 26.  2002. Turning the tide of biological invasion: the potential for eradicating invasive species. Turning the Tide: The Eradication of Invasive Species CR Veitch, MN Clout 1–3 Gland, Switz. IUCN [Google Scholar]
  27. Cooper HM. 27.  Research Synthesis and Meta-Analysis: A Step-by-Step Approach. Appl. Soc. Res. Methods Ser. 2 Thousand Oaks, CA: SAGE Publications Inc, 4th ed.. [Google Scholar]
  28. Cooperband MF, Cardé RT. 28.  2006. Orientation of Culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency. Med. Vet. Entomol. 20:11–26 [Google Scholar]
  29. Crook DJ, Francese JA, Zylstra KE, Fraser I, Sawyer AJ. 29.  et al. 2009. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum. J. Econ. Entomol. 102:2160–69 [Google Scholar]
  30. Czokajlo D, McLaughlin J, de Groot P, Warren JC, Teale SA, Kirsch P. 30.  2001. Intercept™ Panel Trap modified for monitoring forest Cerambycidae. J. For. Sci. 47:S34–36 [Google Scholar]
  31. de Groot P, DeBarr GL. 31.  1998. Factors affecting capture of the white pine cone beetle, Conophthorus coniperda (Schwarz) (Col., Scolytidae) in pheromone traps. J. Appl. Entomol. 122:281–86 [Google Scholar]
  32. de Groot P, Nott RW. 32.  2001. Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera: Cerambycidae). Agric. For. Entomol. 3:107–11 [Google Scholar]
  33. de Groot P, Nott RW. 33.  2003. Response of Monochamus (Coleoptera: Cerambycidae) and some Buprestidae to flight intercept traps. J. Appl. Entomol. 127:548–52 [Google Scholar]
  34. de Groot P, Zylstra BF. 34.  1995. Factors affecting capture of male red pine cone beetles, Conophthorus resinosae Hopkins (Coleoptera: Scolytidae), in pheromone traps. Can. Entomol. 127:851–58 [Google Scholar]
  35. Dimitri L, Gebauer U, Lösekrug R, Vaupel O. 35.  1992. Influence of mass trapping on the population dynamic and damage-effect of bark beetles. J. Appl. Entomol. 114:103–9 [Google Scholar]
  36. Dodds KJ. 36.  2011. Effects of habitat type and trap placement on captures of bark (Coleoptera: Scolytidae) and longhorned (Coleoptera: Cerambycidae) beetles in semiochemical-baited traps. J. Econ. Entomol. 104:879–88 [Google Scholar]
  37. Dodds KJ, Allison JD, Miller DR, Hanavan RP, Sweeney J. 37.  2015. Considering species richness and rarity when selecting optimal survey traps: comparisons of semiochemical baited flight intercept traps for Cerambycidae in eastern North America. Agric. For. Entomol. 17:36–47 [Google Scholar]
  38. Dodds KJ, Dubois GD, Hoebeke ER. 38.  2010. Trap type, lure placement, and habitat effects on Cerambycidae and Scolytinae (Coleoptera) catches in the northeastern United States. J. Econ. Entomol. 103:698–707 [Google Scholar]
  39. Dodds KJ, Ross DW, Daterman GE. 39.  2000. A comparison of traps and trap trees for capturing Douglas-fir beetle, Dendroctonus pseudotsugae (Coleoptera: Scolytidae). J. Entomol. Soc. B. C. 97:33–38 [Google Scholar]
  40. Domingue MJ, Imrei Z, Lelito JP, Muskovits J, Janik G. 40.  et al. 2013. Trapping of European buprestid beetles in oak forests using visual and olfactory cues. Entomol. Exp. Appl. 148:116–29 [Google Scholar]
  41. Domingue MJ, Lelito JP, Fraser I, Mastro VC, Tumlinson JH, Baker TC. 41.  2013. Visual and chemical cues affecting the detection rate of the emerald ash borer in sticky traps. J. Appl. Entomol. 137:77–87 [Google Scholar]
  42. Driscoll DA. 42.  2010. Few beetle species can be detected with 95% confidence using pitfall traps. Austral Ecol. 35:13–23 [Google Scholar]
  43. Elkinton JS, Childs RD. 43.  1983. Efficiency of two gypsy moth (Lepidoptera: Lymantriidae) pheromone-baited traps. Environ. Entomol. 12:1519–25 [Google Scholar]
  44. Elkinton JS, Schal C, Ono T, Cardé RT. 44.  1987. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12:399–406 [Google Scholar]
  45. Flechtmann CAH, Ottati ALT, Berisford CW. 45.  2000. Comparison of four trap types for ambrosia beetles (Coleoptera: Scolytidae) in Brazilian Eucalyptus stands. J. Econ. Entomol. 93:1701–7 [Google Scholar]
  46. Francese JA, Crook DJ, Fraser I, Lance DR, Sawyer AJ, Mastro VC. 46.  2010. Optimization of trap color for emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 103:1235–41 [Google Scholar]
  47. Francese JA, Fraser I, Lance DR, Mastro VC. 47.  2011. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings. J. Econ. Entomol. 104:901–8 [Google Scholar]
  48. Francese JA, Fraser I, Rietz ML, Crook DJ, Lance DR, Mastro VC. 48.  2010. Relation of color, size, and canopy placement of prism traps in determining capture of emerald ash borer (Coleoptera: Buprestidae). Can. Entomol. 142:596–600 [Google Scholar]
  49. Francese JA, Mastro VC, Oliver JB, Lance DR, Youssef N, Lavallee SG. 49.  2005. Evaluation of colors for trapping Agrilus planipennis (Coleoptera: Buprestidae). J. Entomol. Sci. 40:93–95 [Google Scholar]
  50. Francese JA, Oliver JB, Fraser I, Lance DR, Youssef N, Sawyer AJ, Mastro VC. 50.  2008. Influence of trap placement and design on capture of the emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 101:1831–37 [Google Scholar]
  51. Francese JA, Rietz ML, Crook DJ, Fraser I, Lance DR, Mastro VC. 51.  2013. Improving detection tools for the emerald ash borer (Coleoptera: Buprestidae): comparison of prism and multifunnel traps at varying population densities. J. Econ. Entomol. 106:2407–14 [Google Scholar]
  52. Francese JA, Rietz ML, Mastro VC. 52.  2013. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating and color. J. Econ. Entomol. 106:2415–23 [Google Scholar]
  53. Funes H, Zerba E, González Audino P. 53.  2009. Comparison of three types of traps baited with sexual pheromones for ambrosia beetle Megaplatypus mutatus (Coleoptera: Platypodinae) in poplar plantations. J. Econ. Entomol. 102:1546–50 [Google Scholar]
  54. Goyer RA, Lenhard GJ, Strom BL. 54.  2004. The influence of silhouette color and orientation on arrival and emergence of Ips pine engravers and their predators in loblolly pine. For. Ecol. Manag. 191:147–55 [Google Scholar]
  55. Graham EE, Mitchell RF, Reagel PF, Barbour JD, Millar JG, Hanks LM. 55.  2010. Treating panel traps with a fluoropolymer enhances their efficiency in capturing cerambycid beetles. J. Econ. Entomol. 103:641–47 [Google Scholar]
  56. Graham EE, Poland TM. 56.  2012. Efficacy of Fluon conditioning for capturing cerambycid beetles in different trap designs and persistence on panel traps over time. J. Econ. Entomol. 105:395–401 [Google Scholar]
  57. Graham EE, Poland TM, McCullough DG, Millar JG. 57.  2012. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). J. Econ. Entomol. 105:837–46 [Google Scholar]
  58. Haavik LJ, Batista E, Dodds KJ, Johnson W, Meeker JR, Scarr TA, Allison JD. 58.  2014. Type of intercept trap not important for capturing female Sirex noctilio and S. nigricornis (Hymenoptera: Siricidae) in North America. J. Econ. Entomol. 107:1295–98 [Google Scholar]
  59. Hanula JL, Ulyshen MD, Horn S. 59.  2011. Effect of trap type, trap position, time of year and beetle density on captures of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 104:501–8 [Google Scholar]
  60. Holland JD. 60.  2006. Cerambycidae larval host condition predicts trap efficiency. Environ. Entomol. 35:1647–53 [Google Scholar]
  61. Hoover SER, Lindgren BS, Keeling CI, Slessor KN. 61.  2000. Enantiomer preference of Trypodendron lineatum and effect of pheromone dose and trap length on response to lineatin-baited traps in interior British Columbia. J. Chem. Ecol. 26:667–77 [Google Scholar]
  62. Hunt DWA, Raffa KF. 62.  1991. Orientation of Hylobius pales and Pachylobius picivorus (Coleoptera: Curculionidae) to visual cues. Great Lakes Entomol 24:225–29 [Google Scholar]
  63. Kuenen LPS, Cardé RT. 63.  1994. Strategies for recontacting a lost pheromone plume: casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19:15–29 [Google Scholar]
  64. Lelito JP, Fraser I, Mastro VC, Tumlinson JH, Baker TC. 64.  2008. Novel visual-cue-based sticky traps for monitoring of emerald ash borers, Agrilus planipennis (Col., Buprestidae). J. Appl. Entomol. 132:668–74 [Google Scholar]
  65. Lewis T, Macaulay EDM. 65.  1976. Design and elevation of sex pheromone traps for pea moth, Cydia nigricana (Steph.) and the effect of plume shape on catches. Ecol. Entomol. 1:175–87 [Google Scholar]
  66. Liebhold AM, Bascompte J. 66.  2003. The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6:133–40 [Google Scholar]
  67. Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC. 67.  1995. Invasion by exotic forest pests: a threat to forest ecosystems. For. Sci. Mon. 30:1–49 [Google Scholar]
  68. Lindelöw A, Schroeder M. 68.  2001. Spruce bark beetle, Ips typographus (L.), in Sweden: monitoring and risk assessment. J. For. Sci. 47:40–42 [Google Scholar]
  69. Lindgren BS. 69.  1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Entomol. 115:299–302 [Google Scholar]
  70. Lobinger G, Skatulla U. 70.  1996. Untersuchungen zum Einfluß von Sonnenlicht auf das Schwärmverhalten von Borkenkäfern. Anz. Schädlingskunde Pflanzenschutz Umweltschutz 69:183–85 [Google Scholar]
  71. Lyons DB, Lavallée R, Kyei-Poku G, Van Frankenhuyzen K, Johny S. 71.  et al. 2012. Towards the development of an autocontamination trap system to manage populations of emerald ash borer (Coleoptera: Buprestidae) with the native entomopathogenic fungus, Beauvaria bassiana. J. Econ. Entomol. 105:1929–39 [Google Scholar]
  72. MacKenzie DI, Bailey LL, Nichols JD. 72.  2004. Investigating species co-occurrence patterns when species are detected imperfectly. J. Anim. Ecol. 73:546–55 [Google Scholar]
  73. Marshall JM, Storer AJ, Fraser I, Mastro VC. 73.  2010. Efficacy of trap and lure types for detection of Agrilus planipennis (Col., Buprestidae) at low density. J. Appl. Entomol. 134:296–302 [Google Scholar]
  74. Martin A, Etxebeste I, Pérez G, Álvarez G, Sánchez E, Pajares J. 74.  2013. Modified pheromone traps help reduce bycatch of bark-beetle natural enemies. Agr. For. Entomol. 15:86–97 [Google Scholar]
  75. Mayfield AE, Brownie C. 75.  2013. The redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) uses stem silhouette diameter as a visual host-finding cue. Environ. Entomol. 42:743–50 [Google Scholar]
  76. McCravy KW, Nowak JT, Douce GK, Berisford CW. 76.  2000. Evaluation of multiple-funnel and slot traps for collection of southern pine bark beetles and predators. J. Entomol. Sci. 35:77–82 [Google Scholar]
  77. McIntosh RL, Katinic PJ, Allison JD, Borden JH, Downey DL. 77.  2001. Comparative efficacy of five types of trap for woodborers in the Cerambycidae, Buprestidae and Siricidae. Agric. For. Entomol. 3:113–20 [Google Scholar]
  78. Mercader RJ, McCullough DG, Bedford JM. 78.  2013. A comparison of girdled ash detection trees and baited artificial traps for Agrilus planipennis (Coleoptera: Buprestidae) detection. Environ. Entomol. 42:1027–39 [Google Scholar]
  79. Miller DR, Crowe CM. 79.  2009. Length of multiple-funnel traps affects catches of some bark and wood boring beetles in a slash pine stand in Northern Florida. Fla. Entomol. 92:506–7 [Google Scholar]
  80. Miller DR, Crowe CM. 80.  2011. Relative performance of Lindgren multiple-funnel, Intercept panel, and Colossus pipe traps in catching Cerambycidae and associated species in the southeastern United States. J. Econ. Entomol. 104:1934–41 [Google Scholar]
  81. Miller DR, Crowe CM, Barnes BF, Gandhi KJK, Duerr DA. 81.  2013. Attaching lures to multiple-funnel traps targeting saproxylic beetles (Coleoptera) in pine stands: Inside or outside funnels?. J. Econ. Entomol. 106:206–14 [Google Scholar]
  82. Miller DR, Duerr DA. 82.  2008. Comparison of arboreal beetle catches in wet and dry collection cups with Lindgren multiple funnel traps. J. Econ. Entomol. 101:107–13 [Google Scholar]
  83. 83. Ministr. For. Lands Nat. Resour. Oper. 2012. A history of the battle against the mountain pine beetle: 2000 to 2012. Victoria, Can.: Gov. B. C.
  84. Morewood WD, Hein KE, Katinic PJ, Borden JH. 84.  2002. An improved trap for large wood-boring insects, with special reference to Monochamus scutellatus (Coleoptera: Cerambycidae). Can. J. For. Res. 32:519–25 [Google Scholar]
  85. Murlis J, Elkinton JS, Cardé RT. 85.  1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–32 [Google Scholar]
  86. Myers JH, Savoie A, van Randen E. 86.  1998. Eradication and pest management. Annu. Rev. Entomol. 43:471–91 [Google Scholar]
  87. Nakamura K, Soné K, Ookuma H. 87.  1999. Modification of a commercial attraction trap for live trapping of Monochamus alternatus (Hope) adults (Coleoptera; Cerambycidae). Jpn. J. Appl. Entomol. Zool. 43:55–59 [Google Scholar]
  88. Ninan KN, Inoue M. 88.  2013. Valuing forest ecosystem services: what we know and what we don't. Ecol. Econ. 93:137–49 [Google Scholar]
  89. O'Neill KM, Fultz JE, Ivie MA. 89.  2008. Distribution of adult Cerambycidae and Buprestidae (Coleoptera) in a subalpine forest under shelterwood management. Coleopt. Bull. 62:27–36 [Google Scholar]
  90. Pajares JA, Ibeas F, Díez JJ, Gallego D. 90.  2004. Attractive responses by Monochamus galloprovincialis (Col., Cerambycidae) to host and bark beetle semiochemicals. J. Appl. Entomol. 128:633–38 [Google Scholar]
  91. Pawson SM, Watt MS, Brockerhoff EG. 91.  2009. Using differential responses to light spectra as a monitoring and control tool for Arhopalus ferus (Coleoptera: Cerambycidae) and other exotic wood-boring pests. J. Econ. Entomol. 102:79–85 [Google Scholar]
  92. Petrice TR, Haack RA. 92.  2013. Biology of the European oak borer in Michigan, United States of America, with comparisons to the native twolined chestnut borer. Can. Entomol. 146:36–51 [Google Scholar]
  93. Petrice TR, Haack RA. 93.  2015. Comparison of different trap colors and types for capturing adult Agrilus (Coleoptera: Buprestidae) and other buprestids. Great Lakes Entomol. 48:45–66 [Google Scholar]
  94. Petrice TR, Haack RA, Poland TM. 94.  2004. Evaluation of three trap types and five lures for monitoring Hylurgus ligniperda (Coleoptera: Scolytidae) and other local scolytids in New York. Great Lakes Entomol. 37:1–9 [Google Scholar]
  95. Pimentel D, Lach L, Zuniga R, Morrison D. 95.  2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65 [Google Scholar]
  96. Pluess T, Cannon R, Jarošík V, Pergl J, Pyšek P, Bacher S. 96.  2012. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14:1365–78 [Google Scholar]
  97. Pluess T, Jarošík V, Pyšek P, Cannon R, Pergl J, Breukers A, Bacher S. 97.  2012. Which factors affect the success or failure of eradication campaigns against alien species?. PLOS ONE 7:e48157 [Google Scholar]
  98. Poland TM, McCullough DG. 98.  2014. Comparison of trap types and colors for capturing emerald ash borer adults at different population densities. Environ. Entomol. 43:157–70 [Google Scholar]
  99. Poland TM, McCullough DG, Anulewicz AC. 99.  2011. Evaluation of double-decker traps for emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 104:517–31 [Google Scholar]
  100. Rabaglia R, Duerr D, Acciavatti RE, Ragenovich I. 100.  2008. Early detection and rapid response for non-native bark and ambrosia beetles. For. Health Prot., U.S. Dep. Agric., Washington, DC
  101. Raty L, Drumont A, De Windt N, Grégoire JC. 101.  1995. Mass trapping of the spruce bark beetle Ips typographus L.: traps or trees?. For. Ecol. Manag. 78:191–205 [Google Scholar]
  102. Rejmánek M, Pitcairn MJ. 102.  2002. When is eradication of exotic pest plants a realistic goal. ? In Turning the Tide: The Eradication of Invasive Species CR Veitch, MN Clout 249–53 Gland, Switz.: IUCN [Google Scholar]
  103. Rosenberg MS, Adams DC, Gurevitch J. 103.  2007. MetaWin: Statistical Software for Meta-Analysis. V. 2.1. Software. http://metawinsoft.com
  104. Ross DW, Daterman GE. 104.  1998. Pheromone-baited traps for Dendroctonus pseudotsugae (Coleoptera: Scolytidae): influence of selected release rates and trap designs. J. Econ. Entomol. 91:500–6 [Google Scholar]
  105. Ryall KL, Silk PJ, Mayo P, Crook D, Khrimian A. 105.  et al. 2012. Attraction of Agrilus planipennis (Coleoptera: Buprestidae) to a volatile pheromone: effects of release rate, host volatile, and trap placement. Environ. Entomol. 41:648–56 [Google Scholar]
  106. Safranyik L, Shore TL, Linton DA. 106.  2004. Measuring trap efficiency for bark beetles (Col., Scolytidae). J. Appl. Entomol. 128:337–41 [Google Scholar]
  107. Simberloff D. 107.  2003. Eradication—preventing invasions at the outset. Weed Sci. 51:247–53 [Google Scholar]
  108. Simberloff D. 108.  2008. We can stop the invasion juggernaut! High- and low-tech success stories. NeoBiota 7:5–18 [Google Scholar]
  109. Strom BL, Goyer RA, Shea PJ. 109.  2001. Visual and olfactory disruption of orientation by the western pine beetle to attractant-baited traps. Entomol. Exp. Appl. 100:63–67 [Google Scholar]
  110. Strom BL, Roton LM, Goyer RA, Meeker JR. 110.  1999. Visual and semiochemical disruption of host finding in the southern pine beetle. Ecol. Appl. 9:1028–38 [Google Scholar]
  111. Sweeney J, de Groot P, MacDonald L, Smith S, Cocquempot C, Kenis M, Gutowski JM. 111.  2004. Host volatile attractants and traps for detection of Tetropium fuscum (F.), Tetropium castaneum L., and other longhorned beetles (Coleoptera: Cerambycidae). Environ. Entomol. 33:844–54 [Google Scholar]
  112. Sweeney J, Gutowski JM, Price J, de Groot P. 112.  2006. Effect of semiochemical release rate, killing agent, and trap design on detection of Tetropium fuscum (F.) and other longhorn beetles (Coleoptera: Cerambycidae). Environ. Entomol. 35:645–54 [Google Scholar]
  113. Ulyshen MD, Hanula JL. 113.  2007. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest. Am. Midl. Nat. 158:260–78 [Google Scholar]
  114. Vira B, Wildburger C, Mansourian S. 114.  2015. Forests, Trees and Landscapes for Food Security and Nutrition: A Global Assessment Report. IUFRO World Ser. 33 Vienna, Austria: Int. Union For. Res. Organ.
  115. Vitousek PM, D'Antonio CM, Loope LL, Westbrooks R. 115.  1996. Biological invasions as global environmental change. Am. Sci. 84:468–78 [Google Scholar]
  116. Waters WE. 116.  1986. A comprehensive approach to monitoring in management systems for forest pests. For. Ecol. Manag. 15:3–21 [Google Scholar]
  117. Wermelinger B. 117.  2004. Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For. Ecol. Manag. 202:67–82 [Google Scholar]
  118. Weslien J. 118.  1992. Monitoring Ips typographus (L.) populations and forecasting damage. J. Appl. Entomol. 114:338–40 [Google Scholar]
  119. Weslien J, Annila E, Bakke A, Bejer B, Eidmann HH. 119.  et al. 1989. Estimating risks for the spruce bark beetle (Ips typographus (L.)) damage using pheromone-baited traps and trees. Scand. J. For. Res. 4:87–98 [Google Scholar]
  120. Weslien J, Lindelöw Å. 120.  1990. Recapture of marked spruce bark beetles (Ips typographus) in pheromone traps using area-wide mass trapping. Can. J. For. Res. 20:1786–90 [Google Scholar]
  121. Wichmann L, Ravn HP. 121.  2001. The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. For. Ecol. Manag. 148:31–39 [Google Scholar]
  122. Willis MA, David CT, Murlis J, Cardé RT. 122.  1994. Effects of pheromone plume structure and visual stimuli on the pheromone-modulated upwind flight of male gypsy moths (Lymantria dispar) in a forest (Lepidoptera: Lymantriidae). J. Insect Behav. 7:385–409 [Google Scholar]
  123. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. 123.  2015. Planted forest health: the need for a global strategy. Science 349:832–36 [Google Scholar]
  124. Wyatt TD, Phillips DG, Grégoire JC. 124.  1993. Turbulence, trees and semiochemicals: wind-tunnel orientation of the predator, Rhizophagus grandis, to its barkbeetle prey, Dendroctonus micans. Physiol. Entomol. 18:204–10 [Google Scholar]
  125. Wyatt TD, Vastiau K, Birch MC. 125.  1997. Orientation of flying male Anobium punctatum (Coleoptera: Anobiidae) to sex pheromone: separating effects of visual stimuli and physical barriers to wind. Physiol. Entomol. 22:191–96 [Google Scholar]
  126. Yoccoz NG, Nichols JD, Boulinier T. 126.  2001. Monitoring of biological diversity in space and time. Trends Ecol. Evol. 16:446–53 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023516
Loading
/content/journals/10.1146/annurev-ento-010715-023516
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error