1932

Abstract

The Antarctic region comprises the continent, the Maritime Antarctic, the sub-Antarctic islands, and the southern cold temperate islands. Continental Antarctica is devoid of insects, but elsewhere diversity varies from 2 to more than 200 species, of which flies and beetles constitute the majority. Much is known about the drivers of this diversity at local and regional scales; current climate and glacial history play important roles. Investigations of responses to low temperatures, dry conditions, and varying salinity have spanned the ecological to the genomic, revealing new insights into how insects respond to stressful conditions. Biological invasions are common across much of the region and are expected to increase as climates become warmer. The drivers of invasion are reasonably well understood, although less is known about the impacts of invasion. Antarctic entomology has advanced considerably over the past 50 years, but key areas, such as interspecific interactions, remain underexplored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023537
2016-03-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023537.html?itemId=/content/journals/10.1146/annurev-ento-010715-023537&mimeType=html&fmt=ahah

Literature Cited

  1. Allegrucci G, Carchini G, Convey P, Sbordoni V. 1.  2012. Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biol. J. Linn. Soc. 106:258–74 [Google Scholar]
  2. Arnold RJ, Convey P. 2.  1998. The life history of the diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: Dytiscidae), on sub-Antarctic South Georgia. Polar Biol. 20:153–60 [Google Scholar]
  3. Atkinson D. 3.  1994. Temperature and organism size—a biological law for ectotherms?. Adv. Ecol. Res. 25:1–58 [Google Scholar]
  4. Bale JS. 4.  2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philos. Trans. R. Soc. B 357:849–62 [Google Scholar]
  5. Bale JS, Block W, Worland MR. 5.  2000. Thermal tolerance and acclimation response of larvae of the sub-Antarctic beetle Hydromedion sparsutum (Coleoptera: Perimylopidae). Polar Biol. 23:77–84 [Google Scholar]
  6. Bale JS, Worland MR, Block W. 6.  2001. Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. J. Insect Physiol. 47:1161–67Demonstrates the consequences of repeated low-temperature exposure for the cold-hardiness strategies of Antarctic insects. [Google Scholar]
  7. Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL. 7.  2009. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp. Biochem. Physiol. A 152:518–23 [Google Scholar]
  8. Block W, Smith RIL, Kennedy AD. 8.  2009. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol. Rev. 84:449–84 [Google Scholar]
  9. Bokhorst S, Huiskes A, Convey P, Van Bodegom PM, Aerts R. 9.  2008. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40:1547–56 [Google Scholar]
  10. Buoro B, Carlson S. 10.  2014. Life-history syndromes: integrating dispersal through space and time. Ecol. Lett. 17:756–67 [Google Scholar]
  11. Burger AE. 11.  1978. Terrestrial invertebrates: a food resource for birds at Marion Island. S. Afr. J. Antarct. Res. 8:87–99 [Google Scholar]
  12. Carlquist S. 12.  1965. Island Life: A Natural History of the Islands of the World. New York: Am. Mus. Nat. Hist.
  13. Chapelin-Viscardi J-D, Voisin J-F, Ponel P, Van der Putten N. 13.  2010. Pachnobium dreuxi n. g., n. sp., ses occurrences modernes et fossiles sur l'archipel Crozet (Coléoptère Curculionidae Ectemnorrhininae). Ann. Soc. Entomol. Fr. 46:125–31 [Google Scholar]
  14. Chevrier M, Vernon P, Frenot Y. 14.  1997. Potential effects of two alien insects on a sub-Antarctic wingless fly in the Kerguelen Islands. Antarctic Communities: Species, Structure and Survival B Battaglia, J Valencia, DWH Walton 424–31 Cambridge, UK: Cambridge Univ. PressDemonstrates the impacts of invasive alien insects on the indigenous fauna, and the increase in impact expected as a consequence of global climate change. [Google Scholar]
  15. Chown SL. 15.  1994. Historical ecology of sub-Antarctic weevils (Coleoptera: Curculionidae): patterns and processes on isolated islands. J. Nat. Hist. 28:411–33 [Google Scholar]
  16. Chown SL, Gremmen NJM, Gaston KJ. 16.  1998. Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. Am. Nat. 152:562–75 [Google Scholar]
  17. Chown SL, Hull B, Gaston KJ. 17.  2005. Human impacts, energy availability and invasion across Southern Ocean Islands. Glob. Ecol. Biogeogr. 14:521–28 [Google Scholar]
  18. Chown SL, Klok CJ, McGeoch MA. 18.  2004. Weather to go out: activity of Bothrometopus brevis (Curculionidae) at Heard Island. Polar Biol. 27:217–21 [Google Scholar]
  19. Chown SL, Lee JE, Shaw JD. 19.  2008. Conservation of Southern Ocean Islands: invertebrates as exemplars. J. Insect Conserv. 12:277–91 [Google Scholar]
  20. Chown SL, Nicolson SW. 20.  2004. Insect Physiological Ecology: Mechanisms and Patterns. Oxford, UK: Oxford Univ. Press
  21. Convey P. 21.  1996. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. 71:191–225 [Google Scholar]
  22. Convey P. 22.  1996. Overwintering strategies of terrestrial invertebrates from Antarctica—the significance of flexibility in extremely seasonal environments. Eur. J. Entomol. 93:489–505 [Google Scholar]
  23. Convey P, Block W. 23.  1996. Antarctic Diptera: ecology, physiology and distribution. Eur. J. Entomol. 93:1–13 [Google Scholar]
  24. Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S. 24.  et al. 2014. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84:203–44 [Google Scholar]
  25. Convey P, Key RS, Key RJD. 25.  2010. The establishment of a new ecological guild of pollinating insects on sub-Antarctic South Georgia. Antarct. Sci. 22:508–12 [Google Scholar]
  26. Convey P, Key RS, Key RJD, Belchier M, Waller CL. 26.  2011. Recent range expansions in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol. 34:597–602 [Google Scholar]
  27. Convey P, Lebouvier M. 27.  2009. Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap. Proc. R. Soc. Tasman. 143:33–44 [Google Scholar]
  28. Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT. 28.  et al. 2002. Response of Antarctic terrestrial microarthropods to long-term climate change manipulations. Ecology 83:3130–40 [Google Scholar]
  29. Crafford JE, Scholtz CH. 29.  1987. Quantitative differences between the insect faunas of sub-Antarctic Marion and Prince Edward Islands: a result of human intervention?. Biol. Conserv. 40:255–62Shows that rodents have substantial impacts on insect faunas in regions where they are introduced. [Google Scholar]
  30. Crafford JE, Scholtz CH, Chown SL. 30.  1986. The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. S. Afr. J. Antarct. Res. 16:41–84 [Google Scholar]
  31. Craig DA, Currie DC, Vernon P. 31.  2003. Crozetia Davies (Diptera: Simuliidae): redescription of Cr. crozetensis, Cr. seguyi, number of larval instars, phylogenetic relationships and historical biogeography. Zootaxa 259:1–39 [Google Scholar]
  32. Danks HV. 32.  2004. Seasonal adaptations in Arctic insects. Integr. Comp. Biol. 44:85–94 [Google Scholar]
  33. Davies KF, Melbourne BA. 33.  1999. Statistical models of invertebrate distribution on Macquarie Island: a tool to assess climate change and local human impacts. Polar Biol. 21:240–50 [Google Scholar]
  34. Davies K, Melbourne B, McClenahan J, Tuff T. 34.  2011. Statistical models for monitoring and predicting effects of climate change and invasion on the free-living insects and a spider from sub-Antarctic Heard Island. Polar Biol. 34:119–25 [Google Scholar]
  35. Davies L. 35.  1973. Observations on the distribution of surface-living land arthropods on the Subantarctic Île de la Possession, Îles Crozet. J. Nat. Hist. 7:241–53 [Google Scholar]
  36. Davies L. 36.  1987. Long adult life, low reproduction and competition in two sub-Antarctic carabid beetles. Ecol. Entomol. 12:149–62 [Google Scholar]
  37. Davies RC. 37.  1981. Structure and function of two Antarctic terrestrial moss communities. Ecol. Monogr. 51:124–43 [Google Scholar]
  38. De Broyer C, Koubbi P, Griffiths H, Raymond B, d'Acoz C. 38.  et al. 2014. Biogeographic Atlas of the Southern Ocean Cambridge, UK: Sci. Comm. Antarct. Res.
  39. Delettre YR, Frenot Y, Vernon P, Chown SL. 39.  2003. First record of Telmatogeton sp. (Diptera: Chironomidae) at Heard Island. Polar Biol. 26:423–26 [Google Scholar]
  40. Denlinger DL, Lee RE. 40.  2010. Low Temperature Biology of Insects Cambridge, UK: Cambridge Univ. Press
  41. Dreux P. 41.  1965. Faune entomologique de l'Île de la Possession (Archipel Crozet). Terr. Austr. Antarct. Fr. 30:58–71 [Google Scholar]
  42. Dreux P. 42.  1987. Les déplacements d'espèces dans les iles subantarctiques de l'océan Indien. Bull. Soc. Zool. Fr. 112:471–81 [Google Scholar]
  43. Dreux P, Voisin JF. 43.  1989. Sur le systématique des genres de la sous-famille des Ectemnorrhininae (Coleoptera, Curculionidae). Nouv. Rev. Entomol. 6:111–18 [Google Scholar]
  44. Dytham C, Travis JMJ, Mustin K, Benton TG. 44.  2014. Changes in species' distributions during and after environmental change: Which eco-evolutionary processes matter more?. Ecography 37:1210–17 [Google Scholar]
  45. Elnitsky MA, Benoit JB, Lopez-Martinez G, Denlinger DL, Lee RE. 45.  2009. Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: Seawater exposure confers enhanced tolerance to freezing and dehydration. J. Exp. Biol. 212:2864–71 [Google Scholar]
  46. Elnitsky MA, Hayward SAL, Rinehart JP, Denlinger DL, Lee RE. 46.  2008. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. J. Exp. Biol. 211:524–30 [Google Scholar]
  47. Enderlein G. 47.  1908. Die Insekten des Antarktischen gebietes. Deutsche Südpolar-Expedition. 1901–1903 X. Band Zoologie II Band E Von Drygalski 361–528 Berlin: Georg Reimer [Google Scholar]
  48. Ernsting G, Brandjes GJ, Block W, Isaaks JA. 48.  1999. Life-history consequences of predation for a subantarctic beetle: evaluating the contribution of direct and indirect effects. J. Anim. Ecol. 68:741–52 [Google Scholar]
  49. Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. 49.  2015. Responses of invertebrates to temperature and water stress: a polar perspective. J. Thermal Biol. 54118–32
  50. Florencio M, Cardoso P, Lobo JM, de Azevedo EB, Borges PAV. 50.  2013. Arthropod assemblage homogenization in oceanic islands: the role of indigenous and exotic species under landscape disturbance. Divers. Distrib. 19:1450–60 [Google Scholar]
  51. Frazier MR, Huey RB, Berrigan D. 51.  2006. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am. Nat. 168:512–20 [Google Scholar]
  52. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P. 52.  et al. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. 80:45–72 [Google Scholar]
  53. Gaston KJ. 53.  2000. Global patterns in biodiversity. Nature 405:220–27 [Google Scholar]
  54. Gaston KJ, Jones AG, Hänel C, Chown SL. 54.  2003. Rates of species introduction to a remote oceanic island. Proc. R. Soc. B. 270:1091–98 [Google Scholar]
  55. Goto SG, Philip BN, Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. 55.  2011. Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. J. Insect Physiol. 57:1106–14 [Google Scholar]
  56. Greenslade P, Farrow RA, Smith JMB. 56.  1999. Long distance migration of insects to a subantarctic island. J. Biogeogr. 26:1161–67 [Google Scholar]
  57. Greenslade P, Vernon P, Smith D. 57.  2012. Ecology of Heard Island Diptera. Polar Biol. 35:841–50 [Google Scholar]
  58. Gressitt JL. 58.  1964. Insects of Campbell Island. Pac. Insects Monogr. 7:1–663 [Google Scholar]
  59. Gressitt JL. 59.  1970. Subantarctic entomology and biogeography. Pac. Insects Monogr. 23:295–374Provides a comprehensive early assessment of the biogeography, ecology, and life histories of Antarctic insects. [Google Scholar]
  60. Gressitt JL. 60.  1970. Subantarctic entomology particularly of South Georgia and Heard Island. Pac. Insects Monogr. 23:1–374 [Google Scholar]
  61. Gressitt JL, Strandtmann RW. 61.  1971. Advances in Antarctic and far southern entomology. Pac. Insects Monogr. 25:1–226 [Google Scholar]
  62. Greve M, Gremmen NJM, Gaston KJ, Chown SL. 62.  2005. Nestedness of South Ocean island biotas: ecological perspectives on a biogeographical conundrum. J. Biogeogr. 32:155–68 [Google Scholar]
  63. Grobler GC, Bastos ADS, Chimimba CT, Chown SL. 63.  2011. Inter-island dispersal of flightless Bothrometopus huntleyi (Coleoptera: Curculionidae) from the sub-Antarctic Prince Edward Island archipelago. Antarct. Sci. 23:225–34 [Google Scholar]
  64. Grobler GC, Bastos ADS, Treasure AM, Chown SL. 64.  2011. Cryptic species, biogeographic complexity and the evolutionary history of the Ectemnorhinus group in the sub-Antarctic, including a description of Bothrometopus huntleyi, n. sp. Antarct. Sci. 23:211–24 [Google Scholar]
  65. Gutt J, Zurell D, Bracegridle TJ, Cheung W, Clark MS. 65.  et al. 2012. Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res. 31:11091 [Google Scholar]
  66. Hänel C, Chown SL. 66.  1998. The impact of a small, alien invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus (Diptera, Chironomidae) at Marion Island. Polar Biol. 20:99–106 [Google Scholar]
  67. Haupt TM, Crafford JE, Chown SL. 67.  2014. Solving the puzzle of Pringleophaga—threatened, keystone detritivores in the sub-Antarctic. Insect Conserv. Divers. 7:308–13 [Google Scholar]
  68. Hayward SAL, Rinehart JP, Sandro LH, Lee RE, Denlinger DL. 68.  2007. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica. J. Exp. Biol. 210:836–44 [Google Scholar]
  69. Hidalgo K, Laparie M, Bical R, Larvor V, Bouchereau A. 69.  et al. 2013. Metabolic fingerprinting of the responses to salinity in the invasive ground beetle Merizodus soledadinus at the Kerguelen Islands. J. Insect Physiol. 59:91–100 [Google Scholar]
  70. Hodgson D, Graham AGC, Roberts SJ, Bentley MJ, Cofaigh . 70.  et al. 2014. Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands. Quat. Sci. Rev. 100:137–58 [Google Scholar]
  71. Hoffmann AA, Sørensen JG, Loeschcke V. 71.  2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28:175–216 [Google Scholar]
  72. Holdgate MW. 72.  1960. The fauna of the mid-Atlantic islands. Proc. R. Soc. B 152:550–67 [Google Scholar]
  73. Hooker JD. 73.  1855. Letter to C.R. Darwin before 17 Mar 1855. Darwin Correspondence Project http://www.darwinproject.ac.uk/entry-1644
  74. Houghton M, McQuillan PB, Bergstrom DM, Frost L, van den Hoff J, Shaw J. 74.  2014. Pathways of alien invertebrate transfer to the Antarctic region. Polar Biol. doi: 10.1007/s00300-014-1599-2
  75. Hughes KA, Convey P. 75.  2012. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica—current knowledge, methodology and management action. J. Environ. Manag. 93:52–66 [Google Scholar]
  76. Hughes KA, Walsh S, Convey P, Richards S, Bergstrom DM. 76.  2005. Alien fly populations established at two Antarctic research stations. Polar Biol. 28:568–70 [Google Scholar]
  77. Hughes KA, Worland MR, Thorne MAS, Convey P. 77.  2013. The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion. Biol. Invas. 15:269–81 [Google Scholar]
  78. Janetschek H. 78.  1970. Environments and ecology of terrestrial arthropods in the high Antarctic. Antarctic Ecology MW Holdgate 871–85 London: Academic [Google Scholar]
  79. Jeannel R. 79.  1964. Biogéographie des terres Australes de l'Océan Indien. Rev. Fr. Entomol. 31:319–417 [Google Scholar]
  80. Joly Y, Frenot Y, Vernon P. 80.  1987. Environmental modifications of a subantarctic peat-bog by the wandering albatross (Diomedea exulans): a preliminary study. Polar Biol. 8:61–72 [Google Scholar]
  81. Jones AG, Chown SL, Webb TJ, Gaston KJ. 81.  2003. The free-living pterygote insects of Gough Island, South Atlantic Ocean. Syst. Biodivers. 1:213–73 [Google Scholar]
  82. Kearney M, Porter WP. 82.  2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12:334–50 [Google Scholar]
  83. Keith DA, Rodríguez JP, Rodríguez-Clark KM, Nicholson E, Aapala K. 83.  et al. 2013. Scientific foundations for an IUCN red list of ecosystems. PLOS ONE 8:e62111 [Google Scholar]
  84. Kellermann V, Loeschcke V, Hoffmann AA, Kristensen TN, Flojgaard C. 84.  et al. 2012. Phylogenetic constraints in key functional traits behind species' climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–89 [Google Scholar]
  85. Kelley JL, Peyton JT, Fiston-Lavier A-S, Teets NM, Yee M-C. 85.  et al. 2014. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 5:4611Provides the first full genome sequence made available for an indigenous Antarctic insect species. [Google Scholar]
  86. Klok CJ, Chown SL. 86.  1998. Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-Antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). J. Insect Physiol. 44:615–28 [Google Scholar]
  87. Klok CJ, Chown SL. 87.  2003. Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol. J. Linn. Soc. 78:401–14 [Google Scholar]
  88. Kuschel G, Chown SL. 88.  1995. Phylogeny and systematics of the Ectemnorhinus-group of genera (Insecta: Coleoptera). Invertebr. Taxon. 9:841–63 [Google Scholar]
  89. Lalouette L, Vernon P, Amat H, Renault D. 89.  2009. Ageing and thermal performance in the sub-Antarctic wingless fly Anatalanta aptera (Diptera: Sphaeroceridae): Older is better. Biol. Lett. 6:346–49 [Google Scholar]
  90. Lalouette L, Williams CM, Cottin M, Sinclair BJ, Renault D. 90.  2012. Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands. Polar Biol. 35:509–14 [Google Scholar]
  91. Laparie M, Bical R, Larvor V, Vernon P, Frenot Y, Renault D. 91.  2012. Habitat phenotyping of two sub-Antarctic flies by metabolic fingerprinting: evidence for a species outside its home?. Comp. Biochem. Physiol. A 162:406–12 [Google Scholar]
  92. le Roux PC, McGeoch MA. 92.  2008. Rapid range expansion and community reorganization in response to warming. Glob. Chang. Biol. 14:2950–62 [Google Scholar]
  93. Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y. 93.  et al. 2011. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol. Invas. 13:1195–208Examines threats posed to local ecosystems in the sub-Antarctic by insect introductions, their potential to transmit plant disease, and the ongoing effects of climate change. [Google Scholar]
  94. Lee JE, le Roux PC, Meiklejohn KI, Chown SL. 94.  2013. Species distribution modelling in low-interaction environments: insights from a terrestrial Antarctic system. Austral. Ecol. 38:279–88 [Google Scholar]
  95. Lee JE, Slabber S, Jansen van Vuuren B, Van Noort S, Chown SL. 95.  2007. Colonisation of sub-Antarctic Marion Island by non-indigenous aphid parasitoid Aphidius matricariae (Hymenoptera, Braconidae). Polar Biol. 30:1195–201 [Google Scholar]
  96. Lee JE, Terauds A, Chown SL. 96.  2014. Natural dispersal to sub-Antarctic Marion Island of two arthropod species. Polar Biol. 37:781–87 [Google Scholar]
  97. Leschen RAB, Butler E, Buckley TR, Ritchie P. 97.  2011. Biogeography of the New Zealand Subantarctic Islands: phylogenetics of Pseudhelops (Coleoptera: Tenebrionidae). N.Z. Entomol. 34:12–26 [Google Scholar]
  98. Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE, Denlinger DL. 98.  2009. Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J. Comp. Physiol. B 179:481–91 [Google Scholar]
  99. Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE, Denlinger DL. 99.  2008. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem. Mol. Biol. 38:796–804 [Google Scholar]
  100. Marais E, Chown SL. 100.  2008. Beneficial acclimation and the Bogert effect. Ecol. Lett. 11:1027–36 [Google Scholar]
  101. McGaughran A, Stevens MI, Hogg ID, Carapelli A. 101.  2011. Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insects 2:62–82 [Google Scholar]
  102. McGeoch MA, le Roux PC, Hugo EA, Chown SL. 102.  2006. Species and community responses to short-term climate manipulation: microarthropods in the sub-Antarctic. Austral. Ecol. 31:719–31 [Google Scholar]
  103. Michaud MR, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL. 103.  2008. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing, and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54:645–55 [Google Scholar]
  104. Michaux B, Leschen RAB. 104.  2005. East meets west: biogeology of the Campbell Plateau. Biol. J. Linn. Soc. 86:95–115 [Google Scholar]
  105. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 105.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67 [Google Scholar]
  106. Morrone JJ. 106.  1998. On Udvardy's Insulantarctica province: a test from the weevils (Coleoptera: Curculionoidea). J. Biogeogr. 25:947–55One of the few studies examining insect biogeographic relationships across the entire region. [Google Scholar]
  107. Morrone JJ. 107.  2011. Island evolutionary biogeography: analysis of the weevils (Coleoptera: Curculionidae) of the Falkland Islands (Islas Malvinas). J. Biogeogr. 38:2078–90 [Google Scholar]
  108. Mortimer E, Jansen van Vuuren B, Lee JE, Marshall DJ, Convey P, Chown SL. 108.  2011. Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proc. R. Soc. B 278:1247–55 [Google Scholar]
  109. Nielsen UN, Wall DH. 109.  2013. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?. Ecol. Lett. 16:409–19 [Google Scholar]
  110. Nondula N, Marshall DJ, Baxter R, Sinclair BJ, Chown SL. 110.  2004. Life history and osmoregulatory ability of Telmatogeton amphibius (Diptera, Chironomidae) at Marion Island. Polar Biol. 27:629–35 [Google Scholar]
  111. Ottesen PS. 111.  1990. Diel activity patterns of Carabidae, Staphylinidae and Perimylopidae (Coleoptera) at South Georgia, Sub-Antarctic. Polar Biol. 10:515–19 [Google Scholar]
  112. Papadopoulou A, Jones AG, Hammond PM, Vogler AP. 112.  2009. DNA taxonomy and phylogeography of beetles of the Falkland Islands (Islas Malvinas). Mol. Phylogenet. Evol. 53:935–47Molecular evidence showing that ancient endemics have persisted in situ on the islands. [Google Scholar]
  113. Pisa S, Biersma EM, Convey P, Patiño J, Vanderpoorten A. 113.  et al. 2014. The cosmopolitan moss Bryum argenteum in Antarctica: recent colonization or in situ survival?. Polar Biol. 37:1469–77 [Google Scholar]
  114. Posadas P. 114.  2008. A preliminary overview of species composition and geographical distribution of Malvinian weevils (Insecta: Coleoptera: Curculionidae). Zootaxa 1704:1–26 [Google Scholar]
  115. Renault D, Lalouette L. 115.  2012. Critical thermal minima of three sub-Antarctic insects from the French southern Indian Ocean islands. Antarct. Sci. 24:43–44 [Google Scholar]
  116. Rinehart JP, Hayward SAL, Elnitsky MA, Sandro LH, Lee RE, Denlinger DL. 116.  2006. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. PNAS 103:14223–27 [Google Scholar]
  117. Roff DA. 117.  1990. The evolution of flightlessness in insects. Ecol. Monogr. 60:389–421 [Google Scholar]
  118. Russell JC. 118.  2012. Spatio-temporal patterns of introduced mice and invertebrates on Antipodes Island. Polar Biol. 35:1187–95 [Google Scholar]
  119. Sæther OE, Andersen T. 119.  2011. Chironomidae from Gough, Nightingale and Tristan da Cunha Islands. Zootaxa 2915:1–15 [Google Scholar]
  120. Sax DF, Gaines SD, Brown JH. 120.  2002. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am. Nat. 160:766–83 [Google Scholar]
  121. Schermann-Legionnet A, Hennion F, Vernon P, Atlan A. 121.  2007. Breeding system of the subantarctic plant species Pringlea antiscorbutica R. Br. and search for potential insect pollinators in the Kerguelen Islands. Polar Biol. 30:1183–93 [Google Scholar]
  122. Selkirk PM. 122.  2007. The nature and importance of the sub-Antarctic. Pap. Proc. R. Soc. Tasman. 141:1–6 [Google Scholar]
  123. Selmi S, Boulinier T. 123.  2001. Ecological biogeography of Southern Ocean Islands: the importance of considering spatial issues. Am. Nat. 158:426–37 [Google Scholar]
  124. Shaw JD. 124.  2013. Southern Ocean islands invaded: conserving biodiversity in the world's last wilderness. Plant Invasions in Protected Areas: Patterns, Problems and Challenges LC Foxcroft, P Pyšek, DM Richardson, P Genovesi 449–70 Dordrecht: Neth.: Springer [Google Scholar]
  125. Shaw JD, Spear D, Greve M, Chown SL. 125.  2010. Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. J. Biogeogr. 37:217–28 [Google Scholar]
  126. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA. 126.  et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28:58–66 [Google Scholar]
  127. Sinclair BJ, Addo-Bediako A, Chown SL. 127.  2003. Climatic variability and the evolution of insect freeze tolerance. Biol. Rev. 78:181–95 [Google Scholar]
  128. Sinclair BJ, Chown SL. 128.  2005. Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island. Biol. Lett. 2:51–54 [Google Scholar]
  129. Smith VR. 129.  2008. Energy flow and nutrient cycling in the Marion Island terrestrial ecosystem: 30 years on. Polar Rec. 44:211–26 [Google Scholar]
  130. Smith VR, Steenkamp M. 130.  1990. Climatic change and its ecological implications at a subantarctic island. Oecologia 85:14–24 [Google Scholar]
  131. Stuart YE, Losos JB. 131.  2013. Ecological character displacement: glass half full or half empty?. Trends Ecol. Evol. 28:402–8 [Google Scholar]
  132. Sugg P, Edwards JS, Baust J. 132.  1983. Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecol. Entomol. 8:105–13 [Google Scholar]
  133. Teets NM, Denlinger DL. 133.  2014. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. J. Exp. Biol. 271:84–93 [Google Scholar]
  134. Teets NM, Elnitsky MA, Benoit JB, Lopez-Martinez G, Denlinger DL, Lee RE. 134.  2008. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:1938–46 [Google Scholar]
  135. Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. 135.  2011. Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae. J. Exp. Biol. 214:806–14Shows that B. antarctica larval fitness is enhanced when individuals remain dry and can avoid inoculative freezing. [Google Scholar]
  136. Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. 136.  2012. Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 58:498–505 [Google Scholar]
  137. Teets NM, Peyton JT, Colinet H, Renault D, Kelley JL. 137.  et al. 2012. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. PNAS 109:20744–49 [Google Scholar]
  138. Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ. 138.  et al. 2012. Conservation biogeography of the Antarctic. Divers. Distrib. 18:726–41 [Google Scholar]
  139. Treasure AM, Chown SL. 139.  2014. Antagonistic effects of biological invasion and temperature change on body size of island ectotherms. Divers. Distrib. 20:202–13 [Google Scholar]
  140. Tréhen P, Vernon P. 140.  1982. Peuplement diptérologique d'une île subantarctique: la Possession (46°S, 51°E, Iles Crozet). Rev. Écol. Biol. Sol. 19:105–20 [Google Scholar]
  141. Tréhen P, Vernon P, Delettre Y, Frenot Y. 141.  1986. Organisation et dynamique des peuplements diptérologiques a Kerguelen, mise en évidence de modifications liées a l'insularité. Com. Natl. Fr. Rech. Arctiques Antarct. 58:241–53 [Google Scholar]
  142. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA. 142.  et al. 2014. Antarctic climate change and the environment: an update. Polar Rec. 50:237–59 [Google Scholar]
  143. Ulrich W, Almeida-Neto M. 143.  2012. On the meaning of nestedness: back to basics. Ecography 35:865–71 [Google Scholar]
  144. Vernon P, Vannier G, Tréhen P. 144.  1998. A comparative approach to the entomological diversity of polar regions. Acta Oecol. 19:303–8Assesses the mechanisms underlying the substantial differences in diversity between Arctic and Antarctic insect faunas. [Google Scholar]
  145. Vogel M. 145.  1985. The distribution and ecology of epigeic invertebrates on the sub-Antarctic Island of South Georgia. Spixiana 8:153–63 [Google Scholar]
  146. Volonterio O, Ponce de León R, Convey P, Krzemińska E. 146.  2013. First record of Trichoceridae (Diptera) in the maritime Antarctic. Polar Biol. 36:1125–31 [Google Scholar]
  147. Wagstaff SJ, Hennion F. 147.  2007. Evolution and biogeography of Lyallia and Hectorella (Portulacaceae), geographically isolated sisters from the Southern Hemisphere. Antarct. Sci. 19:417–26 [Google Scholar]
  148. Wakeham-Dawson A, Koster SJC. 148.  2013. Lepidoptera of the Falkland Islands (3): a new and unique species of Momphidae. Entomol. Month. Mag. 149:129–35 [Google Scholar]
  149. Worland MR. 149.  2010. Eretmoptera murphyi: pre-adapted to survive a colder climate. Physiol. Entomol. 29:127–37 [Google Scholar]
  150. Zera AJ, Denno RF. 150.  1997. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42:207–31 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023537
Loading
/content/journals/10.1146/annurev-ento-010715-023537
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error