1932

Abstract

Root-feeding insects are an increasingly studied group of herbivores whose impacts on plant productivity and ecosystem processes are widely recognized. Their belowground habitat has hitherto hindered our understanding of how they interact with other organisms that share the rhizosphere. A surge in research in this area has now shed light on these interactions. We review key interactions between root-feeding insects and other rhizospheric organisms, including beneficial plant microbes (mycorrhizal fungi, nitrogen-fixing bacteria), antagonists/pathogens of root herbivores (arthropod predators, entomopathogenic nematodes/fungi, and bacterial pathogens), competitors, symbiotic microbes, and detritivores. Patterns for these interactions are emerging. The negative impacts of mycorrhizal fungi on root herbivores, for instance, raise the intriguing prospect that these fungi could be used for pest management. Moreover, a better understanding of symbiotic microbes in root herbivores, especially those underpinning digestion, could prove useful in industries such as biofuel production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010814-020608
2015-01-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-010814-020608.html?itemId=/content/journals/10.1146/annurev-ento-010814-020608&mimeType=html&fmt=ahah

Literature Cited

  1. Ali J, Alborn H, Stelinski L. 1.  2010. Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36:361–68 [Google Scholar]
  2. Ali JG, Alborn HT, Stelinski LL. 2.  2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99:26–35Novel demonstration that volatiles from wounded roots can recruit both entomopathogenic and herbivorous nematodes. [Google Scholar]
  3. Ali JG, Campos-Herrera R, Alborn HT, Duncan LW, Stelinski LL. 3.  2013. Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue. J. Chem. Ecol. 39:1140–47 [Google Scholar]
  4. Anderson JM. 4.  1988. Spatiotemporal effects of invertebrates on soil processes. Biol. Fertil. Soils 6:216–27 [Google Scholar]
  5. Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland W. 5.  2012. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLOS ONE 7e51557
  6. Ayres E, Dromph KM, Cook R, Ostle N, Bardgett RD. 6.  2007. The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants. Funct. Ecol. 21:256–63 [Google Scholar]
  7. Bardgett RD. 7.  2005. The Biology of Soil: A Community and Ecosystem Approach Oxford, UK: Oxford Univ. Press
  8. Barnett K, Johnson SN. 8.  2013. Living in the soil matrix: abiotic factors affecting root herbivores. Adv. Insect Physiol. 45:1–52 [Google Scholar]
  9. Barr KL, Hearne LB, Briesacher S, Clark TL, Davis GE. 9.  2010. Microbial symbionts in insects influence down-regulation of defense genes in maize. PLOS ONE 5:e11339 [Google Scholar]
  10. Baverstock J, Elliot SL, Alderson PG, Pell JK. 10.  2005. Response of the entomopathogenic fungus Pandora neoaphidis to aphid-induced plant volatiles. J. Invertebr. Pathol. 89:157–64 [Google Scholar]
  11. Bennett AE, Alers-Garcia J, Bever JD. 11.  2006. Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am. Nat. 167:141–52Benchmark paper sets out testable hypotheses for the effects of mycorrhizal fungi on insects. [Google Scholar]
  12. Bennett AE, Bever JD. 12.  2007. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–18 [Google Scholar]
  13. Bennett AE, Macrae AM, Moore BD, Caul S, Johnson SN. 13.  2013. Early root herbivory impairs mycorrhizal fungi colonisation and induces defence allocation in mature Plantago lanceolata. PLOS ONE 8:e66053 [Google Scholar]
  14. Blossey B, Hunt-Joshi TR. 14.  2003. Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu. Rev. Entomol. 48:521–47 [Google Scholar]
  15. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L. 15.  et al. 2013. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64:161–82 [Google Scholar]
  16. Boff MIC, van Tol R, Smits PH. 16.  2002. Behavioural response of Heterorhabditis megidis towards plant roots and insect larvae. Biocontrol 47:67–83 [Google Scholar]
  17. Bohlen PJ, Edwards CA. 17.  1995. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol. Biochem. 27:341–48 [Google Scholar]
  18. Britton EB. 18.  1978. A revision of Australian chafers (Coleoptera: Scarabaeidae: Melolonthinae), Vol. 2: Tribe Melolonthini. Aust. J. Zool. Suppl. Ser. 261–150 [Google Scholar]
  19. Brown VK, Gange AC. 19.  1990. Insect herbivory below ground. Adv. Ecol. Res. 20:1–58 [Google Scholar]
  20. Brust GE. 20.  1990. Effects of below-ground predator-weed interactions on damage to peanut by southern corn rootworm (Coleoptera: Chrysomelidae). Environ. Entomol. 19:1837–44 [Google Scholar]
  21. Brust GE, Stinner BR, McCartney DA. 21.  1986. Predation by soil-inhabiting arthropods in intercropped and monoculture agroecosystems. Agric. Ecosyst. Environ. 18:145–54 [Google Scholar]
  22. Brust GE, Stinner BR, McCartney DA. 22.  1986. Predator activity and predation in corn agroecosystems. Environ. Entomol. 15:1017–21 [Google Scholar]
  23. Bulla LA, Rhodes RA. 23.  St. Julian G 1975. Bacteria as insect pathogens. Annu. Rev. Microbiol. 29:163–90 [Google Scholar]
  24. Byers RA, Kendall WA. 24.  1982. Effects of plant genotypes and root nodulation on growth and survival of Sitona spp. larvae (Coleoptera, Curculionidae). Environ. Entomol. 11:440–43 [Google Scholar]
  25. Campbell JF, Gaugler RR. 25.  1997. Inter-specific variation in entomopathogenic nematode foraging strategy: dichotomy or variation along a continuum?. Fund. Appl. Nematol. 20:393–98 [Google Scholar]
  26. Campbell JF, Lewis EE. 26.  2002. Entomopathogenic nematode host-search strategies. The Behavioural Ecology of Parasites EE Lewis, JF Campbell, MVK Sukhdeo 13–38 Wallingford, UK: CABI
  27. Campbell JF, Lewis EE, Stock SP, Nadler S, Kaya HK. 27.  2003. Evolution of host search strategies in entomopathogenic nematodes. J. Nematol. 35:142–45 [Google Scholar]
  28. Charles JF, Delécluse A, Nielsen-le Roux C. 28.  Entomopathogenic Bacteria: From Laboratory to Field Application Dordrecht, Neth: Kluwer Acad.
  29. Clark KE, Hartley SE, Brennan RM, MacKenzie K, Johnson SN. 29.  2012. Investigating preference-performance relationships in aboveground-belowground life cycles: a laboratory and field study with the vine weevil (Otiorhynchus sulcatus). Bull. Entomol. Res. 102:63–70 [Google Scholar]
  30. Currie AF, Murray PJ, Gange AC. 30.  2006. Root herbivory by Tipula paludosa larvae increases colonization of Agrostis capillaris by arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1994–97 [Google Scholar]
  31. Currie AF, Murray PJ, Gange AC. 31.  2011. Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi?. Appl. Soil Ecol. 47:77–83 [Google Scholar]
  32. Curry JP. 32.  1987. The invertebrate fauna of grassland and its influence on productivity. 2. Factors affecting the abundance and composition of the fauna. J. Nematol. 42:197–212 [Google Scholar]
  33. Dematheis F, Kurtz B, Vidal S, Smalla K. 33.  2013. Multitrophic interactions among Western Corn Rootworm, Glomus intraradices and microbial communities in the rhizosphere and endorhiza of maize. Front. Microbiol. 4:357 [Google Scholar]
  34. Douglas AE. 34.  2013. Microbial brokers of insect-plant interactions revisited. J. Chem. Ecol. 39:952–61 [Google Scholar]
  35. Dunkel FV, Jaronski ST, Sedlak CW, Meiler SU, Veo KD. 35.  2010. Effects of steam-distilled shoot extract of Tagetes minuta (Asterales: Asteraceae) and entomopathogenic fungi on larval Tetanops myopaeformis. Environ. Entomol. 39:979–88 [Google Scholar]
  36. Egert M, Stingl U, Bruun LD, Pommerenke B, Brune A, Friedrich MW. 36.  2005. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 71:4556–66 [Google Scholar]
  37. Endlweber K, Ruess L, Scheu S. 37.  2009. Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol. Biochem. 41:1151–54 [Google Scholar]
  38. Erb M, Huber M, Robert CAM, Ferrieri AP, Machado RAR, Arce CCM. 38.  2013. The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. Adv. Insect Physiol. 45:53–95 [Google Scholar]
  39. Erb M, Lu J. 39.  2013. Soil abiotic factors influence interactions between belowground herbivores and plant roots. J. Exp. Bot. 64:1295–303 [Google Scholar]
  40. Filser J. 40.  2002. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 46:234–45 [Google Scholar]
  41. Gange AC. 41.  2001. Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol. 150:611–18Establishes that the nature of mycorrhizal fungal communities dictates impacts on root herbivores. [Google Scholar]
  42. Gange AC, Brown VK, Sinclair GS. 42.  1994. Reduction of black vine weevil larval growth by vesicular arbuscular mycorrhizal infection. Entomol. Exp. Appl. 70:115–19 [Google Scholar]
  43. Gaugler R, Kaya HK. 43.  1990. Entomopathogenic Nematodes in Biological Control Boca Raton, FL: CRC
  44. Gaugler R, Lebeck L, Nakagaki B, Boush GM. 44.  1980. Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environ. Emtomol. 9:649–52 [Google Scholar]
  45. Gehring C, Bennett A. 45.  2009. Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ. Entomol. 38:93–102 [Google Scholar]
  46. Gerard PJ. 46.  2001. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules. Bull. Entomol. Res. 91:149–52 [Google Scholar]
  47. Gibson C, Visser M. 47.  1982. Interspecific competition between two field populations of grass-feeding bugs. Ecol. Entomol. 7:61–67 [Google Scholar]
  48. Goldson SL, Frampton ER, Proffitt JR. 48.  1988. Population dynamics and larval establishment of Sitona discoideus (Coleoptera, Curculionidae) in New Zealand lucerne. J. Appl. Ecol. 25:177–95 [Google Scholar]
  49. Greenwood RM, Bathurst NO. 49.  1978. Effects of rhizobial strain and host amino acid patterns in legume root nodules. N. Z. J. Sci. 21:107–20 [Google Scholar]
  50. Grewal PS, Lewis EE, Gaugler R, Campbell JF. 50.  1994. Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108:207–15 [Google Scholar]
  51. Halldórsson G, Sverrisson H, Eyjólfsdóttir GG, Oddsdóttir ES. 51.  2000. Ectomycorrhizae reduce damage to Russian larch by Otiorhyncus larvae. Scand. J. For. Res. 15:354–58 [Google Scholar]
  52. Hallem EA, Dillman AR, Hong AV, Zhang YJ, Yano JM. 52.  et al. 2011. A sensory code for host seeking in parasitic nematodes. Curr. Biol. 21:377–83 [Google Scholar]
  53. Hansen BM, Salamitou S. 53.  2000. Virulence of Bacillus thuringiensis. See Ref. 28 41–64
  54. Hartley SE, Gange AC. 54.  2009. Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu. Rev. Entomol. 54:323–42 [Google Scholar]
  55. Hatch DJ, Murray PJ. 55.  1994. Transfer of nitrogen from damaged roots of white clover (Trifolium repens L.) to closely associated roots on intact perennial ryegrass (Lolium perenne L.). Plant Soil 166:181–85 [Google Scholar]
  56. Hawkins BA. 56.  1988. Species diversity in the third and fourth trophic levels: patterns and mechanisms. J. Anim. Ecol. 57:137–62 [Google Scholar]
  57. Hawkins BA, Thomas MB, Hochberg ME. 57.  1993. Refuge theory and biological control. Science 262:1429–32 [Google Scholar]
  58. Hiltpold I, Baroni M, Toepfer S, Kuhlmann U, Turlings TCJ. 58.  2010. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213:2417–23 [Google Scholar]
  59. Hiltpold I, Bernklau E, Bjostad LB, Alvarez N, Miller-Struttmann NE. 59.  et al. 2013. Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores. Adv. Insect Physiol. 45:97–157 [Google Scholar]
  60. Hinz HL, Muller-Scharer H. 60.  2000. Suitability of two root-mining weevils for the biological control of scentless chamomile, Tripleurospermum perforatum, with special regard to potential non-target effects. Bull. Entomol. Res. 90:497–508 [Google Scholar]
  61. Hirsch J, Strohmeier S, Pfannkuchen M, Reineke A. 61.  2012. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach. BMC Microbiol. 12:Suppl. 1S6 [Google Scholar]
  62. Huang S, Zhang H. 62.  2013. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLOS ONE 8:e57169 [Google Scholar]
  63. Huang S-W, Zhang H-Y, Marshall S, Jackson TA. 63.  2010. The scarab gut: a potential bioreactor for bio-fuel production. Insect Sci. 17:175–83 [Google Scholar]
  64. Jackson TA, Boucias DG, Thaler JO. 64.  2001. Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J. Invertebr. Pathol. 78:232–43 [Google Scholar]
  65. Jackson TA, Klein MG. 65.  2006. Scarabs as pests: a continuing problem. Coleopt. Bull. 60:102–19 [Google Scholar]
  66. Johnson NC, Graham JH, Smith FA. 66.  1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135:575–86 [Google Scholar]
  67. Johnson SN, Birch ANE, Gregory PJ, Murray PJ. 67.  2006. The ‘mother knows best’ principle: Should soil insects be included in the preference–performance debate?. Ecol. Entomol. 31:395–401 [Google Scholar]
  68. Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J. 68.  2012. Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 93:2208–15First meta-analysis of aboveground-belowground herbivore interactions identifying factors underpinning interaction outcomes. [Google Scholar]
  69. Johnson SN, Gregory PJ. 69.  2006. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31:1–13 [Google Scholar]
  70. Johnson SN, Gregory PJ, Greenham JR, Zhang X, Murray PJ. 70.  2005. Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31:2223–29 [Google Scholar]
  71. Johnson SN, Mitchell C, Thompson J, Karley AJ. 71.  2013. Downstairs drivers—root herbivores shape communities of aboveground herbivores and natural enemies via plant nutrients. J. Anim. Ecol. 82:1021–30 [Google Scholar]
  72. Johnson SN, Murray PJ. 72.  2008. Root Feeders: An Ecosystem Perspective Wallingford, UK: CABI
  73. Johnson SN, Nielsen UN. 73.  2012. Foraging in the dark—chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. 38:604–14 [Google Scholar]
  74. Johnson SN, Read DB, Gregory PJ. 74.  2004. Tracking larval insect movement within soil using high resolution X-ray microtomography. Ecol. Entomol. 29:117–22First use of X-ray microtomography to visualize movement of root herbivores to host plants. [Google Scholar]
  75. Johnson SN, Zhang XX, Crawford JW, Gregory PJ, Hix NJ. 75.  et al. 2006. Effects of carbon dioxide on the searching behaviour of the root-feeding clover weevil Sitona lepidus (Coleoptera: Curculionidae). Bull. Entomol. Res. 96:361–66 [Google Scholar]
  76. Kaya HK, Gaugler R. 76.  1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181–206 [Google Scholar]
  77. Keller S. 77.  1984. Das andere Gesicht des Maikäfers. Tages Anz. Mag. 19:27–34 [Google Scholar]
  78. Koricheva J, Gange AC, Jones T. 78.  2009. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–97 [Google Scholar]
  79. Koske RE. 79.  1982. Evidence for a volatile attractant from plant roots affecting germ tubes of a VA mycorrhizal fungus. Trans. Br. Mycol. Soc. 79:305–10 [Google Scholar]
  80. Kupferschmied P, Maurhofer M, Keel C. 80.  2013. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front. Plant Sci. 4:287 [Google Scholar]
  81. Kuriwada T, Hosokawa T, Kumano N, Shiromoto K, Haraguchi D, Fukatsu T. 81.  2010. Biological role of Nardonella endosymbiont in its weevil host. PLOS ONE 5:e13101 [Google Scholar]
  82. Lacey LA, Frutos R, Kaya HK, Vail P. 82.  2001. Insect pathogens as biological control agents: Do they have a future?. Biol. Control 21:230–48 [Google Scholar]
  83. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P. 83.  et al. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33:159–93 [Google Scholar]
  84. Laznik Z, Trdan S. 84.  2013. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp. Parasitol. 134:349–55 [Google Scholar]
  85. Lee KE. 85.  1985. Earthworms: Their Ecology and Relationships with Soils and Land Use New York: Academic
  86. Lemawork S, Azerefegne F, Alemu T, Addis T, Blomme G. 86.  2011. Evaluation of entomopathogenic fungi against Cataenococcus ensete [Williams and Matile-Ferrero, (Homoptera: Pseudococcidae)] on enset. Crop. Prot. 30:401–4 [Google Scholar]
  87. Lewis EE, Gaugler R, Harrison R. 87.  1993. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71:765–69 [Google Scholar]
  88. Logan DP, Kettle CG. 88.  2002. Effect of food and larval density on survival and growth of early instar greyback canegrub, Dermolepida albohirtum (Waterhouse) (Coleoptera: Scarabaeidae). Aust. J. Entomol. 41:253–61 [Google Scholar]
  89. Malinowski H. 89.  2009. Possibility of forest protection against insects damaging root systems with the use of biological method based on entomopathogenic fungi. I. Mechanism of insects infection with entomopathogenic fungi and factors influencing this process. Sylwan 153:795–804 [Google Scholar]
  90. Malinowski H. 90.  2010. Possibility of forest protection against insects damaging root systems with the use of biological method based on entomopathogenic fungi. II. Effectiveness of fungal bioinsecticides against Melolontha spp. white grubs and other pests of roots. Sylwan 154:15–23 [Google Scholar]
  91. Mattson WJ. 91.  1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–61 [Google Scholar]
  92. Meyling NV, Eilenberg J. 92.  2007. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol. Control 43:145–55 [Google Scholar]
  93. Morales-Rodriguez A, Peck DC. 93.  2009. Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallon majale and Popillia japonica. Biol. Control 51:169–80 [Google Scholar]
  94. Oddsdottir ES, Eilenberg J, Sen R, Halldorsson G. 94.  2010. The effects of insect pathogenic soil fungi and ectomycorrhizal inoculation of birch seedlings on the survival of Otiorhynchus larvae. Agric. For. Entomol. 12:319–24 [Google Scholar]
  95. Pauly M, Keegstra K. 95.  2010. Plant cell wall polymers as precursors for biofuels. Curr. Opin. Plant Biol. 13:305–12 [Google Scholar]
  96. Peferoen M. 96.  1997. Progress and prospects for field use of Bt genes in crops. Trends Biotechnol. 15:173–77 [Google Scholar]
  97. Piedrahita O, Ellis CR, Bogart JP. 97.  1985. Interaction of northern and western corn rootworm larvae (Coleoptera, Chrysomelidae) in a controlled environment. Environ. Entomol. 14:138–41 [Google Scholar]
  98. Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M. 98.  2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15:507–14Discusses how beneficial microbes associated with plant roots may help plants resist insect attack. [Google Scholar]
  99. Piskiewicz AM, Duyts H, Berg MP, Costa SR, van der Putten WH. 99.  2007. Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes. Oecologia 152:505–14 [Google Scholar]
  100. Pittman GW, Brumbley SM, Allsopp PG, O'Neill SL. 100.  2008. “Endomicrobia” and other bacteria associated with the hindgut of Dermolepida albohirtum larvae. Appl. Environ. Microbiol. 74:762–67 [Google Scholar]
  101. Powell KS. 101.  2008. Grape phylloxera: an overview. Root Feeders: An Ecosystem Perspective SN Johnson, PJ Murray 96–114 Wallingford, UK: CABI [Google Scholar]
  102. Priest FG. 102.  2000. Biodiversity of the entomopathogenic, endosporeforming bacteria. See Ref. 28 1–22
  103. Prischmann-Voldseth DA, Dashiell KE. 103.  2013. Effects of releasing a generalist predator (Acari: Gaeolaelaps aculeifer) on a subterranean insect herbivore (Coleoptera: Diabrotica virgifera virgifera). Biol. Control 65:190–99 [Google Scholar]
  104. Quinn MA, Hower AA. 104.  1986. Effects of root nodules and taproots on survival and abundance of Sitona hispidulus (Coleoptera, Curculionidae) on Medicago sativa. Ecol. Entomol. 11:391–400 [Google Scholar]
  105. Rasmann S, Ali JG, Helder J, van der Putten WH. 105.  2012. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol. 38:615–28 [Google Scholar]
  106. Rasmann S, Erwin AC, Halitschke R, Agrawal AA. 106.  2011. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99:16–25 [Google Scholar]
  107. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S. 107.  et al. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–37First demonstration and identification of specific volatile compound underpinning recruitment of EPNs to wounded roots. [Google Scholar]
  108. Rasmann S, Turlings TCJ. 108.  2008. First insights into specificity of belowground tritrophic interactions. Oikos 117:362–69 [Google Scholar]
  109. Régnière J, Rabb RL, Stinner RE. 109.  1981. Popillia japonica (Coleoptera, Scarabaeidae)—intraspecific competition among grubs. Environ. Entomol. 10:661–62 [Google Scholar]
  110. Ridsdill-Smith TJ, Roberts RJ. 110.  1976. Insect density effects in root feeding by larvae of Sericesthis nigrolineata (Coleoptera, Scarabaeidae). J. Appl. Ecol. 13:423–28 [Google Scholar]
  111. Riegler M, O'Neill SL. 111.  2007. Evolutionary dynamics of insect symbiont associations. Trends Ecol. Evol. 22:625–27 [Google Scholar]
  112. Robert CAM, Frank DL, Leach KA, Turlings TCJ, Hibbard BE, Erb M. 112.  2013. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore. J. Chem. Ecol. 39:507–15 [Google Scholar]
  113. Roberts DW, Humber RA. 113.  1981. Entomogenous fungi. Biology of Conidial Fungi GT Cole, WB Kendrick 201–36 New York: Academic [Google Scholar]
  114. Robertson LN. 114.  1987. Food habits of pasture wireworm, Conoderus exsul (Coleoptera: Elateridae). N. Z. J. Zool. 14:535–42 [Google Scholar]
  115. Roehrdanz RL, Levine E. 115.  2007. Wolbachia bacterial infections linked to mitochondrial DNA reproductive isolation among populations of northern corn rootworm (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 100:522–32 [Google Scholar]
  116. Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK. 116.  2006. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 51:331–57 [Google Scholar]
  117. Russell GB, Sutherland ORW, Christmas PE, Wright H. 117.  1982. Feeding deterrents for black beetle larvae, Heteronychus arator (Scarabaeidae), in Trifolium repens. N. Z. J. Zool. 9:145–49 [Google Scholar]
  118. San-Blas E. 118.  2013. Progress on entomopathogenic nematology research: a bibliometric study of the last three decades; 1980–2010. Biol. Control 66:102–24 [Google Scholar]
  119. Scheu S. 119.  2003. Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–56 [Google Scholar]
  120. Smith SE, Read DJ. 120.  2008. Mycorrhizal Symbiosis New York: Academic
  121. Soler R, van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM. 121.  2012. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J. Chem. Ecol. 38:755–67Synthesizes research showing how root herbivores can affect aboveground food webs. [Google Scholar]
  122. Sonnemann I, Baumhaker H, Wurst S. 122.  2012. Species specific responses of common grassland plants to a generalist root herbivore (Agriotes spp. larvae). Basic Appl. Ecol. 13:579–86 [Google Scholar]
  123. 123. St. Leger RJ 2008. Studies on adaptations of Metarhizium anisopliae to life in the soil. J. Invertebr. Pathol. 98:271–76 [Google Scholar]
  124. Sutherland ORW, Hood ND, Hillier JR. 124.  1975. Lucerne root saponins a feeding deterrent for the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae). N. Z. J. Zool. 2:93–100 [Google Scholar]
  125. Tanada Y, Kaya HK. 125.  1993. Insect Pathology San Diego, CA: Academic
  126. Toepfer S, Haye T, Erlandson M, Goettel M, Lundgren JG. 126.  et al. 2009. A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management. Biocontrol Sci. Technol. 19:1–65 [Google Scholar]
  127. Traugott M, Benefer CM, Blackshaw RP, van Herk WG, Vernon RS. 127. 2015 Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol. 60313–34
  128. Treonis AM, Grayston SJ, Murray PJ, Dawson LA. 128.  2005. Effects of root feeding, cranefly larvae on soil microorganisms and the composition of rhizosphere solutions collected from grassland plants. Appl. Soil Ecol. 28:203–15 [Google Scholar]
  129. Turlings T, Hiltpold I, Rasmann S. 129.  2012. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:51–60 [Google Scholar]
  130. Vallet-Gely I, Lemaitre B, Boccard F. 130.  2008. Bacterial strategies to overcome insect defences. Nat. Rev. Microbiol. 6:302–13 [Google Scholar]
  131. van der Putten WH, Vet LEM, Harvey JA, Wäckers FL. 131.  2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 16:547–54 [Google Scholar]
  132. van Tol R, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH. 132.  2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4:292–94 [Google Scholar]
  133. Vannette RL, Hunter MD. 133.  2009. Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agric. For. Entomol. 11:351–58 [Google Scholar]
  134. Vannette RL, Rasmann S. 134.  2012. Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct. Ecol. 26:1033–42 [Google Scholar]
  135. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA. 135.  et al. 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2:149–59 [Google Scholar]
  136. Vet LEM, Dicke M. 136.  1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–72 [Google Scholar]
  137. Wang Y, Gaugler R. 137.  1998. Host and penetration site location by entomopathogenic nematodes against Japanese beetle larvae. J. Invertebr. Pathol. 72:313–18 [Google Scholar]
  138. Wegmann S. 138.  2003. Wenn die Maikäfer nichts mehr zu lachen haben. AGRARForschung 10:188 [Google Scholar]
  139. Weiss MJ, Seevers KP, Mayo ZB. 139.  1985. Influence of western corn rootworm larval densities and damage on corn rootworm survival, development time, size and sex ratio (Coleoptera, Chrysomelidae). J. Kans. Entomol. Soc. 58:397–402 [Google Scholar]
  140. Whipps JM. 140.  2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487–511 [Google Scholar]
  141. Wolfson JL. 141.  1987. Impact of rhizobium nodules on Sitona hispidulus, the clover root curculio. Entomol. Exp. Appl. 43:237–43 [Google Scholar]
  142. Woodson WD. 142.  1994. Interspecific and intraspecific larval competition between Diabrotica virgifera virgifera and Diabrotica barberi (Coleoptera, Chrysomelidae). Environ. Entomol. 23:612–16 [Google Scholar]
  143. Wurst S. 143.  2010. Effects of earthworms on above- and belowground herbivores. Appl. Soil Ecol. 45:123–30 [Google Scholar]
  144. Wurst S. 144.  2013. Plant-mediated links between detritivores and aboveground herbivores. Front. Plant Sci. 4:380 [Google Scholar]
  145. Wurst S, van Dam NM, Monroy F, Biere A, van der Putten WH. 145.  2008. Intraspecific variation in plant defense alters effects of root herbivores on leaf chemistry and aboveground herbivore damage. J. Chem. Ecol. 34:1360–67 [Google Scholar]
  146. Yang H, Dai Y, Wang X, Zhang Q, Zhu L, Bian X. 146.  2014. Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. Sci. World J. 2014:746506 [Google Scholar]
  147. Zhang H, Jackson TA. 147.  2008. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). J. Appl. Microbiol. 105:1277–85 [Google Scholar]
  148. Zug R, Hammerstein P. 148.  2012. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLOS ONE 7:e38544 [Google Scholar]
/content/journals/10.1146/annurev-ento-010814-020608
Loading
/content/journals/10.1146/annurev-ento-010814-020608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error