1932

Abstract

Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035050
2017-01-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035050.html?itemId=/content/journals/10.1146/annurev-ento-031616-035050&mimeType=html&fmt=ahah

Literature Cited

  1. Adler LS. 1.  2000. The ecological significance of toxic nectar. Oikos 91:409–20 [Google Scholar]
  2. Altieri MA. 2.  1994. Biodiversity and Pest Management in Agroecosystems New York: Haworth
  3. Amoros-Jimenez R, Pineda A, Fereres A, Marcos-Garcia MA. 3.  2014. Feeding preferences of the aphidophagous hoverfly Sphaerophoria rueppellii affect the performance of its offspring. BioControl 59:427–35 [Google Scholar]
  4. Bedoussac L, Journet E-P, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G. 4.  et al. 2015. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35:911–35 [Google Scholar]
  5. Begum M, Gurr GM, Wratten SD, Hedberg PR, Nicol HI. 5.  2006. Using selective food plants to maximize biological control of vineyard pests. J. Appl. Ecol. 43:547–54 [Google Scholar]
  6. Begum M, Gurr GM, Wratten SD, Nicol HI. 6.  2004. Flower color affects tri-trophic-level biocontrol interactions. Biol. Control 30:584–90 [Google Scholar]
  7. Bennett AB, Gratton C. 7.  2012. Measuring natural pest suppression at different spatial scales affects the importance of local variables. Environ. Entomol. 41:1077–85 [Google Scholar]
  8. Berndt LA, Wratten SD. 8.  2005. Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol. Control 32:65–69 [Google Scholar]
  9. Bianchi F, Booij CJH, Tscharntke T. 9.  2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 273:1715–27 [Google Scholar]
  10. Blaauw BR, Isaacs R. 10.  2012. Larger wildflower plantings increase natural enemy density, diversity, and biological control of sentinel prey, without increasing herbivore density. Ecol. Entomol. 37:386–94 [Google Scholar]
  11. Campbell AJ, Biesmeijer JC, Varma V, Wäckers FL. 11.  2012. Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Appl. Ecol. 13:363–70 [Google Scholar]
  12. Cardarelli E, Bogliani G. 12.  2014. Effects of grass management intensity on ground beetle assemblages in rice field banks. Agric. Ecosyst. Environ. 195:120–26 [Google Scholar]
  13. Chaplin-Kramer R, O'Rourke ME, Blitzer EJ, Kremen C. 13.  2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14:922–32 [Google Scholar]
  14. Classen A, Peters MK, Ferger SW, Helbig-Bonitz M, Schmack JM. 14.  et al. 2014. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. R. Soc. B 281:20133148 [Google Scholar]
  15. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC. 15.  et al. 2011. Combining high biodiversity with high yields in tropical agroforests. PNAS 108:8311–16 [Google Scholar]
  16. Colley MR, Luna JM. 16.  2000. Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae). Environ. Entomol. 29:1054–59 [Google Scholar]
  17. Collins KL, Boatman ND, Wilcox A, Holland JM. 17.  2003. Effects of different grass treatments used to create overwintering habitat for predatory arthropods on arable farmland. Agric. Ecosyst. Environ. 96:59–67 [Google Scholar]
  18. Cook SM, Khan ZR, Pickett JA. 18.  2007. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52:375–400 [Google Scholar]
  19. Crowder DW, Northfield TD, Strand MR, Snyder WE. 19.  2010. Organic agriculture promotes evenness and natural pest control. Nature 466:109–12Evidence that ecosystem function in agriculture requires restoration of species evenness, not just richness. [Google Scholar]
  20. Daane KM, Sime KR, Fallon J, Cooper ML. 20.  2007. Impacts of Argentine ants on mealybugs and their natural enemies in California's coastal vineyards. Ecol. Entomol. 32583–96
  21. De Clercq P, Bonte M, Van Speybroeck K, Bolckmans K, Deforce K. 21.  2005. Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen. Pest Manag. Sci 611129–32
  22. Diaz MF, Ramirez A, Poveda K. 22.  2012. Efficiency of different egg parasitoids and increased floral diversity for the biological control of noctuid pests. Biol. Control 60182–91
  23. Engel S, Pagiola S, Wunder S. 23.  2008. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65663–74
  24. Faria CA, Wäckers FL, Turlings TCJ. 24.  2008. The nutritional value of aphid honeydew for non-aphid parasitoids. Basic Appl. Ecol. 9286–97
  25. Fiedler AK, Landis DA. 25.  2007. Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environ. Entomol. 36751–65
  26. Fiedler AK, Landis DA. 26.  2007. Plant characteristics associated with natural enemy abundance at Michigan native plants. Environ. Entomol. 36878–86
  27. Finch S, Collier RH. 27.  2000. Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol. Exp. Appl. 9691–102
  28. Finke DL, Denno RF. 28.  2004. Predator diversity dampens trophic cascades. Nature 429:407–10Evidence that additional consumer species can disrupt predation of herbivores. [Google Scholar]
  29. Foti MC, Rostas M, Peri E, Park KC, Slimani T. 29.  et al. 2016. Chemical ecology meets conservation biological control: identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs. J. Pest Sci In press. doi: 10.1007/s10340-016-0758-3
  30. Frank SD. 30.  2010. Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biol. Control 528–16
  31. Géneau CE, Wäckers FL, Luka H, Balmer O. 31.  2013. Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biol. Control 6616–20
  32. Géneau C, Wäckers FL, Luka H, Daniel C, Balmer O. 32.  2012. Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl. Ecol. 13:85–93 [Google Scholar]
  33. Gillespie MAK, Gurr GM, Wratten SD. 33.  2016. Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Entomologia Exp. Appl. 159:207–21 [Google Scholar]
  34. Gillespie M, Wratten SD. 34.  2013. Enhancing nectar provision in vineyard habitats for the endemic New Zealand butterfly, Lycaena salustius. N.Z. J. Ecol. 3767–74
  35. Gillespie M, Wratten S, Sedcole R, Colfer R. 35.  2011. Manipulating floral resources dispersion for hoverflies (Diptera: Syrphidae) in a California lettuce agro-ecosystem. Biol. Control 59215–20
  36. Goleva I, Zebitz CP. 36.  2013. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp. Appl. Acarol. 61259–83
  37. Guedes RNC, Smagghe G, Stark JD, Desneux N. 37.  2016. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 61:43–62 [Google Scholar]
  38. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P. 38.  et al. 2016. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2:16014Evidence that crop yield and farm profits can be boosted by crop-border flower strips. [Google Scholar]
  39. Gurr GM, Thwaite WG, Nicol HI. 39.  1999. Field evaluation of the effects of the insect growth regulator tebufenozide on entomophagous arthropods and pests of apples. Austral Entomol. 38135–40
  40. Gurr GM, Wratten SD, Snyder WE. 40.  2012. Biodiversity and Insect Pests: Key Issues for Sustainable Management West Sussex, UK: Wiley
  41. Gurr GM, You M. 41.  2016. Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front. Plant Sci. 61255Analysis of how molecular approaches can support habitat management.
  42. Gutierrez AP, Daane KM, Ponti L, Walton VM, Ellis CK. 42.  2008. Prospective evaluation of the biological control of vine mealybug: Refuge effects and climate. J. Appl. Ecol. 45:524–36 [Google Scholar]
  43. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Tilman D. 43.  2011. Plant diversity and the stability of foodwebs. Ecol. Lett. 14:42–46 [Google Scholar]
  44. Hermann SL, Thaler JS. 44.  2014. Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect. Oecologia 176:669–76 [Google Scholar]
  45. Hogg BN, Bugg RL, Daane KM. 45.  2011. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. Control 56:76–84 [Google Scholar]
  46. Hokkanen HMT. 46.  1991. Trap cropping in pest management. Annu. Rev. Entomol. 36:119–38 [Google Scholar]
  47. Holzschuh A, Dudenhöffer J-H, Tscharntke T. 47.  2012. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 153:101–7 [Google Scholar]
  48. Huang NX, Enkegaard A, Osborne LS, Ramakers PMJ, Messelink GJ. 48.  et al. 2011. The banker plant method in biological control. Crit. Rev. Plant Sci. 30:259–78 [Google Scholar]
  49. Jacometti MA, Wratten SD, Walter M. 49.  2007. Understorey management increases grape quality, yield and resistance to Botrytis cinerea. Agric. Ecosyst. Environ. 122:349–56 [Google Scholar]
  50. Jamont M, Crepelliere S, Jaloux B. 50.  2013. Effect of extrafloral nectar provisioning on the performance of the adult parasitoid Diaeretiella rapae. Biol. Control 65:271–77 [Google Scholar]
  51. Janssens L, Stoks R. 51.  2013. Predation risk causes oxidative damage in prey. Biol. Lett. 9:20130350 [Google Scholar]
  52. Jones E, Dornhaus A. 52.  2011. Predation risk makes bees reject rewarding flowers and reduce foraging activity. Behav. Ecol. Sociobiol. 65:1505–11 [Google Scholar]
  53. Jonsson M, Bommarco R, Ekbom B, Smith HG, Bengtsson J. 53.  et al. 2014. Ecological production functions for biological control services in agricultural landscapes. Methods Ecol. Evol. 5:243–52 [Google Scholar]
  54. Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ, Didham RK. 54.  2012. Agricultural intensification drives landscape-context effects on host-parasitoid interactions in agroecosystems. J. Appl. Ecol. 49:706–14 [Google Scholar]
  55. Jonsson M, Straub CS, Didham RK, Buckley HL, Case BS. 55.  et al. 2015. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J. Appl. Ecol. 52:1274–82Experimental test of the intermediate landscape complexity hypothesis. [Google Scholar]
  56. Kalinova J, Moudry J. 56.  2003. Evaluation of frost resistance in varieties of common buckwheat (Fagopyrum esculentum Moench.). Plant Soil Environ 49410–13
  57. Kean J, Wratten S, Tylianakis J, Barlow N. 57.  2003. The population consequences of natural enemy enhancement, and implications for conservation biological control. Ecol. Lett. 6604–12Pioneering attempt to apply population modeling to inform habitat manipulation.
  58. Khan ZR, James DG, Midega CAO, Pickett JA. 58.  2008. Chemical ecology and conservation biological control. Biol. Control 45210–24
  59. Khan ZR, Midega CAO, Bruce TJA, Hooper AM, Pickett JA. 59.  2010. Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot 61:154185–96 [Google Scholar]
  60. Khan ZR, Midega CAO, Pittchar J, Bruce TJA, Pickett JA. 60.  2012. ‘Push-pull’ revisited: the process of successful deployment of a chemical ecology based pest management tool. See Reference 40 259–75
  61. Khan ZR, Pickett JA, van den Berg J, Wadhams LJ, Woodcock CM. 61.  2000. Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag. Sci. 56957–62Key paper on “push-pull,” the world's most successful habitat management strategy.
  62. Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T. 62.  2011. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26:474–81 [Google Scholar]
  63. Landis DA, Gardiner MM, Tompkins J. 63.  2012. Using native plant species to diversify agriculture. See Reference 40 276–92
  64. Landis DA, Wratten SD, Gurr GM. 64.  2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45175–201
  65. Lavandero B, Wratten S, Shishehbor P, Worner S. 65.  2005. Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): movement after use of nectar in the field. Biol. Control 34152–58
  66. Lee D-H, Nyrop JP, Sanderson JP. 66.  2011. Avoidance of natural enemies by adult whiteflies, Bemisia argentifolii, and effects on host plant choice. Biol. Control 58302–9
  67. Lee JC, Heimpel GE, Leibee GL. 67.  2004. Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol. Exp. Appl. 111:189–99 [Google Scholar]
  68. Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ. 68.  et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:9–21Important meta-analysis of the success of habitat management approaches. [Google Scholar]
  69. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP. 69.  et al. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–8 [Google Scholar]
  70. Losey JE, Denno RF. 70.  1999. Factors facilitating synergistic predation: the central role of synchrony. Ecol. Appl. 9:378–86 [Google Scholar]
  71. Lu ZX, Zhu PY, Gurr GM, Zheng XS, Read DMY. 71.  et al. 2014. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture. Insect Sci 21:1–12 [Google Scholar]
  72. Marshall EJP. 72.  2002. Introducing field margin ecology in Europe. Agric. Ecosyst. Environ. 89:1–4 [Google Scholar]
  73. Mathews CR, Brown MW, Bottrell DG. 73.  2007. Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera: Tortricidae), in peach (Rosales: Rosaceae). Environ. Entomol. 36:383–89 [Google Scholar]
  74. McCauley SJ, Rowe L, Fortin M-J. 74.  2011. The deadly effects of “nonlethal” predators. Ecology 92:2043–48 [Google Scholar]
  75. McKenzie AJ, Emery SB, Franks JR, Whittingham MJ. 75.  2013. FORUM: Landscape-scale conservation: Collaborative agri-environment schemes could benefit both biodiversity and ecosystem services, but will farmers be willing to participate?. J. Appl. Ecol. 50:1274–80 [Google Scholar]
  76. Merckx T, Feber RE, Dulieu RL, Townsend MC, Parsons MS. 76.  et al. 2009. Effect of field margins on moths depends on species mobility: field-based evidence for landscape-scale conservation. Agric. Ecosyst. Environ. 129:302–9 [Google Scholar]
  77. Nafziger TD, Fadamiro HY. 77.  2011. Suitability of some farmscaping plants as nectar sources for the parasitoid wasp, Microplitis croceipes (Hymenoptera: Braconidae): effects on longevity and body nutrients. Biol. Control 56:225–29 [Google Scholar]
  78. Nelson EH, Rosenheim JA. 78.  2006. Encounters between aphids and their predators: the relative frequencies of disturbance and consumption. Entomol. Exp. Appl. 118:211–19 [Google Scholar]
  79. Ninkovic V, Feng YR, Olsson U, Pettersson J. 79.  2013. Ladybird footprints induce aphid avoidance behavior. Biol. Control 65:63–71 [Google Scholar]
  80. Orre-Gordon GUS, Jacometti MA, Tompkins JML, Wratten SD. 80.  2013. Viticulture can be modified to provide multiple ecosystem services. Ecosystem Services in Agricultural and Urban Landscapes SD Wratten, HS Sandhu, R Cullen, R Costanza 43–57 West Sussex, UK: Wiley-Blackwell [Google Scholar]
  81. Paredes D, Cayuela L, Gurr GM, Campos M. 81.  2015. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?. PLOS ONE 10:13 [Google Scholar]
  82. Pasari JR, Levi T, Zavaleta ES, Tilman D. 82.  2013. Several scales of biodiversity affect ecosystem multifunctionality. PNAS 110:10219–22 [Google Scholar]
  83. Perrin RM, Phillips ML. 83.  1978. Some effects of mixed cropping on the population dynamics of insect pests. Entomol. Exp. Appl. 24:585–93 [Google Scholar]
  84. Petanidou T, Van Laere AN, Ellis W, Smets E. 84.  2006. What shapes amino acid and sugar composition in Mediterranean floral nectars?. Oikos 115:155–69 [Google Scholar]
  85. Pfannenstiel RS. 85.  2012. Direct consumption of cotton pollen improves survival and development of Cheiracanthium inclusum (Araneae: Miturgidae) spiderlings. Ann. Entomol. Soc. Am. 105:275–79 [Google Scholar]
  86. Pfiffner L, Luka H. 86.  2000. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78:215–22 [Google Scholar]
  87. Pfiffner L, Luka H, Schlatter C, Juen A, Traugott M. 87.  2009. Impact of wildflower strips on biological control of cabbage lepidopterans. Agric. Ecosyst. Environ. 129:310–14 [Google Scholar]
  88. Pickett C, Simmons G, Lozano E, Goolsby J. 88.  2004. Augmentative biological control of whiteflies using transplants. BioControl 49:665–88 [Google Scholar]
  89. Pickett CH, Roltsch W, Corbett A. 89.  2004. The role of a rubidium marked natural enemy refuge in the establishment and movement of Bemisia parasitoids. Int. J. Pest Manag. 50:183–91 [Google Scholar]
  90. Poveda K, Gomez MI, Martinez E. 90.  2008. Diversification practices: their effect on pest regulation and production. Rev. Colomb. Entomol. 34:131–44 [Google Scholar]
  91. Pratt PD, Croft BA. 91.  2000. Banker plants: evaluation of release strategies for predatory mites. J. Environ. Hortic. 18:211–17 [Google Scholar]
  92. Preisser EL, Bolnick DI, Benard MF. 92.  2005. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86:501–9 [Google Scholar]
  93. Pretty J, Bharucha ZP. 93.  2015. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6:152–82 [Google Scholar]
  94. Pumarino L, Alomar O, Lundgren JG. 94.  2012. Effects of floral and extrafloral resource diversity on the fitness of an omnivorous bug, Orius insidiosus. Entomol. Exp. Appl. 145:181–90 [Google Scholar]
  95. Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L. 95.  et al. 2015. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc. R. Soc. B 282:20151740 [Google Scholar]
  96. Pywell RF, James KL, Herbert I, Meek WR, Carvell C. 96.  et al. 2005. Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biol. Conserv. 123:79–90 [Google Scholar]
  97. Raguso RA, Agrawal AA, Douglas AE, Jander G, Kessler A. 97.  et al. 2015. The raison d'être of chemical ecology. Ecology 96:617–30 [Google Scholar]
  98. Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE. 98.  et al. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–92 [Google Scholar]
  99. Reigada C, Godoy WAC. 99.  2012. Direct and indirect top-down effects of previous contact with an enemy on the feeding behavior of blowfly larvae. Entomol. Exp. Appl. 142:71–77 [Google Scholar]
  100. Ricci B, Franck P, Toubon JF, Bouvier JC, Sauphanor B, Lavigne C. 100.  2009. The influence of landscape on insect pest dynamics: a case study in southeastern France. Landsc. Ecol. 24:337–49 [Google Scholar]
  101. Root RB. 101.  1973. Organization of a plant-arthropod association in simple and diverse habitats: fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95–120 [Google Scholar]
  102. Rusch RC-KR, Gardiner MM, Hawro V, Holland J, Landis D. 102.  et al. 2016. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221:198–204 [Google Scholar]
  103. Rypstra AL, Schmidt JM, Reif BD, DeVito J, Persons MH. 103.  2007. Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116:853–63 [Google Scholar]
  104. Sánchez IA, Lassaletta L, McCollin D, Bunce RGH. 104.  2009. The effect of hedgerow loss on microclimate in the Mediterranean region: an investigation in Central Spain. Agrofor. Syst. 78:13–25 [Google Scholar]
  105. Scarratt SL, Wratten SD, Shishehbor P. 105.  2008. Measuring parasitoid movement from floral resources in a vineyard. Biol. Control 46:107–13 [Google Scholar]
  106. Schellhorn NA, Bianchi FJJA, Hsu CL. 106.  2014. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu. Rev. Entomol. 59:559–81 [Google Scholar]
  107. Schmidt MH, Roschewitz I, Thies C, Tscharntke T. 107.  2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42:281–87 [Google Scholar]
  108. Schmitz OJ, Barton BT. 108.  2014. Climate change effects on behavioral and physiological ecology of predator-prey interactions: implications for conservation biological control. Biol. Control 75:87–96 [Google Scholar]
  109. Schmitz OJ, Beckerman AP, O'Brien KM. 109.  1997. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–99 [Google Scholar]
  110. Schulthess F, Chabi-Olaye A, Gounou S. 110.  2007. Multi-trophic level interactions in a cassava-maize mixed cropping system in the humid tropics of West Africa. Bull. Entomol. Res. 94:261–72 [Google Scholar]
  111. Schulze E-D, Mooney HA. 111.  2012. Biodiversity and Ecosystem Function Berlin: Springer Sci. Bus. Media
  112. Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG. 112.  et al. 2013. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88:1002–21 [Google Scholar]
  113. Silveira LCP, Berti E, Pierre LSR, Peres FSC, Louzada JNC. 113.  2009. Marigold (Tagetes erecta L.) as an attractive crop to natural enemies in onion fields. Sci. Agric. 66:780–87 [Google Scholar]
  114. Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG. 114.  et al. 2011. Attract and reward: combining chemical ecology and habitat manipulation to enhance biological control in field crops. J. Appl. Ecol. 48:580–90Pioneering work on combining two formerly separate natural enemy enhancement methods. [Google Scholar]
  115. Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG. 115.  et al. 2011. Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric. For. Entomol. 13:145–57 [Google Scholar]
  116. Snyder WE, Tylianakis JM. 116.  2012. The ecology of biodiversity-biocontrol relationships. See Reference 40 23–40
  117. Sobhy IS, Erb M, Lou Y, Turlings TC. 117.  2014. The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos. Trans. R. Soc. B 36920120283
  118. Stacey DL. 118.  1977. ‘Banker’ plant production of Encarsia formosa Gahan and its use in the control of glasshouse whitefly on tomatoes. Plant Pathol 26:63–66 [Google Scholar]
  119. Stapel JO, Cortesero AM, De Moraes CM, Tumlinson JH, Joe Lewis W. 119.  1997. Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environ. Entomol. 26:617–23 [Google Scholar]
  120. Thies C, Steffan-Dewenter I, Tscharntke T. 120.  2003. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25 [Google Scholar]
  121. Thorbek P, Bilde T. 121.  2004. Reduced numbers of generalist arthropod predators after crop management. J. Appl. Ecol. 41526–38
  122. Tillman PG, Smith HA, Holland JM. 122.  2012. Cover crops and related methods for enhancing agricultural biodiversity and conservation biocontrol: successful case studies. See Reference 40 309–27
  123. Tompkins JML, Wratten SD, Wäckers FL. 123.  2010. Nectar to improve parasitoid fitness in biological control: Does the sucrose:hexose ratio matter?. Basic Appl. Ecol. 11:264–71 [Google Scholar]
  124. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D. 124.  et al. 2007. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43294–309
  125. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 125.  2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8857–74
  126. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L. 126.  et al. 2012. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87661–85Comprehensive analysis of evidence for mechanisms the suppress pests at the landscape scale.
  127. Tylianakis JM, Didham RK, Wratten SD. 127.  2004. Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–66 [Google Scholar]
  128. Uvah III, Coaker TH. 128.  1984. Effect of mixed cropping on some insect pests of carrots and onions. Entomol. Exp. Appl. 36:159–67 [Google Scholar]
  129. van Lenteren JC. 129.  2000. A greenhouse without pesticides: fact or fantasy?. Crop Protect 19:375–84 [Google Scholar]
  130. Vandekerkhove B, De Clercq P. 130.  2010. Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus. Biol. Control 53:238–42 [Google Scholar]
  131. Vasseur C, Joannon A, Aviron S, Burel F, Meynard JM, Baudry J. 131.  2013. The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations?. Agric. Ecosyst. Environ. 166:3–14 [Google Scholar]
  132. Vattala HD, Wratten SD, Phillips CB, Wäckers FL. 132.  2006. The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol. Control 39:179–85 [Google Scholar]
  133. Veres A, Petit S, Conord C, Lavigne C. 133.  2013. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 166:110–17 [Google Scholar]
  134. Vollhardt IMG, Bianchi FJJA, Wäckers FL, Thies C, Tscharntke T. 134.  2010. Nectar versus honeydew feeding by aphid parasitoids: Does it pay to have a discriminating palate?. Entomol. Exp. Appl. 137:1–10 [Google Scholar]
  135. Wäckers FL. 135.  2001. A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. J. Insect Physiol. 47:1077–84 [Google Scholar]
  136. Wäckers FL. 136.  2004. Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol. Control 29:307–14 [Google Scholar]
  137. Wäckers FL, van Rijn PCJ, Heimpel GE. 137.  2008. Honeydew as a food source for natural enemies: making the best of a bad meal?. Biol. Control 45:176–84 [Google Scholar]
  138. Wade MR, Gurr GM, Wratten SD. 138.  2008. Ecological restoration of farmland: Progress and prospects. Philos. Trans. R. Soc. B 363:831–47 [Google Scholar]
  139. Westphal C, Vidal S, Horgan FG, Gurr GM, Escalada M. 139.  et al. 2015. Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl. Ecol. 16:681–89 [Google Scholar]
  140. Winkler K, Wäckers F, Pinto DM. 140.  2009. Nectar-providing plants enhance the energetic state of herbivores as well as their parasitoids under field conditions. Ecol. Entomol. 34:221–27 [Google Scholar]
  141. Winkler K, Wäckers F, Termorshuizen A, van Lenteren J. 141.  2010. Assessing risks and benefits of floral supplements in conservation biological control. BioControl 55:719–27 [Google Scholar]
  142. Wong SK, Frank SD. 142.  2013. Pollen increases fitness and abundance of Orius insidiosus Say (Heteroptera: Anthocoridae) on banker plants. Biol. Control 64:45–50 [Google Scholar]
  143. Wyckhuys KAG, Strange-George JE, Kulhanek CA, Wäckers FL, Heimpel GE. 143.  2008. Sugar feeding by the aphid parasitoid Binodoxys communis: How does honeydew compare with other sugar sources?. J. Insect Physiol. 54:481–91 [Google Scholar]
  144. Xiao Y, Chen J, Cantliffe D, McKenzie C, Houben K, Osborne LS. 144.  2011. Establishment of papaya banker plant system for parasitoid, Encarsia sophia (Hymenoptera: Aphilidae) against Bemisia tabaci (Hemiptera: Aleyrodidae) in greenhouse tomato production. Biol. Control 58:239–47 [Google Scholar]
  145. Xiao Y, Osborne LS, Chen J, McKenzie C, Houben K, Irizarry F. 145.  2011. Evaluation of corn plant as potential banker plant for supporting predatory gall midge, Feltiella acarisuga (Diptera: Cecidomyiidae) against Tetranychus urticae (Acari: Tetranychidae) in greenhouse vegetable production. Crop Protect 30:1635–42 [Google Scholar]
  146. Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD, Wyss E. 146.  2007. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52:57–80 [Google Scholar]
  147. Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM. 147.  2007. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64:253–60 [Google Scholar]
  148. Zhu P, Gurr GM, Lu Z-X, Heong K, Chen G. 148.  et al. 2013. Laboratory screening supports the selection of sesame (Sesamum indicum) to enhance Anagrus spp. parasitoids (Hymenoptera: Mymaridae) of rice planthoppers. Biol. Control 64:83–89 [Google Scholar]
  149. Zhu P, Lu Z, Heong K, Chen G, Zheng X. 149.  et al. 2014. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae). PLOS ONE 9:e108669 [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035050
Loading
/content/journals/10.1146/annurev-ento-031616-035050
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error